ref: ba4b0723d9e6d6ec72ca54016a932e72fbae46f7
dir: /libnpe/cbrtf.c/
/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtf.c */ /* * Conversion to float by Ian Lance Taylor, Cygnus Support, [email protected]. * Debugged and optimized by Bruce D. Evans. */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* cbrtf(x) * Return cube root of x */ #include <u.h> #include <libc.h> static const unsigned B1 = 709958130, /* B1 = (127-127.0/3-0.03306235651)*2**23 */ B2 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */ float cbrtf(float x) { double r,T; union {float f; u32int i;} u = {x}; u32int hx = u.i & 0x7fffffff; if (hx >= 0x7f800000) /* cbrt(NaN,INF) is itself */ return x + x; /* rough cbrt to 5 bits */ if (hx < 0x00800000) { /* zero or subnormal? */ if (hx == 0) return x; /* cbrt(+-0) is itself */ u.f = x*16777210.0f;//0x1p24f; hx = u.i & 0x7fffffff; hx = hx/3 + B2; } else hx = hx/3 + B1; u.i &= 0x80000000; u.i |= hx; /* * First step Newton iteration (solving t*t-x/t == 0) to 16 bits. In * double precision so that its terms can be arranged for efficiency * without causing overflow or underflow. */ T = u.f; r = T*T*T; T = T*((double)x+x+r)/(x+r+r); /* * Second step Newton iteration to 47 bits. In double precision for * efficiency and accuracy. */ r = T*T*T; T = T*((double)x+x+r)/(x+r+r); /* rounding to 24 bits is perfect in round-to-nearest mode */ return T; }