ref: a68da5e6ae264f6f9d77bba4b08fae86473ddb4c
dir: /src/css.c/
/***************************************************************************** * css.c: Functions for DVD authentification and unscrambling ***************************************************************************** * Copyright (C) 1999-2001 VideoLAN * $Id: css.c,v 1.3 2002/02/25 18:21:57 hjort Exp $ * * Author: St�phane Borel <[email protected]> * H�kan Hjort <[email protected]> * * based on: * - css-auth by Derek Fawcus <[email protected]> * - DVD CSS ioctls example program by Andrew T. Veliath <[email protected]> * - The Divide and conquer attack by Frank A. Stevenson <[email protected]> * - DeCSSPlus by Ethan Hawke * - DecVOB * see http://www.lemuria.org/DeCSS/ by Tom Vogt for more information. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA. *****************************************************************************/ /***************************************************************************** * Preamble *****************************************************************************/ #include "config.h" #include <stdio.h> #include <stdlib.h> #include <string.h> #include "dvdcss.h" #include "common.h" #include "css.h" #include "libdvdcss.h" #include "csstables.h" #include "ioctl.h" #ifdef HAVE_CSSKEYS # include "csskeys.h" #endif /***************************************************************************** * Local prototypes *****************************************************************************/ static int CSSAuth ( dvdcss_handle dvdcss ); static int CSSGetASF ( dvdcss_handle dvdcss ); static void CSSCryptKey ( int i_key_type, int i_varient, u8 const *p_challenge, u8 *p_key ); static void CSSDecryptKey( u8 *p_crypted, u8 const *p_key, u8 ); static int CSSDiscCrack ( dvdcss_handle dvdcss, u8 *p_disc_key ); static int CSSTitleCrack( int i_start, unsigned char *p_crypted, unsigned char *p_decrypted, u8 *p_sector_key, u8 *p_key ); /***************************************************************************** * CSSTest : check if the disc is encrypted or not *****************************************************************************/ int CSSTest( dvdcss_handle dvdcss ) { int i_ret, i_copyright; i_ret = ioctl_ReadCopyright( dvdcss->i_fd, 0 /* i_layer */, &i_copyright ); if( i_ret < 0 ) { /* Since it's the first ioctl we try to issue, we add a notice */ _dvdcss_error( dvdcss, "css error: ioctl_ReadCopyright failed, " "make sure there is a DVD in the drive, and that " "DVD ioctls were compiled in this libdvdcss version" ); return i_ret; } return i_copyright; } /***************************************************************************** * CSSAuth : DVD CSS authentication. ***************************************************************************** * It simulates the mutual authentication between logical unit and host, * and stops when a session key (called bus key) has been established. * Always do the full auth sequence. Some drives seem to lie and always * respond with ASF=1. For instance the old DVD roms on Compaq Armada says * that ASF=1 from the start and then later fail with a 'read of scrambled * block without authentication' error. *****************************************************************************/ static int CSSAuth( dvdcss_handle dvdcss ) { u8 p_buffer[10]; u8 p_challenge[2*KEY_SIZE]; dvd_key_t p_key1; dvd_key_t p_key2; dvd_key_t p_key_check; u8 i_varient = 0; char psz_warning[48]; int i_ret = -1; int i; _dvdcss_debug( dvdcss, "requesting AGID" ); i_ret = ioctl_ReportAgid( dvdcss->i_fd, &dvdcss->css.i_agid ); /* We might have to reset hung authentication processes in the drive by invalidating the corresponding AGID'. As long as we haven't got an AGID, invalidate one (in sequence) and try again. */ for( i = 0; i_ret == -1 && i < 4 ; ++i ) { _dvdcss_debug( dvdcss, "ioctl_ReportAgid failed" ); sprintf( psz_warning, "invalidating AGID %d", i ); _dvdcss_debug( dvdcss, psz_warning ); /* This is really _not good_, should be handled by the OS. Invalidating an AGID could make another process fail some where in it's authentication process. */ dvdcss->css.i_agid = i; ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid ); _dvdcss_debug( dvdcss, "requesting AGID" ); i_ret = ioctl_ReportAgid( dvdcss->i_fd, &dvdcss->css.i_agid ); } /* Unable to authenticate without AGID */ if( i_ret == -1 ) { _dvdcss_error( dvdcss, "ioctl_ReportAgid failed, fatal" ); return -1; } /* Setup a challenge, any values should work */ for( i = 0 ; i < 10; ++i ) { p_challenge[i] = i; } /* Get challenge from host */ for( i = 0 ; i < 10 ; ++i ) { p_buffer[9-i] = p_challenge[i]; } /* Send challenge to LU */ if( ioctl_SendChallenge( dvdcss->i_fd, &dvdcss->css.i_agid, p_buffer ) < 0 ) { _dvdcss_error( dvdcss, "ioctl_SendChallenge failed" ); ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid ); return -1; } /* Get key1 from LU */ if( ioctl_ReportKey1( dvdcss->i_fd, &dvdcss->css.i_agid, p_buffer ) < 0) { _dvdcss_error( dvdcss, "ioctl_ReportKey1 failed" ); ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid ); return -1; } /* Send key1 to host */ for( i = 0 ; i < KEY_SIZE ; i++ ) { p_key1[i] = p_buffer[4-i]; } for( i = 0 ; i < 32 ; ++i ) { CSSCryptKey( 0, i, p_challenge, p_key_check ); if( memcmp( p_key_check, p_key1, KEY_SIZE ) == 0 ) { snprintf( psz_warning, sizeof(psz_warning), "drive authentic, using varient %d", i ); _dvdcss_debug( dvdcss, psz_warning ); i_varient = i; break; } } if( i == 32 ) { _dvdcss_error( dvdcss, "drive would not authenticate" ); ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid ); return -1; } /* Get challenge from LU */ if( ioctl_ReportChallenge( dvdcss->i_fd, &dvdcss->css.i_agid, p_buffer ) < 0 ) { _dvdcss_error( dvdcss, "ioctl_ReportKeyChallenge failed" ); ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid ); return -1; } /* Send challenge to host */ for( i = 0 ; i < 10 ; ++i ) { p_challenge[i] = p_buffer[9-i]; } CSSCryptKey( 1, i_varient, p_challenge, p_key2 ); /* Get key2 from host */ for( i = 0 ; i < KEY_SIZE ; ++i ) { p_buffer[4-i] = p_key2[i]; } /* Send key2 to LU */ if( ioctl_SendKey2( dvdcss->i_fd, &dvdcss->css.i_agid, p_buffer ) < 0 ) { _dvdcss_error( dvdcss, "ioctl_SendKey2 failed" ); ioctl_InvalidateAgid( dvdcss->i_fd, &dvdcss->css.i_agid ); return -1; } /* The drive has accepted us as authentic. */ _dvdcss_debug( dvdcss, "authentication established" ); memcpy( p_challenge, p_key1, KEY_SIZE ); memcpy( p_challenge + KEY_SIZE, p_key2, KEY_SIZE ); CSSCryptKey( 2, i_varient, p_challenge, dvdcss->css.p_bus_key ); return 0; } /***************************************************************************** * CSSPrintKey : debug function that dumps a key value *****************************************************************************/static void CSSPrintKey( dvdcss_handle dvdcss, u8 *data ) { char psz_output[80]; sprintf( psz_output, "the key is %02x %02x %02x %02x %02x", data[0], data[1], data[2], data[3], data[4] ); _dvdcss_debug( dvdcss, psz_output ); } /***************************************************************************** * CSSGetDiscKey : get disc key and optionnaly decrypts it. ***************************************************************************** * This function should only be called if DVD ioctls are present. * Two decryption methods are then offered: * -disc key hash crack, * -decryption with player keys if they are available. *****************************************************************************/ int CSSGetDiscKey( dvdcss_handle dvdcss ) { unsigned char p_buffer[2048]; #ifdef HAVE_CSSKEYS dvd_key_t disc_key; dvd_key_t test_key; #endif int i; if( CSSAuth( dvdcss ) ) { return -1; } /* Get encrypted disc key */ if( ioctl_ReadDiscKey( dvdcss->i_fd, &dvdcss->css.i_agid, p_buffer ) < 0 ) { _dvdcss_error( dvdcss, "ioctl_ReadDiscKey failed" ); return -1; } /* Unencrypt disc key using bus key */ for( i = 0 ; i < 2048 ; i++ ) { p_buffer[ i ] ^= dvdcss->css.p_bus_key[ 4 - (i % KEY_SIZE) ]; } switch( dvdcss->i_method ) { case DVDCSS_METHOD_KEY: #ifdef HAVE_CSSKEYS /* Decrypt disc key with player keys from csskeys.h */ _dvdcss_debug( dvdcss, "decrypting disc key with player keys" ); i = 0; do { /* Take encrypted disc key and decrypt it */ memcpy( disc_key, p_buffer + playerkeys[i].i_offset, KEY_SIZE ); CSSDecryptKey( disc_key, playerkeys[i].p_key, 0 ); /* Encrypt disc key hash with disc key to * check we have disc key */ memcpy( test_key, p_buffer, KEY_SIZE ); CSSDecryptKey( test_key, disc_key, 0); i++; } while( ( playerkeys[i].i_offset != -1 ) && ( memcmp( test_key, disc_key, KEY_SIZE ) ) ); /* Store decypted disk for use when decrypting title keys */ memcpy( dvdcss->css.p_disc_key, disc_key, KEY_SIZE ); break; #else dvdcss->i_method = DVDCSS_METHOD_DISC; #endif case DVDCSS_METHOD_DISC: /* Crack Disc key to be able to use it */ _dvdcss_debug( dvdcss, "cracking disc key with key hash" ); _dvdcss_debug( dvdcss, "building 64MB table ... this will take some time" ); CSSDiscCrack( dvdcss, p_buffer ); memcpy( dvdcss->css.p_disc_key, p_buffer, KEY_SIZE ); break; default: _dvdcss_debug( dvdcss, "disc key won't be decrypted" ); } CSSPrintKey( dvdcss, dvdcss->css.p_disc_key ); return 0; } /***************************************************************************** * CSSGetTitleKey : get title key. *****************************************************************************/ int CSSGetTitleKey( dvdcss_handle dvdcss, int i_pos ) { dvd_key_t p_key; int i,j; if( ( dvdcss->i_method == DVDCSS_METHOD_TITLE ) || ( dvdcss->b_ioctls == 0 ) ) { /* * Title key cracking method from Ethan Hawke, * with Frank A. Stevenson algorithm. * Does not use any player key table and ioctls. */ u8 p_buf[0x800]; u8 p_packstart[4] = { 0x00, 0x00, 0x01, 0xba }; boolean_t b_encrypted; boolean_t b_stop_scanning; int i_blocks_read; int i_best_plen; int i_best_p; _dvdcss_debug( dvdcss, "cracking title key ... this may take some time" ); for( i = 0 ; i < KEY_SIZE ; i++ ) { p_key[i] = 0; } b_encrypted = 0; b_stop_scanning = 0; i_blocks_read = 0; do { i_pos = _dvdcss_seek( dvdcss, i_pos ); if( _dvdcss_read( dvdcss, p_buf, 1 ) != 1 ) break; /* Stop when we find a non MPEG stream block */ if( memcmp( p_buf, p_packstart, 4 ) ) { /* The title is unencrypted */ if( !b_encrypted ) break; /* dvdcss some times fail to find/crack the key, hope that it's the same as the one in the next title _dvdcss_debug( dvdcss, "no key found at end of title" ); */ } /* PES_scrambling_control on and make sure that the packet type is one that can be scrambled */ if( p_buf[0x14] & 0x30 && ! ( p_buf[0x11] == 0xbb || p_buf[0x11] == 0xbe || p_buf[0x11] == 0xbf ) ) { b_encrypted = 1; i_best_plen = 0; i_best_p = 0; for( i = 2 ; i < 0x30 ; i++ ) { for( j = i+1 ; j < 0x80 && ( p_buf[0x7F - (j%i)] == p_buf[0x7F-j] ); j++ ); { if( j > i_best_plen ) { i_best_plen = j; i_best_p = i; } } } if( ( i_best_plen > 20 ) && ( i_best_plen / i_best_p >= 2) ) { i = CSSTitleCrack( 0, &p_buf[0x80], &p_buf[0x80 - ( i_best_plen / i_best_p) *i_best_p], &p_buf[0x54], p_key ); b_stop_scanning = ( i >= 0 ); } } i_pos += 1; i_blocks_read += 1; /* If we haven't seen any encrypted ones after 3000 blocks stop */ if( !b_encrypted && i_blocks_read >= 1000 ) break; } while( !b_stop_scanning ); if( b_stop_scanning ) { memcpy( dvdcss->css.p_title_key, &p_key, sizeof(dvd_key_t) ); CSSPrintKey( dvdcss, dvdcss->css.p_title_key ); _dvdcss_debug( dvdcss, "vts key initialized" ); return 0; } if( !b_encrypted ) { _dvdcss_debug( dvdcss, "file was unscrambled" ); return 0; } return -1; } else { /* * if we are here we have a decrypted disc key and ioctls are available * so we can read the title key and decrypt it. */ _dvdcss_debug( dvdcss, "decrypting title key with disc key" ); /* We need to authenticate again for every title key, * a new bus key is used each time. */ CSSAuth( dvdcss ); /* Get encrypted title key */ if( ioctl_ReadTitleKey( dvdcss->i_fd, &dvdcss->css.i_agid, i_pos, p_key ) < 0 ) { _dvdcss_error( dvdcss, "ioctl_ReadTitleKey failed" ); return -1; } /* Unencrypt title key using bus key */ for( i = 0 ; i < KEY_SIZE ; i++ ) { p_key[ i ] ^= dvdcss->css.p_bus_key[ 4 - (i % KEY_SIZE) ]; } /* If p_key is all zero then there realy wasn't any key pressent * even though we got to read it without an error. */ if( !( p_key[0] | p_key[1] | p_key[2] | p_key[3] | p_key[4] ) ) { memset( dvdcss->css.p_title_key, 0, sizeof(dvd_key_t) ); CSSPrintKey( dvdcss, dvdcss->css.p_title_key ); return 0; } /* Title key decryption needs one inversion 0xff */ CSSDecryptKey( p_key, dvdcss->css.p_disc_key, 0xff ); memcpy( dvdcss->css.p_title_key, p_key, sizeof(dvd_key_t) ); CSSPrintKey( dvdcss, dvdcss->css.p_title_key ); return 0; } // (dvdcss->i_method == DVDCSS_METHOD_TITLE) || (dvdcss->b_ioctls == 0) } /***************************************************************************** * CSSDescrambleSector: does the actual descrambling of data ***************************************************************************** * sec : sector to descramble * key : title key for this sector *****************************************************************************/ int CSSDescrambleSector( dvd_key_t p_key, u8 *p_sec ) { unsigned int i_t1, i_t2, i_t3, i_t4, i_t5, i_t6; u8 * p_end = p_sec + 0x800; /* PES_scrambling_control */ if( p_sec[0x14] & 0x30) { i_t1 = (p_key[0] ^ p_sec[0x54]) | 0x100; i_t2 = p_key[1] ^ p_sec[0x55]; i_t3 = (p_key[2] | (p_key[3] << 8) | (p_key[4] << 16)) ^ (p_sec[0x56] | (p_sec[0x57] << 8) | (p_sec[0x58] << 16)); i_t4 = i_t3 & 7; i_t3 = i_t3 * 2 + 8 - i_t4; p_sec += 0x80; i_t5 = 0; while( p_sec != p_end ) { i_t4 = p_css_tab2[i_t2] ^ p_css_tab3[i_t1]; i_t2 = i_t1>>1; i_t1 = ( ( i_t1 & 1 ) << 8 ) ^ i_t4; i_t4 = p_css_tab5[i_t4]; i_t6 = ((((((( i_t3 >> 3 ) ^ i_t3 ) >> 1 ) ^ i_t3 ) >> 8 ) ^ i_t3 ) >> 5 ) & 0xff; i_t3 = (i_t3 << 8 ) | i_t6; i_t6 = p_css_tab4[i_t6]; i_t5 += i_t6 + i_t4; *p_sec = p_css_tab1[*p_sec] ^ ( i_t5 & 0xff ); p_sec++; i_t5 >>= 8; } } return 0; } /* Following functions are local */ /***************************************************************************** * CSSGetASF : Get Authentification success flag ***************************************************************************** * Returns : * -1 on ioctl error, * 0 if the device needs to be authenticated, * 1 either. *****************************************************************************/ static int CSSGetASF( dvdcss_handle dvdcss ) { int i_asf = 0; if( ioctl_ReportASF( dvdcss->i_fd, NULL, &i_asf ) != 0 ) { /* The ioctl process has failed */ _dvdcss_error( dvdcss, "GetASF fatal error" ); return -1; } if( i_asf ) { _dvdcss_debug( dvdcss, "GetASF authenticated (ASF=1)" ); } else { _dvdcss_debug( dvdcss, "GetASF not authenticated (ASF=0)" ); } return i_asf; } /***************************************************************************** * CSSCryptKey : shuffles bits and unencrypt keys. ***************************************************************************** * Used during authentication and disc key negociation in CSSAuth. * i_key_type : 0->key1, 1->key2, 2->buskey. * i_varient : between 0 and 31. *****************************************************************************/ static void CSSCryptKey( int i_key_type, int i_varient, u8 const *p_challenge, u8 *p_key ) { /* Permutation table for challenge */ u8 pp_perm_challenge[3][10] = { { 1, 3, 0, 7, 5, 2, 9, 6, 4, 8 }, { 6, 1, 9, 3, 8, 5, 7, 4, 0, 2 }, { 4, 0, 3, 5, 7, 2, 8, 6, 1, 9 } }; /* Permutation table for varient table for key2 and buskey */ u8 pp_perm_varient[2][32] = { { 0x0a, 0x08, 0x0e, 0x0c, 0x0b, 0x09, 0x0f, 0x0d, 0x1a, 0x18, 0x1e, 0x1c, 0x1b, 0x19, 0x1f, 0x1d, 0x02, 0x00, 0x06, 0x04, 0x03, 0x01, 0x07, 0x05, 0x12, 0x10, 0x16, 0x14, 0x13, 0x11, 0x17, 0x15 }, { 0x12, 0x1a, 0x16, 0x1e, 0x02, 0x0a, 0x06, 0x0e, 0x10, 0x18, 0x14, 0x1c, 0x00, 0x08, 0x04, 0x0c, 0x13, 0x1b, 0x17, 0x1f, 0x03, 0x0b, 0x07, 0x0f, 0x11, 0x19, 0x15, 0x1d, 0x01, 0x09, 0x05, 0x0d } }; u8 p_varients[32] = { 0xB7, 0x74, 0x85, 0xD0, 0xCC, 0xDB, 0xCA, 0x73, 0x03, 0xFE, 0x31, 0x03, 0x52, 0xE0, 0xB7, 0x42, 0x63, 0x16, 0xF2, 0x2A, 0x79, 0x52, 0xFF, 0x1B, 0x7A, 0x11, 0xCA, 0x1A, 0x9B, 0x40, 0xAD, 0x01 }; /* The "secret" key */ u8 p_secret[5] = { 0x55, 0xD6, 0xC4, 0xC5, 0x28 }; u8 p_bits[30]; u8 p_scratch[10]; u8 p_tmp1[5]; u8 p_tmp2[5]; u8 i_lfsr0_o; /* 1 bit used */ u8 i_lfsr1_o; /* 1 bit used */ u32 i_lfsr0; u32 i_lfsr1; u8 i_css_varient; u8 i_cse; u8 i_index; u8 i_combined; u8 i_carry; u8 i_val = 0; int i_term = 0; int i_bit; int i; for (i = 9; i >= 0; --i) p_scratch[i] = p_challenge[pp_perm_challenge[i_key_type][i]]; i_css_varient = ( i_key_type == 0 ) ? i_varient : pp_perm_varient[i_key_type-1][i_varient]; /* * This encryption engine implements one of 32 variations * one the same theme depending upon the choice in the * varient parameter (0 - 31). * * The algorithm itself manipulates a 40 bit input into * a 40 bit output. * The parameter 'input' is 80 bits. It consists of * the 40 bit input value that is to be encrypted followed * by a 40 bit seed value for the pseudo random number * generators. */ /* Feed the secret into the input values such that * we alter the seed to the LFSR's used above, then * generate the bits to play with. */ for( i = 5 ; --i >= 0 ; ) { p_tmp1[i] = p_scratch[5 + i] ^ p_secret[i] ^ p_crypt_tab2[i]; } /* * We use two LFSR's (seeded from some of the input data bytes) to * generate two streams of pseudo-random bits. These two bit streams * are then combined by simply adding with carry to generate a final * sequence of pseudo-random bits which is stored in the buffer that * 'output' points to the end of - len is the size of this buffer. * * The first LFSR is of degree 25, and has a polynomial of: * x^13 + x^5 + x^4 + x^1 + 1 * * The second LSFR is of degree 17, and has a (primitive) polynomial of: * x^15 + x^1 + 1 * * I don't know if these polynomials are primitive modulo 2, and thus * represent maximal-period LFSR's. * * * Note that we take the output of each LFSR from the new shifted in * bit, not the old shifted out bit. Thus for ease of use the LFSR's * are implemented in bit reversed order. * */ /* In order to ensure that the LFSR works we need to ensure that the * initial values are non-zero. Thus when we initialise them from * the seed, we ensure that a bit is set. */ i_lfsr0 = ( p_tmp1[0] << 17 ) | ( p_tmp1[1] << 9 ) | (( p_tmp1[2] & ~7 ) << 1 ) | 8 | ( p_tmp1[2] & 7 ); i_lfsr1 = ( p_tmp1[3] << 9 ) | 0x100 | p_tmp1[4]; i_index = sizeof(p_bits); i_carry = 0; do { for( i_bit = 0, i_val = 0 ; i_bit < 8 ; ++i_bit ) { i_lfsr0_o = ( ( i_lfsr0 >> 24 ) ^ ( i_lfsr0 >> 21 ) ^ ( i_lfsr0 >> 20 ) ^ ( i_lfsr0 >> 12 ) ) & 1; i_lfsr0 = ( i_lfsr0 << 1 ) | i_lfsr0_o; i_lfsr1_o = ( ( i_lfsr1 >> 16 ) ^ ( i_lfsr1 >> 2 ) ) & 1; i_lfsr1 = ( i_lfsr1 << 1 ) | i_lfsr1_o; i_combined = !i_lfsr1_o + i_carry + !i_lfsr0_o; /* taking bit 1 */ i_carry = ( i_combined >> 1 ) & 1; i_val |= ( i_combined & 1 ) << i_bit; } p_bits[--i_index] = i_val; } while( i_index > 0 ); /* This term is used throughout the following to * select one of 32 different variations on the * algorithm. */ i_cse = p_varients[i_css_varient] ^ p_crypt_tab2[i_css_varient]; /* Now the actual blocks doing the encryption. Each * of these works on 40 bits at a time and are quite * similar. */ i_index = 0; for( i = 5, i_term = 0 ; --i >= 0 ; i_term = p_scratch[i] ) { i_index = p_bits[25 + i] ^ p_scratch[i]; i_index = p_crypt_tab1[i_index] ^ ~p_crypt_tab2[i_index] ^ i_cse; p_tmp1[i] = p_crypt_tab2[i_index] ^ p_crypt_tab3[i_index] ^ i_term; } p_tmp1[4] ^= p_tmp1[0]; for( i = 5, i_term = 0 ; --i >= 0 ; i_term = p_tmp1[i] ) { i_index = p_bits[20 + i] ^ p_tmp1[i]; i_index = p_crypt_tab1[i_index] ^ ~p_crypt_tab2[i_index] ^ i_cse; p_tmp2[i] = p_crypt_tab2[i_index] ^ p_crypt_tab3[i_index] ^ i_term; } p_tmp2[4] ^= p_tmp2[0]; for( i = 5, i_term = 0 ; --i >= 0 ; i_term = p_tmp2[i] ) { i_index = p_bits[15 + i] ^ p_tmp2[i]; i_index = p_crypt_tab1[i_index] ^ ~p_crypt_tab2[i_index] ^ i_cse; i_index = p_crypt_tab2[i_index] ^ p_crypt_tab3[i_index] ^ i_term; p_tmp1[i] = p_crypt_tab0[i_index] ^ p_crypt_tab2[i_index]; } p_tmp1[4] ^= p_tmp1[0]; for( i = 5, i_term = 0 ; --i >= 0 ; i_term = p_tmp1[i] ) { i_index = p_bits[10 + i] ^ p_tmp1[i]; i_index = p_crypt_tab1[i_index] ^ ~p_crypt_tab2[i_index] ^ i_cse; i_index = p_crypt_tab2[i_index] ^ p_crypt_tab3[i_index] ^ i_term; p_tmp2[i] = p_crypt_tab0[i_index] ^ p_crypt_tab2[i_index]; } p_tmp2[4] ^= p_tmp2[0]; for( i = 5, i_term = 0 ; --i >= 0 ; i_term = p_tmp2[i] ) { i_index = p_bits[5 + i] ^ p_tmp2[i]; i_index = p_crypt_tab1[i_index] ^ ~p_crypt_tab2[i_index] ^ i_cse; p_tmp1[i] = p_crypt_tab2[i_index] ^ p_crypt_tab3[i_index] ^ i_term; } p_tmp1[4] ^= p_tmp1[0]; for(i = 5, i_term = 0 ; --i >= 0 ; i_term = p_tmp1[i] ) { i_index = p_bits[i] ^ p_tmp1[i]; i_index = p_crypt_tab1[i_index] ^ ~p_crypt_tab2[i_index] ^ i_cse; p_key[i] = p_crypt_tab2[i_index] ^ p_crypt_tab3[i_index] ^ i_term; } return; } /***************************************************************************** * CSSDecryptKey: decrypt p_crypted with p_key. ***************************************************************************** * The player keys and the resulting disc key are only used as KEKs * (key encryption keys). * Decryption is slightly dependant on the type of key: * -for disc key, invert is 0x00, * -for title key, invert if 0xff. *****************************************************************************/ static void CSSDecryptKey( u8 *p_crypted, u8 const *p_key, u8 invert ) { unsigned int i_lfsr1_lo; unsigned int i_lfsr1_hi; unsigned int i_lfsr0; unsigned int i_combined; byte_t o_lfsr0; byte_t o_lfsr1; byte_t k[5]; int i; i_lfsr1_lo = p_key[0] | 0x100; i_lfsr1_hi = p_key[1]; i_lfsr0 = ( ( p_key[4] << 17 ) | ( p_key[3] << 9 ) | ( p_key[2] << 1 ) ) + 8 - ( p_key[2] & 7 ); i_lfsr0 = ( p_css_tab4[i_lfsr0 & 0xff] << 24 ) | ( p_css_tab4[( i_lfsr0 >> 8 ) & 0xff] << 16 ) | ( p_css_tab4[( i_lfsr0 >> 16 ) & 0xff] << 8 ) | p_css_tab4[( i_lfsr0 >> 24 ) & 0xff]; i_combined = 0; for( i = 0 ; i < KEY_SIZE ; ++i ) { o_lfsr1 = p_css_tab2[i_lfsr1_hi] ^ p_css_tab3[i_lfsr1_lo]; i_lfsr1_hi = i_lfsr1_lo >> 1; i_lfsr1_lo = ( ( i_lfsr1_lo & 1 ) << 8 ) ^ o_lfsr1; o_lfsr1 = p_css_tab4[o_lfsr1]; o_lfsr0 = ((((((( i_lfsr0 >> 8 ) ^ i_lfsr0 ) >> 1 ) ^ i_lfsr0 ) >> 3 ) ^ i_lfsr0 ) >> 7 ); i_lfsr0 = ( i_lfsr0 >> 8 ) | ( o_lfsr0 << 24 ); i_combined += ( o_lfsr0 ^ invert ) + o_lfsr1; k[i] = i_combined & 0xff; i_combined >>= 8; } p_crypted[4] = k[4] ^ p_css_tab1[p_crypted[4]] ^ p_crypted[3]; p_crypted[3] = k[3] ^ p_css_tab1[p_crypted[3]] ^ p_crypted[2]; p_crypted[2] = k[2] ^ p_css_tab1[p_crypted[2]] ^ p_crypted[1]; p_crypted[1] = k[1] ^ p_css_tab1[p_crypted[1]] ^ p_crypted[0]; p_crypted[0] = k[0] ^ p_css_tab1[p_crypted[0]] ^ p_crypted[4]; p_crypted[4] = k[4] ^ p_css_tab1[p_crypted[4]] ^ p_crypted[3]; p_crypted[3] = k[3] ^ p_css_tab1[p_crypted[3]] ^ p_crypted[2]; p_crypted[2] = k[2] ^ p_css_tab1[p_crypted[2]] ^ p_crypted[1]; p_crypted[1] = k[1] ^ p_css_tab1[p_crypted[1]] ^ p_crypted[0]; p_crypted[0] = k[0] ^ p_css_tab1[p_crypted[0]]; return; } /***************************************************************************** * CSSDiscCrack: brute force disc key * CSS hash reversal function designed by Frank Stevenson ***************************************************************************** * This function uses a big amount of memory to crack the disc key from the * disc key hash, if player keys are not available. *****************************************************************************/ #define K1TABLEWIDTH 10 /* * Simple function to test if a candidate key produces the given hash */ static int investigate( unsigned char *hash, unsigned char *ckey ) { unsigned char key[5]; unsigned char pkey[5]; memcpy( key, hash, 5 ); memcpy( pkey, ckey, 5 ); CSSDecryptKey( key, pkey, 0 ); return memcmp( key, pkey, 5 ); } static int CSSDiscCrack( dvdcss_handle dvdcss, u8 *p_disc_key ) { unsigned char B[5] = { 0,0,0,0,0 }; /* Second Stage of mangle cipher */ unsigned char C[5] = { 0,0,0,0,0 }; /* Output Stage of mangle cipher * IntermediateKey */ unsigned char k[5] = { 0,0,0,0,0 }; /* Mangling cipher key * Also output from CSS( C ) */ unsigned char out1[5]; /* five first output bytes of LFSR1 */ unsigned char out2[5]; /* five first output bytes of LFSR2 */ unsigned int lfsr1a; /* upper 9 bits of LFSR1 */ unsigned int lfsr1b; /* lower 8 bits of LFSR1 */ unsigned int tmp, tmp2, tmp3, tmp4,tmp5; int i,j; unsigned int nStepA; /* iterator for LFSR1 start state */ unsigned int nStepB; /* iterator for possible B[0] */ unsigned int nTry; /* iterator for K[1] possibilities */ unsigned int nPossibleK1; /* #of possible K[1] values */ unsigned char* K1table; /* Lookup table for possible K[1] */ unsigned int* BigTable; /* LFSR2 startstate indexed by * 1,2,5 output byte */ /* * Prepare tables for hash reversal */ /* initialize lookup tables for k[1] */ K1table = malloc( 65536 * K1TABLEWIDTH ); memset( K1table, 0 , 65536 * K1TABLEWIDTH ); if( K1table == NULL ) { return -1; } tmp = p_disc_key[0] ^ p_css_tab1[ p_disc_key[1] ]; for( i = 0 ; i < 256 ; i++ ) /* k[1] */ { tmp2 = p_css_tab1[ tmp ^ i ]; /* p_css_tab1[ B[1] ]*/ for( j = 0 ; j < 256 ; j++ ) /* B[0] */ { tmp3 = j ^ tmp2 ^ i; /* C[1] */ tmp4 = K1table[ K1TABLEWIDTH * ( 256 * j + tmp3 ) ]; /* count of entries here */ tmp4++; /* if( tmp4 == K1TABLEWIDTH ) { _dvdcss_debug( dvdcss, "Table disaster %d", tmp4 ); } */ if( tmp4 < K1TABLEWIDTH ) { K1table[ K1TABLEWIDTH * ( 256 * j + tmp3 ) + tmp4 ] = i; } K1table[ K1TABLEWIDTH * ( 256 * j + tmp3 ) ] = tmp4; } } /* Initing our Really big table */ BigTable = malloc( 16777216 * sizeof(int) ); memset( BigTable, 0 , 16777216 * sizeof(int) ); if( BigTable == NULL ) { return -1; } tmp3 = 0; _dvdcss_debug( dvdcss, "initializing the big table" ); for( i = 0 ; i < 16777216 ; i++ ) { /* if( ( i & 0x07ffff ) == 0 ) { fprintf( stderr, "#" ); } */ tmp = (( i + i ) & 0x1fffff0 ) | 0x8 | ( i & 0x7 ); for( j = 0 ; j < 5 ; j++ ) { tmp2=((((((( tmp >> 3 ) ^ tmp ) >> 1 ) ^ tmp ) >> 8 ) ^ tmp ) >> 5 ) & 0xff; tmp = ( tmp << 8) | tmp2; out2[j] = p_css_tab4[ tmp2 ]; } j = ( out2[0] << 16 ) | ( out2[1] << 8 ) | out2[4]; BigTable[j] = i; } /* fprintf( stderr, "\n" ); */ /* * We are done initing, now reverse hash */ tmp5 = p_disc_key[0] ^ p_css_tab1[ p_disc_key[1] ]; for( nStepA = 0 ; nStepA < 65536 ; nStepA ++ ) { lfsr1a = 0x100 | ( nStepA >> 8 ); lfsr1b = nStepA & 0xff; /* Generate 5 first output bytes from lfsr1 */ for( i = 0 ; i < 5 ; i++ ) { tmp = p_css_tab2[ lfsr1b ] ^ p_css_tab3[ lfsr1a ]; lfsr1b = lfsr1a >> 1; lfsr1a = ((lfsr1a&1)<<8) ^ tmp; out1[ i ] = p_css_tab4[ tmp ]; } /* cumpute and cache some variables */ C[0] = nStepA >> 8; C[1] = nStepA & 0xff; tmp = p_disc_key[3] ^ p_css_tab1[ p_disc_key[4] ]; tmp2 = p_css_tab1[ p_disc_key[0] ]; /* Search through all possible B[0] */ for( nStepB = 0 ; nStepB < 256 ; nStepB++ ) { /* reverse parts of the mangling cipher */ B[0] = nStepB; k[0] = p_css_tab1[ B[0] ] ^ C[0]; B[4] = B[0] ^ k[0] ^ tmp2; k[4] = B[4] ^ tmp; nPossibleK1 = K1table[ K1TABLEWIDTH * (256 * B[0] + C[1]) ]; /* Try out all possible values for k[1] */ for( nTry = 0 ; nTry < nPossibleK1 ; nTry++ ) { k[1] = K1table[ K1TABLEWIDTH * (256 * B[0] + C[1]) + nTry + 1 ]; B[1] = tmp5 ^ k[1]; /* reconstruct output from LFSR2 */ tmp3 = ( 0x100 + k[0] - out1[0] ); out2[0] = tmp3 & 0xff; tmp3 = tmp3 & 0x100 ? 0x100 : 0xff; tmp3 = ( tmp3 + k[1] - out1[1] ); out2[1] = tmp3 & 0xff; tmp3 = ( 0x100 + k[4] - out1[4] ); out2[4] = tmp3 & 0xff; /* Can be 1 off */ /* test first possible out2[4] */ tmp4 = ( out2[0] << 16 ) | ( out2[1] << 8 ) | out2[4]; tmp4 = BigTable[ tmp4 ]; C[2] = tmp4 & 0xff; C[3] = ( tmp4 >> 8 ) & 0xff; C[4] = ( tmp4 >> 16 ) & 0xff; B[3] = p_css_tab1[ B[4] ] ^ k[4] ^ C[4]; k[3] = p_disc_key[2] ^ p_css_tab1[ p_disc_key[3] ] ^ B[3]; B[2] = p_css_tab1[ B[3] ] ^ k[3] ^ C[3]; k[2] = p_disc_key[1] ^ p_css_tab1[ p_disc_key[2] ] ^ B[2]; if( ( B[1] ^ p_css_tab1[ B[2] ] ^ k[ 2 ] ) == C[ 2 ] ) { if( ! investigate( &p_disc_key[0] , &C[0] ) ) { goto end; } } /* Test second possible out2[4] */ out2[4] = ( out2[4] + 0xff ) & 0xff; tmp4 = ( out2[0] << 16 ) | ( out2[1] << 8 ) | out2[4]; tmp4 = BigTable[ tmp4 ]; C[2] = tmp4 & 0xff; C[3] = ( tmp4 >> 8 ) & 0xff; C[4] = ( tmp4 >> 16 ) & 0xff; B[3] = p_css_tab1[ B[4] ] ^ k[4] ^ C[4]; k[3] = p_disc_key[2] ^ p_css_tab1[ p_disc_key[3] ] ^ B[3]; B[2] = p_css_tab1[ B[3] ] ^ k[3] ^ C[3]; k[2] = p_disc_key[1] ^ p_css_tab1[ p_disc_key[2] ] ^ B[2]; if( ( B[1] ^ p_css_tab1[ B[2] ] ^ k[ 2 ] ) == C[ 2 ] ) { if( ! investigate( &p_disc_key[0] , &C[0] ) ) { goto end; } } } } } end: memcpy( p_disc_key, &C[0], KEY_SIZE ); free( K1table ); free( BigTable ); return( 0 ); } /***************************************************************************** * CSSTitleCrack : title key decryption by cracking * Function designed by Frank Stevenson ***************************************************************************** * This function is called by CSSGetTitleKey to find a title key, if we've * chosen to crack title key instead of decrypting it with the disc key. *****************************************************************************/ static int CSSTitleCrack( int i_start, unsigned char *p_crypted, unsigned char *p_decrypted, u8 *p_sector_seed, u8 *p_key ) { unsigned char p_buffer[10]; unsigned int i_t1, i_t2, i_t3, i_t4, i_t5, i_t6; unsigned int i_try; unsigned int i_candidate; unsigned int i, j; int i_exit = -1; for( i = 0 ; i < 10 ; i++ ) { p_buffer[i] = p_css_tab1[p_crypted[i]] ^ p_decrypted[i]; } for( i_try = i_start ; i_try < 0x10000 ; i_try++ ) { i_t1 = i_try >> 8 | 0x100; i_t2 = i_try & 0xff; i_t3 = 0; /* not needed */ i_t5 = 0; /* iterate cipher 4 times to reconstruct LFSR2 */ for( i = 0 ; i < 4 ; i++ ) { /* advance LFSR1 normaly */ i_t4 = p_css_tab2[i_t2] ^ p_css_tab3[i_t1]; i_t2 = i_t1 >> 1; i_t1 = ( ( i_t1 & 1 ) << 8 ) ^ i_t4; i_t4 = p_css_tab5[i_t4]; /* deduce i_t6 & i_t5 */ i_t6 = p_buffer[i]; if( i_t5 ) { i_t6 = ( i_t6 + 0xff ) & 0x0ff; } if( i_t6 < i_t4 ) { i_t6 += 0x100; } i_t6 -= i_t4; i_t5 += i_t6 + i_t4; i_t6 = p_css_tab4[ i_t6 ]; /* feed / advance i_t3 / i_t5 */ i_t3 = ( i_t3 << 8 ) | i_t6; i_t5 >>= 8; } i_candidate = i_t3; /* iterate 6 more times to validate candidate key */ for( ; i < 10 ; i++ ) { i_t4 = p_css_tab2[i_t2] ^ p_css_tab3[i_t1]; i_t2 = i_t1 >> 1; i_t1 = ( ( i_t1 & 1 ) << 8 ) ^ i_t4; i_t4 = p_css_tab5[i_t4]; i_t6 = ((((((( i_t3 >> 3 ) ^ i_t3 ) >> 1 ) ^ i_t3 ) >> 8 ) ^ i_t3 ) >> 5 ) & 0xff; i_t3 = ( i_t3 << 8 ) | i_t6; i_t6 = p_css_tab4[i_t6]; i_t5 += i_t6 + i_t4; if( ( i_t5 & 0xff ) != p_buffer[i] ) { break; } i_t5 >>= 8; } if( i == 10 ) { /* Do 4 backwards steps of iterating t3 to deduce initial state */ i_t3 = i_candidate; for( i = 0 ; i < 4 ; i++ ) { i_t1 = i_t3 & 0xff; i_t3 = ( i_t3 >> 8 ); /* easy to code, and fast enough bruteforce * search for byte shifted in */ for( j = 0 ; j < 256 ; j++ ) { i_t3 = ( i_t3 & 0x1ffff ) | ( j << 17 ); i_t6 = ((((((( i_t3 >> 3 ) ^ i_t3 ) >> 1 ) ^ i_t3 ) >> 8 ) ^ i_t3 ) >> 5 ) & 0xff; if( i_t6 == i_t1 ) { break; } } } i_t4 = ( i_t3 >> 1 ) - 4; for( i_t5 = 0 ; i_t5 < 8; i_t5++ ) { if( ( ( i_t4 + i_t5 ) * 2 + 8 - ( (i_t4 + i_t5 ) & 7 ) ) == i_t3 ) { p_key[0] = i_try>>8; p_key[1] = i_try & 0xFF; p_key[2] = ( ( i_t4 + i_t5 ) >> 0 ) & 0xFF; p_key[3] = ( ( i_t4 + i_t5 ) >> 8 ) & 0xFF; p_key[4] = ( ( i_t4 + i_t5 ) >> 16 ) & 0xFF; i_exit = i_try + 1; } } } } if( i_exit >= 0 ) { p_key[0] ^= p_sector_seed[0]; p_key[1] ^= p_sector_seed[1]; p_key[2] ^= p_sector_seed[2]; p_key[3] ^= p_sector_seed[3]; p_key[4] ^= p_sector_seed[4]; } return i_exit; }