ref: fabfc2caed8e5fa7391c133dd89db45a353e6b35
dir: /loopy.c/
/* * loopy.c: * * An implementation of the Nikoli game 'Loop the loop'. * (c) Mike Pinna, 2005, 2006 * Substantially rewritten to allowing for more general types of grid. * (c) Lambros Lambrou 2008 * * vim: set shiftwidth=4 :set textwidth=80: */ /* * Possible future solver enhancements: * * - There's an interesting deductive technique which makes use * of topology rather than just graph theory. Each _face_ in * the grid is either inside or outside the loop; you can tell * that two faces are on the same side of the loop if they're * separated by a LINE_NO (or, more generally, by a path * crossing no LINE_UNKNOWNs and an even number of LINE_YESes), * and on the opposite side of the loop if they're separated by * a LINE_YES (or an odd number of LINE_YESes and no * LINE_UNKNOWNs). Oh, and any face separated from the outside * of the grid by a LINE_YES or a LINE_NO is on the inside or * outside respectively. So if you can track this for all * faces, you figure out the state of the line between a pair * once their relative insideness is known. * + The way I envisage this working is simply to keep an edsf * of all _faces_, which indicates whether they're on * opposite sides of the loop from one another. We also * include a special entry in the edsf for the infinite * exterior "face". * + So, the simple way to do this is to just go through the * edges: every time we see an edge in a state other than * LINE_UNKNOWN which separates two faces that aren't in the * same edsf class, we can rectify that by merging the * classes. Then, conversely, an edge in LINE_UNKNOWN state * which separates two faces that _are_ in the same edsf * class can immediately have its state determined. * + But you can go one better, if you're prepared to loop * over all _pairs_ of edges. Suppose we have edges A and B, * which respectively separate faces A1,A2 and B1,B2. * Suppose that A,B are in the same edge-edsf class and that * A1,B1 (wlog) are in the same face-edsf class; then we can * immediately place A2,B2 into the same face-edsf class (as * each other, not as A1 and A2) one way round or the other. * And conversely again, if A1,B1 are in the same face-edsf * class and so are A2,B2, then we can put A,B into the same * face-edsf class. * * Of course, this deduction requires a quadratic-time * loop over all pairs of edges in the grid, so it should * be reserved until there's nothing easier left to be * done. * * - The generalised grid support has made me (SGT) notice a * possible extension to the loop-avoidance code. When you have * a path of connected edges such that no other edges at all * are incident on any vertex in the middle of the path - or, * alternatively, such that any such edges are already known to * be LINE_NO - then you know those edges are either all * LINE_YES or all LINE_NO. Hence you can mentally merge the * entire path into a single long curly edge for the purposes * of loop avoidance, and look directly at whether or not the * extreme endpoints of the path are connected by some other * route. I find this coming up fairly often when I play on the * octagonal grid setting, so it might be worth implementing in * the solver. * * - (Just a speed optimisation.) Consider some todo list queue where every * time we modify something we mark it for consideration by other bits of * the solver, to save iteration over things that have already been done. */ #include <stdio.h> #include <stdlib.h> #include <stddef.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <math.h> #include "puzzles.h" #include "tree234.h" #include "grid.h" /* Debugging options */ /* #define DEBUG_CACHES #define SHOW_WORKING #define DEBUG_DLINES */ /* ---------------------------------------------------------------------- * Struct, enum and function declarations */ enum { COL_BACKGROUND, COL_FOREGROUND, COL_LINEUNKNOWN, COL_HIGHLIGHT, COL_MISTAKE, COL_SATISFIED, COL_FAINT, NCOLOURS }; struct game_state { grid *game_grid; /* Put -1 in a face that doesn't get a clue */ signed char *clues; /* Array of line states, to store whether each line is * YES, NO or UNKNOWN */ char *lines; unsigned char *line_errors; int solved; int cheated; /* Used in game_text_format(), so that it knows what type of * grid it's trying to render as ASCII text. */ int grid_type; }; enum solver_status { SOLVER_SOLVED, /* This is the only solution the solver could find */ SOLVER_MISTAKE, /* This is definitely not a solution */ SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */ SOLVER_INCOMPLETE /* This may be a partial solution */ }; /* ------ Solver state ------ */ typedef struct solver_state { game_state *state; enum solver_status solver_status; /* NB looplen is the number of dots that are joined together at a point, ie a * looplen of 1 means there are no lines to a particular dot */ int *looplen; /* Difficulty level of solver. Used by solver functions that want to * vary their behaviour depending on the requested difficulty level. */ int diff; /* caches */ char *dot_yes_count; char *dot_no_count; char *face_yes_count; char *face_no_count; char *dot_solved, *face_solved; int *dotdsf; /* Information for Normal level deductions: * For each dline, store a bitmask for whether we know: * (bit 0) at least one is YES * (bit 1) at most one is YES */ char *dlines; /* Hard level information */ int *linedsf; } solver_state; /* * Difficulty levels. I do some macro ickery here to ensure that my * enum and the various forms of my name list always match up. */ #define DIFFLIST(A) \ A(EASY,Easy,e) \ A(NORMAL,Normal,n) \ A(TRICKY,Tricky,t) \ A(HARD,Hard,h) #define ENUM(upper,title,lower) DIFF_ ## upper, #define TITLE(upper,title,lower) #title, #define ENCODE(upper,title,lower) #lower #define CONFIG(upper,title,lower) ":" #title enum { DIFFLIST(ENUM) DIFF_MAX }; static char const *const diffnames[] = { DIFFLIST(TITLE) }; static char const diffchars[] = DIFFLIST(ENCODE); #define DIFFCONFIG DIFFLIST(CONFIG) /* * Solver routines, sorted roughly in order of computational cost. * The solver will run the faster deductions first, and slower deductions are * only invoked when the faster deductions are unable to make progress. * Each function is associated with a difficulty level, so that the generated * puzzles are solvable by applying only the functions with the chosen * difficulty level or lower. */ #define SOLVERLIST(A) \ A(trivial_deductions, DIFF_EASY) \ A(dline_deductions, DIFF_NORMAL) \ A(linedsf_deductions, DIFF_HARD) \ A(loop_deductions, DIFF_EASY) #define SOLVER_FN_DECL(fn,diff) static int fn(solver_state *); #define SOLVER_FN(fn,diff) &fn, #define SOLVER_DIFF(fn,diff) diff, SOLVERLIST(SOLVER_FN_DECL) static int (*(solver_fns[]))(solver_state *) = { SOLVERLIST(SOLVER_FN) }; static int const solver_diffs[] = { SOLVERLIST(SOLVER_DIFF) }; const int NUM_SOLVERS = sizeof(solver_diffs)/sizeof(*solver_diffs); struct game_params { int w, h; int diff; int type; /* Grid generation is expensive, so keep a (ref-counted) reference to the * grid for these parameters, and only generate when required. */ grid *game_grid; }; /* line_drawstate is the same as line_state, but with the extra ERROR * possibility. The drawing code copies line_state to line_drawstate, * except in the case that the line is an error. */ enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO }; enum line_drawstate { DS_LINE_YES, DS_LINE_UNKNOWN, DS_LINE_NO, DS_LINE_ERROR }; #define OPP(line_state) \ (2 - line_state) struct game_drawstate { int started; int tilesize; int flashing; char *lines; char *clue_error; char *clue_satisfied; }; static char *validate_desc(game_params *params, char *desc); static int dot_order(const game_state* state, int i, char line_type); static int face_order(const game_state* state, int i, char line_type); static solver_state *solve_game_rec(const solver_state *sstate); #ifdef DEBUG_CACHES static void check_caches(const solver_state* sstate); #else #define check_caches(s) #endif /* ------- List of grid generators ------- */ #define GRIDLIST(A) \ A(Squares,grid_new_square,3,3) \ A(Triangular,grid_new_triangular,3,3) \ A(Honeycomb,grid_new_honeycomb,3,3) \ A(Snub-Square,grid_new_snubsquare,3,3) \ A(Cairo,grid_new_cairo,3,4) \ A(Great-Hexagonal,grid_new_greathexagonal,3,3) \ A(Octagonal,grid_new_octagonal,3,3) \ A(Kites,grid_new_kites,3,3) #define GRID_NAME(title,fn,amin,omin) #title, #define GRID_CONFIG(title,fn,amin,omin) ":" #title #define GRID_FN(title,fn,amin,omin) &fn, #define GRID_SIZES(title,fn,amin,omin) \ {amin, omin, \ "Width and height for this grid type must both be at least " #amin, \ "At least one of width and height for this grid type must be at least " #omin,}, static char const *const gridnames[] = { GRIDLIST(GRID_NAME) }; #define GRID_CONFIGS GRIDLIST(GRID_CONFIG) static grid * (*(grid_fns[]))(int w, int h) = { GRIDLIST(GRID_FN) }; #define NUM_GRID_TYPES (sizeof(grid_fns) / sizeof(grid_fns[0])) static const struct { int amin, omin; char *aerr, *oerr; } grid_size_limits[] = { GRIDLIST(GRID_SIZES) }; /* Generates a (dynamically allocated) new grid, according to the * type and size requested in params. Does nothing if the grid is already * generated. The allocated grid is owned by the params object, and will be * freed in free_params(). */ static void params_generate_grid(game_params *params) { if (!params->game_grid) { params->game_grid = grid_fns[params->type](params->w, params->h); } } /* ---------------------------------------------------------------------- * Preprocessor magic */ /* General constants */ #define PREFERRED_TILE_SIZE 32 #define BORDER(tilesize) ((tilesize) / 2) #define FLASH_TIME 0.5F #define BIT_SET(field, bit) ((field) & (1<<(bit))) #define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \ ((field) |= (1<<(bit)), TRUE)) #define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \ ((field) &= ~(1<<(bit)), TRUE) : FALSE) #define CLUE2CHAR(c) \ ((c < 0) ? ' ' : c + '0') /* ---------------------------------------------------------------------- * General struct manipulation and other straightforward code */ static game_state *dup_game(game_state *state) { game_state *ret = snew(game_state); ret->game_grid = state->game_grid; ret->game_grid->refcount++; ret->solved = state->solved; ret->cheated = state->cheated; ret->clues = snewn(state->game_grid->num_faces, signed char); memcpy(ret->clues, state->clues, state->game_grid->num_faces); ret->lines = snewn(state->game_grid->num_edges, char); memcpy(ret->lines, state->lines, state->game_grid->num_edges); ret->line_errors = snewn(state->game_grid->num_edges, unsigned char); memcpy(ret->line_errors, state->line_errors, state->game_grid->num_edges); ret->grid_type = state->grid_type; return ret; } static void free_game(game_state *state) { if (state) { grid_free(state->game_grid); sfree(state->clues); sfree(state->lines); sfree(state->line_errors); sfree(state); } } static solver_state *new_solver_state(game_state *state, int diff) { int i; int num_dots = state->game_grid->num_dots; int num_faces = state->game_grid->num_faces; int num_edges = state->game_grid->num_edges; solver_state *ret = snew(solver_state); ret->state = dup_game(state); ret->solver_status = SOLVER_INCOMPLETE; ret->diff = diff; ret->dotdsf = snew_dsf(num_dots); ret->looplen = snewn(num_dots, int); for (i = 0; i < num_dots; i++) { ret->looplen[i] = 1; } ret->dot_solved = snewn(num_dots, char); ret->face_solved = snewn(num_faces, char); memset(ret->dot_solved, FALSE, num_dots); memset(ret->face_solved, FALSE, num_faces); ret->dot_yes_count = snewn(num_dots, char); memset(ret->dot_yes_count, 0, num_dots); ret->dot_no_count = snewn(num_dots, char); memset(ret->dot_no_count, 0, num_dots); ret->face_yes_count = snewn(num_faces, char); memset(ret->face_yes_count, 0, num_faces); ret->face_no_count = snewn(num_faces, char); memset(ret->face_no_count, 0, num_faces); if (diff < DIFF_NORMAL) { ret->dlines = NULL; } else { ret->dlines = snewn(2*num_edges, char); memset(ret->dlines, 0, 2*num_edges); } if (diff < DIFF_HARD) { ret->linedsf = NULL; } else { ret->linedsf = snew_dsf(state->game_grid->num_edges); } return ret; } static void free_solver_state(solver_state *sstate) { if (sstate) { free_game(sstate->state); sfree(sstate->dotdsf); sfree(sstate->looplen); sfree(sstate->dot_solved); sfree(sstate->face_solved); sfree(sstate->dot_yes_count); sfree(sstate->dot_no_count); sfree(sstate->face_yes_count); sfree(sstate->face_no_count); /* OK, because sfree(NULL) is a no-op */ sfree(sstate->dlines); sfree(sstate->linedsf); sfree(sstate); } } static solver_state *dup_solver_state(const solver_state *sstate) { game_state *state = sstate->state; int num_dots = state->game_grid->num_dots; int num_faces = state->game_grid->num_faces; int num_edges = state->game_grid->num_edges; solver_state *ret = snew(solver_state); ret->state = state = dup_game(sstate->state); ret->solver_status = sstate->solver_status; ret->diff = sstate->diff; ret->dotdsf = snewn(num_dots, int); ret->looplen = snewn(num_dots, int); memcpy(ret->dotdsf, sstate->dotdsf, num_dots * sizeof(int)); memcpy(ret->looplen, sstate->looplen, num_dots * sizeof(int)); ret->dot_solved = snewn(num_dots, char); ret->face_solved = snewn(num_faces, char); memcpy(ret->dot_solved, sstate->dot_solved, num_dots); memcpy(ret->face_solved, sstate->face_solved, num_faces); ret->dot_yes_count = snewn(num_dots, char); memcpy(ret->dot_yes_count, sstate->dot_yes_count, num_dots); ret->dot_no_count = snewn(num_dots, char); memcpy(ret->dot_no_count, sstate->dot_no_count, num_dots); ret->face_yes_count = snewn(num_faces, char); memcpy(ret->face_yes_count, sstate->face_yes_count, num_faces); ret->face_no_count = snewn(num_faces, char); memcpy(ret->face_no_count, sstate->face_no_count, num_faces); if (sstate->dlines) { ret->dlines = snewn(2*num_edges, char); memcpy(ret->dlines, sstate->dlines, 2*num_edges); } else { ret->dlines = NULL; } if (sstate->linedsf) { ret->linedsf = snewn(num_edges, int); memcpy(ret->linedsf, sstate->linedsf, num_edges * sizeof(int)); } else { ret->linedsf = NULL; } return ret; } static game_params *default_params(void) { game_params *ret = snew(game_params); #ifdef SLOW_SYSTEM ret->h = 7; ret->w = 7; #else ret->h = 10; ret->w = 10; #endif ret->diff = DIFF_EASY; ret->type = 0; ret->game_grid = NULL; return ret; } static game_params *dup_params(game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ if (ret->game_grid) { ret->game_grid->refcount++; } return ret; } static const game_params presets[] = { #ifdef SMALL_SCREEN { 7, 7, DIFF_EASY, 0, NULL }, { 7, 7, DIFF_NORMAL, 0, NULL }, { 7, 7, DIFF_HARD, 0, NULL }, { 7, 7, DIFF_HARD, 1, NULL }, { 7, 7, DIFF_HARD, 2, NULL }, { 5, 5, DIFF_HARD, 3, NULL }, { 7, 7, DIFF_HARD, 4, NULL }, { 5, 4, DIFF_HARD, 5, NULL }, { 5, 5, DIFF_HARD, 6, NULL }, { 5, 5, DIFF_HARD, 7, NULL }, #else { 7, 7, DIFF_EASY, 0, NULL }, { 10, 10, DIFF_EASY, 0, NULL }, { 7, 7, DIFF_NORMAL, 0, NULL }, { 10, 10, DIFF_NORMAL, 0, NULL }, { 7, 7, DIFF_HARD, 0, NULL }, { 10, 10, DIFF_HARD, 0, NULL }, { 10, 10, DIFF_HARD, 1, NULL }, { 12, 10, DIFF_HARD, 2, NULL }, { 7, 7, DIFF_HARD, 3, NULL }, { 9, 9, DIFF_HARD, 4, NULL }, { 5, 4, DIFF_HARD, 5, NULL }, { 7, 7, DIFF_HARD, 6, NULL }, { 5, 5, DIFF_HARD, 7, NULL }, #endif }; static int game_fetch_preset(int i, char **name, game_params **params) { game_params *tmppar; char buf[80]; if (i < 0 || i >= lenof(presets)) return FALSE; tmppar = snew(game_params); *tmppar = presets[i]; *params = tmppar; sprintf(buf, "%dx%d %s - %s", tmppar->h, tmppar->w, gridnames[tmppar->type], diffnames[tmppar->diff]); *name = dupstr(buf); return TRUE; } static void free_params(game_params *params) { if (params->game_grid) { grid_free(params->game_grid); } sfree(params); } static void decode_params(game_params *params, char const *string) { if (params->game_grid) { grid_free(params->game_grid); params->game_grid = NULL; } params->h = params->w = atoi(string); params->diff = DIFF_EASY; while (*string && isdigit((unsigned char)*string)) string++; if (*string == 'x') { string++; params->h = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; } if (*string == 't') { string++; params->type = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; } if (*string == 'd') { int i; string++; for (i = 0; i < DIFF_MAX; i++) if (*string == diffchars[i]) params->diff = i; if (*string) string++; } } static char *encode_params(game_params *params, int full) { char str[80]; sprintf(str, "%dx%dt%d", params->w, params->h, params->type); if (full) sprintf(str + strlen(str), "d%c", diffchars[params->diff]); return dupstr(str); } static config_item *game_configure(game_params *params) { config_item *ret; char buf[80]; ret = snewn(5, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].sval = dupstr(buf); ret[0].ival = 0; ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->h); ret[1].sval = dupstr(buf); ret[1].ival = 0; ret[2].name = "Grid type"; ret[2].type = C_CHOICES; ret[2].sval = GRID_CONFIGS; ret[2].ival = params->type; ret[3].name = "Difficulty"; ret[3].type = C_CHOICES; ret[3].sval = DIFFCONFIG; ret[3].ival = params->diff; ret[4].name = NULL; ret[4].type = C_END; ret[4].sval = NULL; ret[4].ival = 0; return ret; } static game_params *custom_params(config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].sval); ret->h = atoi(cfg[1].sval); ret->type = cfg[2].ival; ret->diff = cfg[3].ival; ret->game_grid = NULL; return ret; } static char *validate_params(game_params *params, int full) { if (params->type < 0 || params->type >= NUM_GRID_TYPES) return "Illegal grid type"; if (params->w < grid_size_limits[params->type].amin || params->h < grid_size_limits[params->type].amin) return grid_size_limits[params->type].aerr; if (params->w < grid_size_limits[params->type].omin && params->h < grid_size_limits[params->type].omin) return grid_size_limits[params->type].oerr; /* * This shouldn't be able to happen at all, since decode_params * and custom_params will never generate anything that isn't * within range. */ assert(params->diff < DIFF_MAX); return NULL; } /* Returns a newly allocated string describing the current puzzle */ static char *state_to_text(const game_state *state) { grid *g = state->game_grid; char *retval; int num_faces = g->num_faces; char *description = snewn(num_faces + 1, char); char *dp = description; int empty_count = 0; int i; for (i = 0; i < num_faces; i++) { if (state->clues[i] < 0) { if (empty_count > 25) { dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1)); empty_count = 0; } empty_count++; } else { if (empty_count) { dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1)); empty_count = 0; } dp += sprintf(dp, "%c", (int)CLUE2CHAR(state->clues[i])); } } if (empty_count) dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1)); retval = dupstr(description); sfree(description); return retval; } /* We require that the params pass the test in validate_params and that the * description fills the entire game area */ static char *validate_desc(game_params *params, char *desc) { int count = 0; grid *g; params_generate_grid(params); g = params->game_grid; for (; *desc; ++desc) { if (*desc >= '0' && *desc <= '9') { count++; continue; } if (*desc >= 'a') { count += *desc - 'a' + 1; continue; } return "Unknown character in description"; } if (count < g->num_faces) return "Description too short for board size"; if (count > g->num_faces) return "Description too long for board size"; return NULL; } /* Sums the lengths of the numbers in range [0,n) */ /* See equivalent function in solo.c for justification of this. */ static int len_0_to_n(int n) { int len = 1; /* Counting 0 as a bit of a special case */ int i; for (i = 1; i < n; i *= 10) { len += max(n - i, 0); } return len; } static char *encode_solve_move(const game_state *state) { int len; char *ret, *p; int i; int num_edges = state->game_grid->num_edges; /* This is going to return a string representing the moves needed to set * every line in a grid to be the same as the ones in 'state'. The exact * length of this string is predictable. */ len = 1; /* Count the 'S' prefix */ /* Numbers in all lines */ len += len_0_to_n(num_edges); /* For each line we also have a letter */ len += num_edges; ret = snewn(len + 1, char); p = ret; p += sprintf(p, "S"); for (i = 0; i < num_edges; i++) { switch (state->lines[i]) { case LINE_YES: p += sprintf(p, "%dy", i); break; case LINE_NO: p += sprintf(p, "%dn", i); break; } } /* No point in doing sums like that if they're going to be wrong */ assert(strlen(ret) <= (size_t)len); return ret; } static game_ui *new_ui(game_state *state) { return NULL; } static void free_ui(game_ui *ui) { } static char *encode_ui(game_ui *ui) { return NULL; } static void decode_ui(game_ui *ui, char *encoding) { } static void game_changed_state(game_ui *ui, game_state *oldstate, game_state *newstate) { } static void game_compute_size(game_params *params, int tilesize, int *x, int *y) { grid *g; int grid_width, grid_height, rendered_width, rendered_height; params_generate_grid(params); g = params->game_grid; grid_width = g->highest_x - g->lowest_x; grid_height = g->highest_y - g->lowest_y; /* multiply first to minimise rounding error on integer division */ rendered_width = grid_width * tilesize / g->tilesize; rendered_height = grid_height * tilesize / g->tilesize; *x = rendered_width + 2 * BORDER(tilesize) + 1; *y = rendered_height + 2 * BORDER(tilesize) + 1; } static void game_set_size(drawing *dr, game_drawstate *ds, game_params *params, int tilesize) { ds->tilesize = tilesize; } static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(4 * NCOLOURS, float); frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); ret[COL_FOREGROUND * 3 + 0] = 0.0F; ret[COL_FOREGROUND * 3 + 1] = 0.0F; ret[COL_FOREGROUND * 3 + 2] = 0.0F; ret[COL_LINEUNKNOWN * 3 + 0] = 0.8F; ret[COL_LINEUNKNOWN * 3 + 1] = 0.8F; ret[COL_LINEUNKNOWN * 3 + 2] = 0.0F; ret[COL_HIGHLIGHT * 3 + 0] = 1.0F; ret[COL_HIGHLIGHT * 3 + 1] = 1.0F; ret[COL_HIGHLIGHT * 3 + 2] = 1.0F; ret[COL_MISTAKE * 3 + 0] = 1.0F; ret[COL_MISTAKE * 3 + 1] = 0.0F; ret[COL_MISTAKE * 3 + 2] = 0.0F; ret[COL_SATISFIED * 3 + 0] = 0.0F; ret[COL_SATISFIED * 3 + 1] = 0.0F; ret[COL_SATISFIED * 3 + 2] = 0.0F; /* We want the faint lines to be a bit darker than the background. * Except if the background is pretty dark already; then it ought to be a * bit lighter. Oy vey. */ ret[COL_FAINT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.9F; ret[COL_FAINT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.9F; ret[COL_FAINT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.9F; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(drawing *dr, game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); int num_faces = state->game_grid->num_faces; int num_edges = state->game_grid->num_edges; ds->tilesize = 0; ds->started = 0; ds->lines = snewn(num_edges, char); ds->clue_error = snewn(num_faces, char); ds->clue_satisfied = snewn(num_faces, char); ds->flashing = 0; memset(ds->lines, LINE_UNKNOWN, num_edges); memset(ds->clue_error, 0, num_faces); memset(ds->clue_satisfied, 0, num_faces); return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->clue_error); sfree(ds->clue_satisfied); sfree(ds->lines); sfree(ds); } static int game_timing_state(game_state *state, game_ui *ui) { return TRUE; } static float game_anim_length(game_state *oldstate, game_state *newstate, int dir, game_ui *ui) { return 0.0F; } static int game_can_format_as_text_now(game_params *params) { if (params->type != 0) return FALSE; return TRUE; } static char *game_text_format(game_state *state) { int w, h, W, H; int x, y, i; int cell_size; char *ret; grid *g = state->game_grid; grid_face *f; assert(state->grid_type == 0); /* Work out the basic size unit */ f = g->faces; /* first face */ assert(f->order == 4); /* The dots are ordered clockwise, so the two opposite * corners are guaranteed to span the square */ cell_size = abs(f->dots[0]->x - f->dots[2]->x); w = (g->highest_x - g->lowest_x) / cell_size; h = (g->highest_y - g->lowest_y) / cell_size; /* Create a blank "canvas" to "draw" on */ W = 2 * w + 2; H = 2 * h + 1; ret = snewn(W * H + 1, char); for (y = 0; y < H; y++) { for (x = 0; x < W-1; x++) { ret[y*W + x] = ' '; } ret[y*W + W-1] = '\n'; } ret[H*W] = '\0'; /* Fill in edge info */ for (i = 0; i < g->num_edges; i++) { grid_edge *e = g->edges + i; /* Cell coordinates, from (0,0) to (w-1,h-1) */ int x1 = (e->dot1->x - g->lowest_x) / cell_size; int x2 = (e->dot2->x - g->lowest_x) / cell_size; int y1 = (e->dot1->y - g->lowest_y) / cell_size; int y2 = (e->dot2->y - g->lowest_y) / cell_size; /* Midpoint, in canvas coordinates (canvas coordinates are just twice * cell coordinates) */ x = x1 + x2; y = y1 + y2; switch (state->lines[i]) { case LINE_YES: ret[y*W + x] = (y1 == y2) ? '-' : '|'; break; case LINE_NO: ret[y*W + x] = 'x'; break; case LINE_UNKNOWN: break; /* already a space */ default: assert(!"Illegal line state"); } } /* Fill in clues */ for (i = 0; i < g->num_faces; i++) { int x1, x2, y1, y2; f = g->faces + i; assert(f->order == 4); /* Cell coordinates, from (0,0) to (w-1,h-1) */ x1 = (f->dots[0]->x - g->lowest_x) / cell_size; x2 = (f->dots[2]->x - g->lowest_x) / cell_size; y1 = (f->dots[0]->y - g->lowest_y) / cell_size; y2 = (f->dots[2]->y - g->lowest_y) / cell_size; /* Midpoint, in canvas coordinates */ x = x1 + x2; y = y1 + y2; ret[y*W + x] = CLUE2CHAR(state->clues[i]); } return ret; } /* ---------------------------------------------------------------------- * Debug code */ #ifdef DEBUG_CACHES static void check_caches(const solver_state* sstate) { int i; const game_state *state = sstate->state; const grid *g = state->game_grid; for (i = 0; i < g->num_dots; i++) { assert(dot_order(state, i, LINE_YES) == sstate->dot_yes_count[i]); assert(dot_order(state, i, LINE_NO) == sstate->dot_no_count[i]); } for (i = 0; i < g->num_faces; i++) { assert(face_order(state, i, LINE_YES) == sstate->face_yes_count[i]); assert(face_order(state, i, LINE_NO) == sstate->face_no_count[i]); } } #if 0 #define check_caches(s) \ do { \ fprintf(stderr, "check_caches at line %d\n", __LINE__); \ check_caches(s); \ } while (0) #endif #endif /* DEBUG_CACHES */ /* ---------------------------------------------------------------------- * Solver utility functions */ /* Sets the line (with index i) to the new state 'line_new', and updates * the cached counts of any affected faces and dots. * Returns TRUE if this actually changed the line's state. */ static int solver_set_line(solver_state *sstate, int i, enum line_state line_new #ifdef SHOW_WORKING , const char *reason #endif ) { game_state *state = sstate->state; grid *g; grid_edge *e; assert(line_new != LINE_UNKNOWN); check_caches(sstate); if (state->lines[i] == line_new) { return FALSE; /* nothing changed */ } state->lines[i] = line_new; #ifdef SHOW_WORKING fprintf(stderr, "solver: set line [%d] to %s (%s)\n", i, line_new == LINE_YES ? "YES" : "NO", reason); #endif g = state->game_grid; e = g->edges + i; /* Update the cache for both dots and both faces affected by this. */ if (line_new == LINE_YES) { sstate->dot_yes_count[e->dot1 - g->dots]++; sstate->dot_yes_count[e->dot2 - g->dots]++; if (e->face1) { sstate->face_yes_count[e->face1 - g->faces]++; } if (e->face2) { sstate->face_yes_count[e->face2 - g->faces]++; } } else { sstate->dot_no_count[e->dot1 - g->dots]++; sstate->dot_no_count[e->dot2 - g->dots]++; if (e->face1) { sstate->face_no_count[e->face1 - g->faces]++; } if (e->face2) { sstate->face_no_count[e->face2 - g->faces]++; } } check_caches(sstate); return TRUE; } #ifdef SHOW_WORKING #define solver_set_line(a, b, c) \ solver_set_line(a, b, c, __FUNCTION__) #endif /* * Merge two dots due to the existence of an edge between them. * Updates the dsf tracking equivalence classes, and keeps track of * the length of path each dot is currently a part of. * Returns TRUE if the dots were already linked, ie if they are part of a * closed loop, and false otherwise. */ static int merge_dots(solver_state *sstate, int edge_index) { int i, j, len; grid *g = sstate->state->game_grid; grid_edge *e = g->edges + edge_index; i = e->dot1 - g->dots; j = e->dot2 - g->dots; i = dsf_canonify(sstate->dotdsf, i); j = dsf_canonify(sstate->dotdsf, j); if (i == j) { return TRUE; } else { len = sstate->looplen[i] + sstate->looplen[j]; dsf_merge(sstate->dotdsf, i, j); i = dsf_canonify(sstate->dotdsf, i); sstate->looplen[i] = len; return FALSE; } } /* Merge two lines because the solver has deduced that they must be either * identical or opposite. Returns TRUE if this is new information, otherwise * FALSE. */ static int merge_lines(solver_state *sstate, int i, int j, int inverse #ifdef SHOW_WORKING , const char *reason #endif ) { int inv_tmp; assert(i < sstate->state->game_grid->num_edges); assert(j < sstate->state->game_grid->num_edges); i = edsf_canonify(sstate->linedsf, i, &inv_tmp); inverse ^= inv_tmp; j = edsf_canonify(sstate->linedsf, j, &inv_tmp); inverse ^= inv_tmp; edsf_merge(sstate->linedsf, i, j, inverse); #ifdef SHOW_WORKING if (i != j) { fprintf(stderr, "%s [%d] [%d] %s(%s)\n", __FUNCTION__, i, j, inverse ? "inverse " : "", reason); } #endif return (i != j); } #ifdef SHOW_WORKING #define merge_lines(a, b, c, d) \ merge_lines(a, b, c, d, __FUNCTION__) #endif /* Count the number of lines of a particular type currently going into the * given dot. */ static int dot_order(const game_state* state, int dot, char line_type) { int n = 0; grid *g = state->game_grid; grid_dot *d = g->dots + dot; int i; for (i = 0; i < d->order; i++) { grid_edge *e = d->edges[i]; if (state->lines[e - g->edges] == line_type) ++n; } return n; } /* Count the number of lines of a particular type currently surrounding the * given face */ static int face_order(const game_state* state, int face, char line_type) { int n = 0; grid *g = state->game_grid; grid_face *f = g->faces + face; int i; for (i = 0; i < f->order; i++) { grid_edge *e = f->edges[i]; if (state->lines[e - g->edges] == line_type) ++n; } return n; } /* Set all lines bordering a dot of type old_type to type new_type * Return value tells caller whether this function actually did anything */ static int dot_setall(solver_state *sstate, int dot, char old_type, char new_type) { int retval = FALSE, r; game_state *state = sstate->state; grid *g; grid_dot *d; int i; if (old_type == new_type) return FALSE; g = state->game_grid; d = g->dots + dot; for (i = 0; i < d->order; i++) { int line_index = d->edges[i] - g->edges; if (state->lines[line_index] == old_type) { r = solver_set_line(sstate, line_index, new_type); assert(r == TRUE); retval = TRUE; } } return retval; } /* Set all lines bordering a face of type old_type to type new_type */ static int face_setall(solver_state *sstate, int face, char old_type, char new_type) { int retval = FALSE, r; game_state *state = sstate->state; grid *g; grid_face *f; int i; if (old_type == new_type) return FALSE; g = state->game_grid; f = g->faces + face; for (i = 0; i < f->order; i++) { int line_index = f->edges[i] - g->edges; if (state->lines[line_index] == old_type) { r = solver_set_line(sstate, line_index, new_type); assert(r == TRUE); retval = TRUE; } } return retval; } /* ---------------------------------------------------------------------- * Loop generation and clue removal */ /* We're going to store lists of current candidate faces for colouring black * or white. * Each face gets a 'score', which tells us how adding that face right * now would affect the curliness of the solution loop. We're trying to * maximise that quantity so will bias our random selection of faces to * colour those with high scores */ struct face_score { int white_score; int black_score; unsigned long random; /* No need to store a grid_face* here. The 'face_scores' array will * be a list of 'face_score' objects, one for each face of the grid, so * the position (index) within the 'face_scores' array will determine * which face corresponds to a particular face_score. * Having a single 'face_scores' array for all faces simplifies memory * management, and probably improves performance, because we don't have to * malloc/free each individual face_score, and we don't have to maintain * a mapping from grid_face* pointers to face_score* pointers. */ }; static int generic_sort_cmpfn(void *v1, void *v2, size_t offset) { struct face_score *f1 = v1; struct face_score *f2 = v2; int r; r = *(int *)((char *)f2 + offset) - *(int *)((char *)f1 + offset); if (r) { return r; } if (f1->random < f2->random) return -1; else if (f1->random > f2->random) return 1; /* * It's _just_ possible that two faces might have been given * the same random value. In that situation, fall back to * comparing based on the positions within the face_scores list. * This introduces a tiny directional bias, but not a significant one. */ return f1 - f2; } static int white_sort_cmpfn(void *v1, void *v2) { return generic_sort_cmpfn(v1, v2, offsetof(struct face_score,white_score)); } static int black_sort_cmpfn(void *v1, void *v2) { return generic_sort_cmpfn(v1, v2, offsetof(struct face_score,black_score)); } enum face_colour { FACE_WHITE, FACE_GREY, FACE_BLACK }; /* face should be of type grid_face* here. */ #define FACE_COLOUR(face) \ ( (face) == NULL ? FACE_BLACK : \ board[(face) - g->faces] ) /* 'board' is an array of these enums, indicating which faces are * currently black/white/grey. 'colour' is FACE_WHITE or FACE_BLACK. * Returns whether it's legal to colour the given face with this colour. */ static int can_colour_face(grid *g, char* board, int face_index, enum face_colour colour) { int i, j; grid_face *test_face = g->faces + face_index; grid_face *starting_face, *current_face; grid_dot *starting_dot; int transitions; int current_state, s; /* booleans: equal or not-equal to 'colour' */ int found_same_coloured_neighbour = FALSE; assert(board[face_index] != colour); /* Can only consider a face for colouring if it's adjacent to a face * with the same colour. */ for (i = 0; i < test_face->order; i++) { grid_edge *e = test_face->edges[i]; grid_face *f = (e->face1 == test_face) ? e->face2 : e->face1; if (FACE_COLOUR(f) == colour) { found_same_coloured_neighbour = TRUE; break; } } if (!found_same_coloured_neighbour) return FALSE; /* Need to avoid creating a loop of faces of this colour around some * differently-coloured faces. * Also need to avoid meeting a same-coloured face at a corner, with * other-coloured faces in between. Here's a simple test that (I believe) * takes care of both these conditions: * * Take the circular path formed by this face's edges, and inflate it * slightly outwards. Imagine walking around this path and consider * the faces that you visit in sequence. This will include all faces * touching the given face, either along an edge or just at a corner. * Count the number of 'colour'/not-'colour' transitions you encounter, as * you walk along the complete loop. This will obviously turn out to be * an even number. * If 0, we're either in the middle of an "island" of this colour (should * be impossible as we're not supposed to create black or white loops), * or we're about to start a new island - also not allowed. * If 4 or greater, there are too many separate coloured regions touching * this face, and colouring it would create a loop or a corner-violation. * The only allowed case is when the count is exactly 2. */ /* i points to a dot around the test face. * j points to a face around the i^th dot. * The current face will always be: * test_face->dots[i]->faces[j] * We assume dots go clockwise around the test face, * and faces go clockwise around dots. */ /* * The end condition is slightly fiddly. In sufficiently strange * degenerate grids, our test face may be adjacent to the same * other face multiple times (typically if it's the exterior * face). Consider this, in particular: * * +--+ * | | * +--+--+ * | | | * +--+--+ * * The bottom left face there is adjacent to the exterior face * twice, so we can't just terminate our iteration when we reach * the same _face_ we started at. Furthermore, we can't * condition on having the same (i,j) pair either, because * several (i,j) pairs identify the bottom left contiguity with * the exterior face! We canonicalise the (i,j) pair by taking * one step around before we set the termination tracking. */ i = j = 0; current_face = test_face->dots[0]->faces[0]; if (current_face == test_face) { j = 1; current_face = test_face->dots[0]->faces[1]; } transitions = 0; current_state = (FACE_COLOUR(current_face) == colour); starting_dot = NULL; starting_face = NULL; while (TRUE) { /* Advance to next face. * Need to loop here because it might take several goes to * find it. */ while (TRUE) { j++; if (j == test_face->dots[i]->order) j = 0; if (test_face->dots[i]->faces[j] == test_face) { /* Advance to next dot round test_face, then * find current_face around new dot * and advance to the next face clockwise */ i++; if (i == test_face->order) i = 0; for (j = 0; j < test_face->dots[i]->order; j++) { if (test_face->dots[i]->faces[j] == current_face) break; } /* Must actually find current_face around new dot, * or else something's wrong with the grid. */ assert(j != test_face->dots[i]->order); /* Found, so advance to next face and try again */ } else { break; } } /* (i,j) are now advanced to next face */ current_face = test_face->dots[i]->faces[j]; s = (FACE_COLOUR(current_face) == colour); if (!starting_dot) { starting_dot = test_face->dots[i]; starting_face = current_face; current_state = s; } else { if (s != current_state) { ++transitions; current_state = s; if (transitions > 2) break; } if (test_face->dots[i] == starting_dot && current_face == starting_face) break; } } return (transitions == 2) ? TRUE : FALSE; } /* Count the number of neighbours of 'face', having colour 'colour' */ static int face_num_neighbours(grid *g, char *board, grid_face *face, enum face_colour colour) { int colour_count = 0; int i; grid_face *f; grid_edge *e; for (i = 0; i < face->order; i++) { e = face->edges[i]; f = (e->face1 == face) ? e->face2 : e->face1; if (FACE_COLOUR(f) == colour) ++colour_count; } return colour_count; } /* The 'score' of a face reflects its current desirability for selection * as the next face to colour white or black. We want to encourage moving * into grey areas and increasing loopiness, so we give scores according to * how many of the face's neighbours are currently coloured the same as the * proposed colour. */ static int face_score(grid *g, char *board, grid_face *face, enum face_colour colour) { /* Simple formula: score = 0 - num. same-coloured neighbours, * so a higher score means fewer same-coloured neighbours. */ return -face_num_neighbours(g, board, face, colour); } /* Generate a new complete set of clues for the given game_state. * The method is to generate a WHITE/BLACK colouring of all the faces, * such that the WHITE faces will define the inside of the path, and the * BLACK faces define the outside. * To do this, we initially colour all faces GREY. The infinite space outside * the grid is coloured BLACK, and we choose a random face to colour WHITE. * Then we gradually grow the BLACK and the WHITE regions, eliminating GREY * faces, until the grid is filled with BLACK/WHITE. As we grow the regions, * we avoid creating loops of a single colour, to preserve the topological * shape of the WHITE and BLACK regions. * We also try to make the boundary as loopy and twisty as possible, to avoid * generating paths that are uninteresting. * The algorithm works by choosing a BLACK/WHITE colour, then choosing a GREY * face that can be coloured with that colour (without violating the * topological shape of that region). It's not obvious, but I think this * algorithm is guaranteed to terminate without leaving any GREY faces behind. * Indeed, if there are any GREY faces at all, both the WHITE and BLACK * regions can be grown. * This is checked using assert()ions, and I haven't seen any failures yet. * * Hand-wavy proof: imagine what can go wrong... * * Could the white faces get completely cut off by the black faces, and still * leave some grey faces remaining? * No, because then the black faces would form a loop around both the white * faces and the grey faces, which is disallowed because we continually * maintain the correct topological shape of the black region. * Similarly, the black faces can never get cut off by the white faces. That * means both the WHITE and BLACK regions always have some room to grow into * the GREY regions. * Could it be that we can't colour some GREY face, because there are too many * WHITE/BLACK transitions as we walk round the face? (see the * can_colour_face() function for details) * No. Imagine otherwise, and we see WHITE/BLACK/WHITE/BLACK as we walk * around the face. The two WHITE faces would be connected by a WHITE path, * and the BLACK faces would be connected by a BLACK path. These paths would * have to cross, which is impossible. * Another thing that could go wrong: perhaps we can't find any GREY face to * colour WHITE, because it would create a loop-violation or a corner-violation * with the other WHITE faces? * This is a little bit tricky to prove impossible. Imagine you have such a * GREY face (that is, if you coloured it WHITE, you would create a WHITE loop * or corner violation). * That would cut all the non-white area into two blobs. One of those blobs * must be free of BLACK faces (because the BLACK stuff is a connected blob). * So we have a connected GREY area, completely surrounded by WHITE * (including the GREY face we've tentatively coloured WHITE). * A well-known result in graph theory says that you can always find a GREY * face whose removal leaves the remaining GREY area connected. And it says * there are at least two such faces, so we can always choose the one that * isn't the "tentative" GREY face. Colouring that face WHITE leaves * everything nice and connected, including that "tentative" GREY face which * acts as a gateway to the rest of the non-WHITE grid. */ static void add_full_clues(game_state *state, random_state *rs) { signed char *clues = state->clues; char *board; grid *g = state->game_grid; int i, j; int num_faces = g->num_faces; struct face_score *face_scores; /* Array of face_score objects */ struct face_score *fs; /* Points somewhere in the above list */ struct grid_face *cur_face; tree234 *lightable_faces_sorted; tree234 *darkable_faces_sorted; int *face_list; int do_random_pass; board = snewn(num_faces, char); /* Make a board */ memset(board, FACE_GREY, num_faces); /* Create and initialise the list of face_scores */ face_scores = snewn(num_faces, struct face_score); for (i = 0; i < num_faces; i++) { face_scores[i].random = random_bits(rs, 31); face_scores[i].black_score = face_scores[i].white_score = 0; } /* Colour a random, finite face white. The infinite face is implicitly * coloured black. Together, they will seed the random growth process * for the black and white areas. */ i = random_upto(rs, num_faces); board[i] = FACE_WHITE; /* We need a way of favouring faces that will increase our loopiness. * We do this by maintaining a list of all candidate faces sorted by * their score and choose randomly from that with appropriate skew. * In order to avoid consistently biasing towards particular faces, we * need the sort order _within_ each group of scores to be completely * random. But it would be abusing the hospitality of the tree234 data * structure if our comparison function were nondeterministic :-). So with * each face we associate a random number that does not change during a * particular run of the generator, and use that as a secondary sort key. * Yes, this means we will be biased towards particular random faces in * any one run but that doesn't actually matter. */ lightable_faces_sorted = newtree234(white_sort_cmpfn); darkable_faces_sorted = newtree234(black_sort_cmpfn); /* Initialise the lists of lightable and darkable faces. This is * slightly different from the code inside the while-loop, because we need * to check every face of the board (the grid structure does not keep a * list of the infinite face's neighbours). */ for (i = 0; i < num_faces; i++) { grid_face *f = g->faces + i; struct face_score *fs = face_scores + i; if (board[i] != FACE_GREY) continue; /* We need the full colourability check here, it's not enough simply * to check neighbourhood. On some grids, a neighbour of the infinite * face is not necessarily darkable. */ if (can_colour_face(g, board, i, FACE_BLACK)) { fs->black_score = face_score(g, board, f, FACE_BLACK); add234(darkable_faces_sorted, fs); } if (can_colour_face(g, board, i, FACE_WHITE)) { fs->white_score = face_score(g, board, f, FACE_WHITE); add234(lightable_faces_sorted, fs); } } /* Colour faces one at a time until no more faces are colourable. */ while (TRUE) { enum face_colour colour; struct face_score *fs_white, *fs_black; int c_lightable = count234(lightable_faces_sorted); int c_darkable = count234(darkable_faces_sorted); if (c_lightable == 0 && c_darkable == 0) { /* No more faces we can use at all. */ break; } assert(c_lightable != 0 && c_darkable != 0); fs_white = (struct face_score *)index234(lightable_faces_sorted, 0); fs_black = (struct face_score *)index234(darkable_faces_sorted, 0); /* Choose a colour, and colour the best available face * with that colour. */ colour = random_upto(rs, 2) ? FACE_WHITE : FACE_BLACK; if (colour == FACE_WHITE) fs = fs_white; else fs = fs_black; assert(fs); i = fs - face_scores; assert(board[i] == FACE_GREY); board[i] = colour; /* Remove this newly-coloured face from the lists. These lists should * only contain grey faces. */ del234(lightable_faces_sorted, fs); del234(darkable_faces_sorted, fs); /* Remember which face we've just coloured */ cur_face = g->faces + i; /* The face we've just coloured potentially affects the colourability * and the scores of any neighbouring faces (touching at a corner or * edge). So the search needs to be conducted around all faces * touching the one we've just lit. Iterate over its corners, then * over each corner's faces. For each such face, we remove it from * the lists, recalculate any scores, then add it back to the lists * (depending on whether it is lightable, darkable or both). */ for (i = 0; i < cur_face->order; i++) { grid_dot *d = cur_face->dots[i]; for (j = 0; j < d->order; j++) { grid_face *f = d->faces[j]; int fi; /* face index of f */ if (f == NULL) continue; if (f == cur_face) continue; /* If the face is already coloured, it won't be on our * lightable/darkable lists anyway, so we can skip it without * bothering with the removal step. */ if (FACE_COLOUR(f) != FACE_GREY) continue; /* Find the face index and face_score* corresponding to f */ fi = f - g->faces; fs = face_scores + fi; /* Remove from lightable list if it's in there. We do this, * even if it is still lightable, because the score might * be different, and we need to remove-then-add to maintain * correct sort order. */ del234(lightable_faces_sorted, fs); if (can_colour_face(g, board, fi, FACE_WHITE)) { fs->white_score = face_score(g, board, f, FACE_WHITE); add234(lightable_faces_sorted, fs); } /* Do the same for darkable list. */ del234(darkable_faces_sorted, fs); if (can_colour_face(g, board, fi, FACE_BLACK)) { fs->black_score = face_score(g, board, f, FACE_BLACK); add234(darkable_faces_sorted, fs); } } } } /* Clean up */ freetree234(lightable_faces_sorted); freetree234(darkable_faces_sorted); sfree(face_scores); /* The next step requires a shuffled list of all faces */ face_list = snewn(num_faces, int); for (i = 0; i < num_faces; ++i) { face_list[i] = i; } shuffle(face_list, num_faces, sizeof(int), rs); /* The above loop-generation algorithm can often leave large clumps * of faces of one colour. In extreme cases, the resulting path can be * degenerate and not very satisfying to solve. * This next step alleviates this problem: * Go through the shuffled list, and flip the colour of any face we can * legally flip, and which is adjacent to only one face of the opposite * colour - this tends to grow 'tendrils' into any clumps. * Repeat until we can find no more faces to flip. This will * eventually terminate, because each flip increases the loop's * perimeter, which cannot increase for ever. * The resulting path will have maximal loopiness (in the sense that it * cannot be improved "locally". Unfortunately, this allows a player to * make some illicit deductions. To combat this (and make the path more * interesting), we do one final pass making random flips. */ /* Set to TRUE for final pass */ do_random_pass = FALSE; while (TRUE) { /* Remember whether a flip occurred during this pass */ int flipped = FALSE; for (i = 0; i < num_faces; ++i) { int j = face_list[i]; enum face_colour opp = (board[j] == FACE_WHITE) ? FACE_BLACK : FACE_WHITE; if (can_colour_face(g, board, j, opp)) { grid_face *face = g->faces +j; if (do_random_pass) { /* final random pass */ if (!random_upto(rs, 10)) board[j] = opp; } else { /* normal pass - flip when neighbour count is 1 */ if (face_num_neighbours(g, board, face, opp) == 1) { board[j] = opp; flipped = TRUE; } } } } if (do_random_pass) break; if (!flipped) do_random_pass = TRUE; } sfree(face_list); /* Fill out all the clues by initialising to 0, then iterating over * all edges and incrementing each clue as we find edges that border * between BLACK/WHITE faces. While we're at it, we verify that the * algorithm does work, and there aren't any GREY faces still there. */ memset(clues, 0, num_faces); for (i = 0; i < g->num_edges; i++) { grid_edge *e = g->edges + i; grid_face *f1 = e->face1; grid_face *f2 = e->face2; enum face_colour c1 = FACE_COLOUR(f1); enum face_colour c2 = FACE_COLOUR(f2); assert(c1 != FACE_GREY); assert(c2 != FACE_GREY); if (c1 != c2) { if (f1) clues[f1 - g->faces]++; if (f2) clues[f2 - g->faces]++; } } sfree(board); } static int game_has_unique_soln(const game_state *state, int diff) { int ret; solver_state *sstate_new; solver_state *sstate = new_solver_state((game_state *)state, diff); sstate_new = solve_game_rec(sstate); assert(sstate_new->solver_status != SOLVER_MISTAKE); ret = (sstate_new->solver_status == SOLVER_SOLVED); free_solver_state(sstate_new); free_solver_state(sstate); return ret; } /* Remove clues one at a time at random. */ static game_state *remove_clues(game_state *state, random_state *rs, int diff) { int *face_list; int num_faces = state->game_grid->num_faces; game_state *ret = dup_game(state), *saved_ret; int n; /* We need to remove some clues. We'll do this by forming a list of all * available clues, shuffling it, then going along one at a * time clearing each clue in turn for which doing so doesn't render the * board unsolvable. */ face_list = snewn(num_faces, int); for (n = 0; n < num_faces; ++n) { face_list[n] = n; } shuffle(face_list, num_faces, sizeof(int), rs); for (n = 0; n < num_faces; ++n) { saved_ret = dup_game(ret); ret->clues[face_list[n]] = -1; if (game_has_unique_soln(ret, diff)) { free_game(saved_ret); } else { free_game(ret); ret = saved_ret; } } sfree(face_list); return ret; } static char *new_game_desc(game_params *params, random_state *rs, char **aux, int interactive) { /* solution and description both use run-length encoding in obvious ways */ char *retval; grid *g; game_state *state = snew(game_state); game_state *state_new; params_generate_grid(params); state->game_grid = g = params->game_grid; g->refcount++; state->clues = snewn(g->num_faces, signed char); state->lines = snewn(g->num_edges, char); state->line_errors = snewn(g->num_edges, unsigned char); state->grid_type = params->type; newboard_please: memset(state->lines, LINE_UNKNOWN, g->num_edges); memset(state->line_errors, 0, g->num_edges); state->solved = state->cheated = FALSE; /* Get a new random solvable board with all its clues filled in. Yes, this * can loop for ever if the params are suitably unfavourable, but * preventing games smaller than 4x4 seems to stop this happening */ do { add_full_clues(state, rs); } while (!game_has_unique_soln(state, params->diff)); state_new = remove_clues(state, rs, params->diff); free_game(state); state = state_new; if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) { #ifdef SHOW_WORKING fprintf(stderr, "Rejecting board, it is too easy\n"); #endif goto newboard_please; } retval = state_to_text(state); free_game(state); assert(!validate_desc(params, retval)); return retval; } static game_state *new_game(midend *me, game_params *params, char *desc) { int i; game_state *state = snew(game_state); int empties_to_make = 0; int n; const char *dp = desc; grid *g; int num_faces, num_edges; params_generate_grid(params); state->game_grid = g = params->game_grid; g->refcount++; num_faces = g->num_faces; num_edges = g->num_edges; state->clues = snewn(num_faces, signed char); state->lines = snewn(num_edges, char); state->line_errors = snewn(num_edges, unsigned char); state->solved = state->cheated = FALSE; state->grid_type = params->type; for (i = 0; i < num_faces; i++) { if (empties_to_make) { empties_to_make--; state->clues[i] = -1; continue; } assert(*dp); n = *dp - '0'; if (n >= 0 && n < 10) { state->clues[i] = n; } else { n = *dp - 'a' + 1; assert(n > 0); state->clues[i] = -1; empties_to_make = n - 1; } ++dp; } memset(state->lines, LINE_UNKNOWN, num_edges); memset(state->line_errors, 0, num_edges); return state; } /* Calculates the line_errors data, and checks if the current state is a * solution */ static int check_completion(game_state *state) { grid *g = state->game_grid; int *dsf; int num_faces = g->num_faces; int i; int infinite_area, finite_area; int loops_found = 0; int found_edge_not_in_loop = FALSE; memset(state->line_errors, 0, g->num_edges); /* LL implementation of SGT's idea: * A loop will partition the grid into an inside and an outside. * If there is more than one loop, the grid will be partitioned into * even more distinct regions. We can therefore track equivalence of * faces, by saying that two faces are equivalent when there is a non-YES * edge between them. * We could keep track of the number of connected components, by counting * the number of dsf-merges that aren't no-ops. * But we're only interested in 3 separate cases: * no loops, one loop, more than one loop. * * No loops: all faces are equivalent to the infinite face. * One loop: only two equivalence classes - finite and infinite. * >= 2 loops: there are 2 distinct finite regions. * * So we simply make two passes through all the edges. * In the first pass, we dsf-merge the two faces bordering each non-YES * edge. * In the second pass, we look for YES-edges bordering: * a) two non-equivalent faces. * b) two non-equivalent faces, and one of them is part of a different * finite area from the first finite area we've seen. * * An occurrence of a) means there is at least one loop. * An occurrence of b) means there is more than one loop. * Edges satisfying a) are marked as errors. * * While we're at it, we set a flag if we find a YES edge that is not * part of a loop. * This information will help decide, if there's a single loop, whether it * is a candidate for being a solution (that is, all YES edges are part of * this loop). * * If there is a candidate loop, we then go through all clues and check * they are all satisfied. If so, we have found a solution and we can * unmark all line_errors. */ /* Infinite face is at the end - its index is num_faces. * This macro is just to make this obvious! */ #define INF_FACE num_faces dsf = snewn(num_faces + 1, int); dsf_init(dsf, num_faces + 1); /* First pass */ for (i = 0; i < g->num_edges; i++) { grid_edge *e = g->edges + i; int f1 = e->face1 ? e->face1 - g->faces : INF_FACE; int f2 = e->face2 ? e->face2 - g->faces : INF_FACE; if (state->lines[i] != LINE_YES) dsf_merge(dsf, f1, f2); } /* Second pass */ infinite_area = dsf_canonify(dsf, INF_FACE); finite_area = -1; for (i = 0; i < g->num_edges; i++) { grid_edge *e = g->edges + i; int f1 = e->face1 ? e->face1 - g->faces : INF_FACE; int can1 = dsf_canonify(dsf, f1); int f2 = e->face2 ? e->face2 - g->faces : INF_FACE; int can2 = dsf_canonify(dsf, f2); if (state->lines[i] != LINE_YES) continue; if (can1 == can2) { /* Faces are equivalent, so this edge not part of a loop */ found_edge_not_in_loop = TRUE; continue; } state->line_errors[i] = TRUE; if (loops_found == 0) loops_found = 1; /* Don't bother with further checks if we've already found 2 loops */ if (loops_found == 2) continue; if (finite_area == -1) { /* Found our first finite area */ if (can1 != infinite_area) finite_area = can1; else finite_area = can2; } /* Have we found a second area? */ if (finite_area != -1) { if (can1 != infinite_area && can1 != finite_area) { loops_found = 2; continue; } if (can2 != infinite_area && can2 != finite_area) { loops_found = 2; } } } /* printf("loops_found = %d\n", loops_found); printf("found_edge_not_in_loop = %s\n", found_edge_not_in_loop ? "TRUE" : "FALSE"); */ sfree(dsf); /* No longer need the dsf */ /* Have we found a candidate loop? */ if (loops_found == 1 && !found_edge_not_in_loop) { /* Yes, so check all clues are satisfied */ int found_clue_violation = FALSE; for (i = 0; i < num_faces; i++) { int c = state->clues[i]; if (c >= 0) { if (face_order(state, i, LINE_YES) != c) { found_clue_violation = TRUE; break; } } } if (!found_clue_violation) { /* The loop is good */ memset(state->line_errors, 0, g->num_edges); return TRUE; /* No need to bother checking for dot violations */ } } /* Check for dot violations */ for (i = 0; i < g->num_dots; i++) { int yes = dot_order(state, i, LINE_YES); int unknown = dot_order(state, i, LINE_UNKNOWN); if ((yes == 1 && unknown == 0) || (yes >= 3)) { /* violation, so mark all YES edges as errors */ grid_dot *d = g->dots + i; int j; for (j = 0; j < d->order; j++) { int e = d->edges[j] - g->edges; if (state->lines[e] == LINE_YES) state->line_errors[e] = TRUE; } } } return FALSE; } /* ---------------------------------------------------------------------- * Solver logic * * Our solver modes operate as follows. Each mode also uses the modes above it. * * Easy Mode * Just implement the rules of the game. * * Normal and Tricky Modes * For each (adjacent) pair of lines through each dot we store a bit for * whether at least one of them is on and whether at most one is on. (If we * know both or neither is on that's already stored more directly.) * * Advanced Mode * Use edsf data structure to make equivalence classes of lines that are * known identical to or opposite to one another. */ /* DLines: * For general grids, we consider "dlines" to be pairs of lines joined * at a dot. The lines must be adjacent around the dot, so we can think of * a dline as being a dot+face combination. Or, a dot+edge combination where * the second edge is taken to be the next clockwise edge from the dot. * Original loopy code didn't have this extra restriction of the lines being * adjacent. From my tests with square grids, this extra restriction seems to * take little, if anything, away from the quality of the puzzles. * A dline can be uniquely identified by an edge/dot combination, given that * a dline-pair always goes clockwise around its common dot. The edge/dot * combination can be represented by an edge/bool combination - if bool is * TRUE, use edge->dot1 else use edge->dot2. So the total number of dlines is * exactly twice the number of edges in the grid - although the dlines * spanning the infinite face are not all that useful to the solver. * Note that, by convention, a dline goes clockwise around its common dot, * which means the dline goes anti-clockwise around its common face. */ /* Helper functions for obtaining an index into an array of dlines, given * various information. We assume the grid layout conventions about how * the various lists are interleaved - see grid_make_consistent() for * details. */ /* i points to the first edge of the dline pair, reading clockwise around * the dot. */ static int dline_index_from_dot(grid *g, grid_dot *d, int i) { grid_edge *e = d->edges[i]; int ret; #ifdef DEBUG_DLINES grid_edge *e2; int i2 = i+1; if (i2 == d->order) i2 = 0; e2 = d->edges[i2]; #endif ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0); #ifdef DEBUG_DLINES printf("dline_index_from_dot: d=%d,i=%d, edges [%d,%d] - %d\n", (int)(d - g->dots), i, (int)(e - g->edges), (int)(e2 - g->edges), ret); #endif return ret; } /* i points to the second edge of the dline pair, reading clockwise around * the face. That is, the edges of the dline, starting at edge{i}, read * anti-clockwise around the face. By layout conventions, the common dot * of the dline will be f->dots[i] */ static int dline_index_from_face(grid *g, grid_face *f, int i) { grid_edge *e = f->edges[i]; grid_dot *d = f->dots[i]; int ret; #ifdef DEBUG_DLINES grid_edge *e2; int i2 = i - 1; if (i2 < 0) i2 += f->order; e2 = f->edges[i2]; #endif ret = 2 * (e - g->edges) + ((e->dot1 == d) ? 1 : 0); #ifdef DEBUG_DLINES printf("dline_index_from_face: f=%d,i=%d, edges [%d,%d] - %d\n", (int)(f - g->faces), i, (int)(e - g->edges), (int)(e2 - g->edges), ret); #endif return ret; } static int is_atleastone(const char *dline_array, int index) { return BIT_SET(dline_array[index], 0); } static int set_atleastone(char *dline_array, int index) { return SET_BIT(dline_array[index], 0); } static int is_atmostone(const char *dline_array, int index) { return BIT_SET(dline_array[index], 1); } static int set_atmostone(char *dline_array, int index) { return SET_BIT(dline_array[index], 1); } static void array_setall(char *array, char from, char to, int len) { char *p = array, *p_old = p; int len_remaining = len; while ((p = memchr(p, from, len_remaining))) { *p = to; len_remaining -= p - p_old; p_old = p; } } /* Helper, called when doing dline dot deductions, in the case where we * have 4 UNKNOWNs, and two of them (adjacent) have *exactly* one YES between * them (because of dline atmostone/atleastone). * On entry, edge points to the first of these two UNKNOWNs. This function * will find the opposite UNKNOWNS (if they are adjacent to one another) * and set their corresponding dline to atleastone. (Setting atmostone * already happens in earlier dline deductions) */ static int dline_set_opp_atleastone(solver_state *sstate, grid_dot *d, int edge) { game_state *state = sstate->state; grid *g = state->game_grid; int N = d->order; int opp, opp2; for (opp = 0; opp < N; opp++) { int opp_dline_index; if (opp == edge || opp == edge+1 || opp == edge-1) continue; if (opp == 0 && edge == N-1) continue; if (opp == N-1 && edge == 0) continue; opp2 = opp + 1; if (opp2 == N) opp2 = 0; /* Check if opp, opp2 point to LINE_UNKNOWNs */ if (state->lines[d->edges[opp] - g->edges] != LINE_UNKNOWN) continue; if (state->lines[d->edges[opp2] - g->edges] != LINE_UNKNOWN) continue; /* Found opposite UNKNOWNS and they're next to each other */ opp_dline_index = dline_index_from_dot(g, d, opp); return set_atleastone(sstate->dlines, opp_dline_index); } return FALSE; } /* Set pairs of lines around this face which are known to be identical, to * the given line_state */ static int face_setall_identical(solver_state *sstate, int face_index, enum line_state line_new) { /* can[dir] contains the canonical line associated with the line in * direction dir from the square in question. Similarly inv[dir] is * whether or not the line in question is inverse to its canonical * element. */ int retval = FALSE; game_state *state = sstate->state; grid *g = state->game_grid; grid_face *f = g->faces + face_index; int N = f->order; int i, j; int can1, can2, inv1, inv2; for (i = 0; i < N; i++) { int line1_index = f->edges[i] - g->edges; if (state->lines[line1_index] != LINE_UNKNOWN) continue; for (j = i + 1; j < N; j++) { int line2_index = f->edges[j] - g->edges; if (state->lines[line2_index] != LINE_UNKNOWN) continue; /* Found two UNKNOWNS */ can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1); can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2); if (can1 == can2 && inv1 == inv2) { solver_set_line(sstate, line1_index, line_new); solver_set_line(sstate, line2_index, line_new); } } } return retval; } /* Given a dot or face, and a count of LINE_UNKNOWNs, find them and * return the edge indices into e. */ static void find_unknowns(game_state *state, grid_edge **edge_list, /* Edge list to search (from a face or a dot) */ int expected_count, /* Number of UNKNOWNs (comes from solver's cache) */ int *e /* Returned edge indices */) { int c = 0; grid *g = state->game_grid; while (c < expected_count) { int line_index = *edge_list - g->edges; if (state->lines[line_index] == LINE_UNKNOWN) { e[c] = line_index; c++; } ++edge_list; } } /* If we have a list of edges, and we know whether the number of YESs should * be odd or even, and there are only a few UNKNOWNs, we can do some simple * linedsf deductions. This can be used for both face and dot deductions. * Returns the difficulty level of the next solver that should be used, * or DIFF_MAX if no progress was made. */ static int parity_deductions(solver_state *sstate, grid_edge **edge_list, /* Edge list (from a face or a dot) */ int total_parity, /* Expected number of YESs modulo 2 (either 0 or 1) */ int unknown_count) { game_state *state = sstate->state; int diff = DIFF_MAX; int *linedsf = sstate->linedsf; if (unknown_count == 2) { /* Lines are known alike/opposite, depending on inv. */ int e[2]; find_unknowns(state, edge_list, 2, e); if (merge_lines(sstate, e[0], e[1], total_parity)) diff = min(diff, DIFF_HARD); } else if (unknown_count == 3) { int e[3]; int can[3]; /* canonical edges */ int inv[3]; /* whether can[x] is inverse to e[x] */ find_unknowns(state, edge_list, 3, e); can[0] = edsf_canonify(linedsf, e[0], inv); can[1] = edsf_canonify(linedsf, e[1], inv+1); can[2] = edsf_canonify(linedsf, e[2], inv+2); if (can[0] == can[1]) { if (solver_set_line(sstate, e[2], (total_parity^inv[0]^inv[1]) ? LINE_YES : LINE_NO)) diff = min(diff, DIFF_EASY); } if (can[0] == can[2]) { if (solver_set_line(sstate, e[1], (total_parity^inv[0]^inv[2]) ? LINE_YES : LINE_NO)) diff = min(diff, DIFF_EASY); } if (can[1] == can[2]) { if (solver_set_line(sstate, e[0], (total_parity^inv[1]^inv[2]) ? LINE_YES : LINE_NO)) diff = min(diff, DIFF_EASY); } } else if (unknown_count == 4) { int e[4]; int can[4]; /* canonical edges */ int inv[4]; /* whether can[x] is inverse to e[x] */ find_unknowns(state, edge_list, 4, e); can[0] = edsf_canonify(linedsf, e[0], inv); can[1] = edsf_canonify(linedsf, e[1], inv+1); can[2] = edsf_canonify(linedsf, e[2], inv+2); can[3] = edsf_canonify(linedsf, e[3], inv+3); if (can[0] == can[1]) { if (merge_lines(sstate, e[2], e[3], total_parity^inv[0]^inv[1])) diff = min(diff, DIFF_HARD); } else if (can[0] == can[2]) { if (merge_lines(sstate, e[1], e[3], total_parity^inv[0]^inv[2])) diff = min(diff, DIFF_HARD); } else if (can[0] == can[3]) { if (merge_lines(sstate, e[1], e[2], total_parity^inv[0]^inv[3])) diff = min(diff, DIFF_HARD); } else if (can[1] == can[2]) { if (merge_lines(sstate, e[0], e[3], total_parity^inv[1]^inv[2])) diff = min(diff, DIFF_HARD); } else if (can[1] == can[3]) { if (merge_lines(sstate, e[0], e[2], total_parity^inv[1]^inv[3])) diff = min(diff, DIFF_HARD); } else if (can[2] == can[3]) { if (merge_lines(sstate, e[0], e[1], total_parity^inv[2]^inv[3])) diff = min(diff, DIFF_HARD); } } return diff; } /* * These are the main solver functions. * * Their return values are diff values corresponding to the lowest mode solver * that would notice the work that they have done. For example if the normal * mode solver adds actual lines or crosses, it will return DIFF_EASY as the * easy mode solver might be able to make progress using that. It doesn't make * sense for one of them to return a diff value higher than that of the * function itself. * * Each function returns the lowest value it can, as early as possible, in * order to try and pass as much work as possible back to the lower level * solvers which progress more quickly. */ /* PROPOSED NEW DESIGN: * We have a work queue consisting of 'events' notifying us that something has * happened that a particular solver mode might be interested in. For example * the hard mode solver might do something that helps the normal mode solver at * dot [x,y] in which case it will enqueue an event recording this fact. Then * we pull events off the work queue, and hand each in turn to the solver that * is interested in them. If a solver reports that it failed we pass the same * event on to progressively more advanced solvers and the loop detector. Once * we've exhausted an event, or it has helped us progress, we drop it and * continue to the next one. The events are sorted first in order of solver * complexity (easy first) then order of insertion (oldest first). * Once we run out of events we loop over each permitted solver in turn * (easiest first) until either a deduction is made (and an event therefore * emerges) or no further deductions can be made (in which case we've failed). * * QUESTIONS: * * How do we 'loop over' a solver when both dots and squares are concerned. * Answer: first all squares then all dots. */ static int trivial_deductions(solver_state *sstate) { int i, current_yes, current_no; game_state *state = sstate->state; grid *g = state->game_grid; int diff = DIFF_MAX; /* Per-face deductions */ for (i = 0; i < g->num_faces; i++) { grid_face *f = g->faces + i; if (sstate->face_solved[i]) continue; current_yes = sstate->face_yes_count[i]; current_no = sstate->face_no_count[i]; if (current_yes + current_no == f->order) { sstate->face_solved[i] = TRUE; continue; } if (state->clues[i] < 0) continue; if (state->clues[i] < current_yes) { sstate->solver_status = SOLVER_MISTAKE; return DIFF_EASY; } if (state->clues[i] == current_yes) { if (face_setall(sstate, i, LINE_UNKNOWN, LINE_NO)) diff = min(diff, DIFF_EASY); sstate->face_solved[i] = TRUE; continue; } if (f->order - state->clues[i] < current_no) { sstate->solver_status = SOLVER_MISTAKE; return DIFF_EASY; } if (f->order - state->clues[i] == current_no) { if (face_setall(sstate, i, LINE_UNKNOWN, LINE_YES)) diff = min(diff, DIFF_EASY); sstate->face_solved[i] = TRUE; continue; } } check_caches(sstate); /* Per-dot deductions */ for (i = 0; i < g->num_dots; i++) { grid_dot *d = g->dots + i; int yes, no, unknown; if (sstate->dot_solved[i]) continue; yes = sstate->dot_yes_count[i]; no = sstate->dot_no_count[i]; unknown = d->order - yes - no; if (yes == 0) { if (unknown == 0) { sstate->dot_solved[i] = TRUE; } else if (unknown == 1) { dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO); diff = min(diff, DIFF_EASY); sstate->dot_solved[i] = TRUE; } } else if (yes == 1) { if (unknown == 0) { sstate->solver_status = SOLVER_MISTAKE; return DIFF_EASY; } else if (unknown == 1) { dot_setall(sstate, i, LINE_UNKNOWN, LINE_YES); diff = min(diff, DIFF_EASY); } } else if (yes == 2) { if (unknown > 0) { dot_setall(sstate, i, LINE_UNKNOWN, LINE_NO); diff = min(diff, DIFF_EASY); } sstate->dot_solved[i] = TRUE; } else { sstate->solver_status = SOLVER_MISTAKE; return DIFF_EASY; } } check_caches(sstate); return diff; } static int dline_deductions(solver_state *sstate) { game_state *state = sstate->state; grid *g = state->game_grid; char *dlines = sstate->dlines; int i; int diff = DIFF_MAX; /* ------ Face deductions ------ */ /* Given a set of dline atmostone/atleastone constraints, need to figure * out if we can deduce any further info. For more general faces than * squares, this turns out to be a tricky problem. * The approach taken here is to define (per face) NxN matrices: * "maxs" and "mins". * The entries maxs(j,k) and mins(j,k) define the upper and lower limits * for the possible number of edges that are YES between positions j and k * going clockwise around the face. Can think of j and k as marking dots * around the face (recall the labelling scheme: edge0 joins dot0 to dot1, * edge1 joins dot1 to dot2 etc). * Trivially, mins(j,j) = maxs(j,j) = 0, and we don't even bother storing * these. mins(j,j+1) and maxs(j,j+1) are determined by whether edge{j} * is YES, NO or UNKNOWN. mins(j,j+2) and maxs(j,j+2) are related to * the dline atmostone/atleastone status for edges j and j+1. * * Then we calculate the remaining entries recursively. We definitely * know that * mins(j,k) >= { mins(j,u) + mins(u,k) } for any u between j and k. * This is because any valid placement of YESs between j and k must give * a valid placement between j and u, and also between u and k. * I believe it's sufficient to use just the two values of u: * j+1 and j+2. Seems to work well in practice - the bounds we compute * are rigorous, even if they might not be best-possible. * * Once we have maxs and mins calculated, we can make inferences about * each dline{j,j+1} by looking at the possible complementary edge-counts * mins(j+2,j) and maxs(j+2,j) and comparing these with the face clue. * As well as dlines, we can make similar inferences about single edges. * For example, consider a pentagon with clue 3, and we know at most one * of (edge0, edge1) is YES, and at most one of (edge2, edge3) is YES. * We could then deduce edge4 is YES, because maxs(0,4) would be 2, so * that final edge would have to be YES to make the count up to 3. */ /* Much quicker to allocate arrays on the stack than the heap, so * define the largest possible face size, and base our array allocations * on that. We check this with an assertion, in case someone decides to * make a grid which has larger faces than this. Note, this algorithm * could get quite expensive if there are many large faces. */ #define MAX_FACE_SIZE 8 for (i = 0; i < g->num_faces; i++) { int maxs[MAX_FACE_SIZE][MAX_FACE_SIZE]; int mins[MAX_FACE_SIZE][MAX_FACE_SIZE]; grid_face *f = g->faces + i; int N = f->order; int j,m; int clue = state->clues[i]; assert(N <= MAX_FACE_SIZE); if (sstate->face_solved[i]) continue; if (clue < 0) continue; /* Calculate the (j,j+1) entries */ for (j = 0; j < N; j++) { int edge_index = f->edges[j] - g->edges; int dline_index; enum line_state line1 = state->lines[edge_index]; enum line_state line2; int tmp; int k = j + 1; if (k >= N) k = 0; maxs[j][k] = (line1 == LINE_NO) ? 0 : 1; mins[j][k] = (line1 == LINE_YES) ? 1 : 0; /* Calculate the (j,j+2) entries */ dline_index = dline_index_from_face(g, f, k); edge_index = f->edges[k] - g->edges; line2 = state->lines[edge_index]; k++; if (k >= N) k = 0; /* max */ tmp = 2; if (line1 == LINE_NO) tmp--; if (line2 == LINE_NO) tmp--; if (tmp == 2 && is_atmostone(dlines, dline_index)) tmp = 1; maxs[j][k] = tmp; /* min */ tmp = 0; if (line1 == LINE_YES) tmp++; if (line2 == LINE_YES) tmp++; if (tmp == 0 && is_atleastone(dlines, dline_index)) tmp = 1; mins[j][k] = tmp; } /* Calculate the (j,j+m) entries for m between 3 and N-1 */ for (m = 3; m < N; m++) { for (j = 0; j < N; j++) { int k = j + m; int u = j + 1; int v = j + 2; int tmp; if (k >= N) k -= N; if (u >= N) u -= N; if (v >= N) v -= N; maxs[j][k] = maxs[j][u] + maxs[u][k]; mins[j][k] = mins[j][u] + mins[u][k]; tmp = maxs[j][v] + maxs[v][k]; maxs[j][k] = min(maxs[j][k], tmp); tmp = mins[j][v] + mins[v][k]; mins[j][k] = max(mins[j][k], tmp); } } /* See if we can make any deductions */ for (j = 0; j < N; j++) { int k; grid_edge *e = f->edges[j]; int line_index = e - g->edges; int dline_index; if (state->lines[line_index] != LINE_UNKNOWN) continue; k = j + 1; if (k >= N) k = 0; /* minimum YESs in the complement of this edge */ if (mins[k][j] > clue) { sstate->solver_status = SOLVER_MISTAKE; return DIFF_EASY; } if (mins[k][j] == clue) { /* setting this edge to YES would make at least * (clue+1) edges - contradiction */ solver_set_line(sstate, line_index, LINE_NO); diff = min(diff, DIFF_EASY); } if (maxs[k][j] < clue - 1) { sstate->solver_status = SOLVER_MISTAKE; return DIFF_EASY; } if (maxs[k][j] == clue - 1) { /* Only way to satisfy the clue is to set edge{j} as YES */ solver_set_line(sstate, line_index, LINE_YES); diff = min(diff, DIFF_EASY); } /* More advanced deduction that allows propagation along diagonal * chains of faces connected by dots, for example, 3-2-...-2-3 * in square grids. */ if (sstate->diff >= DIFF_TRICKY) { /* Now see if we can make dline deduction for edges{j,j+1} */ e = f->edges[k]; if (state->lines[e - g->edges] != LINE_UNKNOWN) /* Only worth doing this for an UNKNOWN,UNKNOWN pair. * Dlines where one of the edges is known, are handled in the * dot-deductions */ continue; dline_index = dline_index_from_face(g, f, k); k++; if (k >= N) k = 0; /* minimum YESs in the complement of this dline */ if (mins[k][j] > clue - 2) { /* Adding 2 YESs would break the clue */ if (set_atmostone(dlines, dline_index)) diff = min(diff, DIFF_NORMAL); } /* maximum YESs in the complement of this dline */ if (maxs[k][j] < clue) { /* Adding 2 NOs would mean not enough YESs */ if (set_atleastone(dlines, dline_index)) diff = min(diff, DIFF_NORMAL); } } } } if (diff < DIFF_NORMAL) return diff; /* ------ Dot deductions ------ */ for (i = 0; i < g->num_dots; i++) { grid_dot *d = g->dots + i; int N = d->order; int yes, no, unknown; int j; if (sstate->dot_solved[i]) continue; yes = sstate->dot_yes_count[i]; no = sstate->dot_no_count[i]; unknown = N - yes - no; for (j = 0; j < N; j++) { int k; int dline_index; int line1_index, line2_index; enum line_state line1, line2; k = j + 1; if (k >= N) k = 0; dline_index = dline_index_from_dot(g, d, j); line1_index = d->edges[j] - g->edges; line2_index = d->edges[k] - g->edges; line1 = state->lines[line1_index]; line2 = state->lines[line2_index]; /* Infer dline state from line state */ if (line1 == LINE_NO || line2 == LINE_NO) { if (set_atmostone(dlines, dline_index)) diff = min(diff, DIFF_NORMAL); } if (line1 == LINE_YES || line2 == LINE_YES) { if (set_atleastone(dlines, dline_index)) diff = min(diff, DIFF_NORMAL); } /* Infer line state from dline state */ if (is_atmostone(dlines, dline_index)) { if (line1 == LINE_YES && line2 == LINE_UNKNOWN) { solver_set_line(sstate, line2_index, LINE_NO); diff = min(diff, DIFF_EASY); } if (line2 == LINE_YES && line1 == LINE_UNKNOWN) { solver_set_line(sstate, line1_index, LINE_NO); diff = min(diff, DIFF_EASY); } } if (is_atleastone(dlines, dline_index)) { if (line1 == LINE_NO && line2 == LINE_UNKNOWN) { solver_set_line(sstate, line2_index, LINE_YES); diff = min(diff, DIFF_EASY); } if (line2 == LINE_NO && line1 == LINE_UNKNOWN) { solver_set_line(sstate, line1_index, LINE_YES); diff = min(diff, DIFF_EASY); } } /* Deductions that depend on the numbers of lines. * Only bother if both lines are UNKNOWN, otherwise the * easy-mode solver (or deductions above) would have taken * care of it. */ if (line1 != LINE_UNKNOWN || line2 != LINE_UNKNOWN) continue; if (yes == 0 && unknown == 2) { /* Both these unknowns must be identical. If we know * atmostone or atleastone, we can make progress. */ if (is_atmostone(dlines, dline_index)) { solver_set_line(sstate, line1_index, LINE_NO); solver_set_line(sstate, line2_index, LINE_NO); diff = min(diff, DIFF_EASY); } if (is_atleastone(dlines, dline_index)) { solver_set_line(sstate, line1_index, LINE_YES); solver_set_line(sstate, line2_index, LINE_YES); diff = min(diff, DIFF_EASY); } } if (yes == 1) { if (set_atmostone(dlines, dline_index)) diff = min(diff, DIFF_NORMAL); if (unknown == 2) { if (set_atleastone(dlines, dline_index)) diff = min(diff, DIFF_NORMAL); } } /* More advanced deduction that allows propagation along diagonal * chains of faces connected by dots, for example: 3-2-...-2-3 * in square grids. */ if (sstate->diff >= DIFF_TRICKY) { /* If we have atleastone set for this dline, infer * atmostone for each "opposite" dline (that is, each * dline without edges in common with this one). * Again, this test is only worth doing if both these * lines are UNKNOWN. For if one of these lines were YES, * the (yes == 1) test above would kick in instead. */ if (is_atleastone(dlines, dline_index)) { int opp; for (opp = 0; opp < N; opp++) { int opp_dline_index; if (opp == j || opp == j+1 || opp == j-1) continue; if (j == 0 && opp == N-1) continue; if (j == N-1 && opp == 0) continue; opp_dline_index = dline_index_from_dot(g, d, opp); if (set_atmostone(dlines, opp_dline_index)) diff = min(diff, DIFF_NORMAL); } if (yes == 0 && is_atmostone(dlines, dline_index)) { /* This dline has *exactly* one YES and there are no * other YESs. This allows more deductions. */ if (unknown == 3) { /* Third unknown must be YES */ for (opp = 0; opp < N; opp++) { int opp_index; if (opp == j || opp == k) continue; opp_index = d->edges[opp] - g->edges; if (state->lines[opp_index] == LINE_UNKNOWN) { solver_set_line(sstate, opp_index, LINE_YES); diff = min(diff, DIFF_EASY); } } } else if (unknown == 4) { /* Exactly one of opposite UNKNOWNS is YES. We've * already set atmostone, so set atleastone as * well. */ if (dline_set_opp_atleastone(sstate, d, j)) diff = min(diff, DIFF_NORMAL); } } } } } } return diff; } static int linedsf_deductions(solver_state *sstate) { game_state *state = sstate->state; grid *g = state->game_grid; char *dlines = sstate->dlines; int i; int diff = DIFF_MAX; int diff_tmp; /* ------ Face deductions ------ */ /* A fully-general linedsf deduction seems overly complicated * (I suspect the problem is NP-complete, though in practice it might just * be doable because faces are limited in size). * For simplicity, we only consider *pairs* of LINE_UNKNOWNS that are * known to be identical. If setting them both to YES (or NO) would break * the clue, set them to NO (or YES). */ for (i = 0; i < g->num_faces; i++) { int N, yes, no, unknown; int clue; if (sstate->face_solved[i]) continue; clue = state->clues[i]; if (clue < 0) continue; N = g->faces[i].order; yes = sstate->face_yes_count[i]; if (yes + 1 == clue) { if (face_setall_identical(sstate, i, LINE_NO)) diff = min(diff, DIFF_EASY); } no = sstate->face_no_count[i]; if (no + 1 == N - clue) { if (face_setall_identical(sstate, i, LINE_YES)) diff = min(diff, DIFF_EASY); } /* Reload YES count, it might have changed */ yes = sstate->face_yes_count[i]; unknown = N - no - yes; /* Deductions with small number of LINE_UNKNOWNs, based on overall * parity of lines. */ diff_tmp = parity_deductions(sstate, g->faces[i].edges, (clue - yes) % 2, unknown); diff = min(diff, diff_tmp); } /* ------ Dot deductions ------ */ for (i = 0; i < g->num_dots; i++) { grid_dot *d = g->dots + i; int N = d->order; int j; int yes, no, unknown; /* Go through dlines, and do any dline<->linedsf deductions wherever * we find two UNKNOWNS. */ for (j = 0; j < N; j++) { int dline_index = dline_index_from_dot(g, d, j); int line1_index; int line2_index; int can1, can2, inv1, inv2; int j2; line1_index = d->edges[j] - g->edges; if (state->lines[line1_index] != LINE_UNKNOWN) continue; j2 = j + 1; if (j2 == N) j2 = 0; line2_index = d->edges[j2] - g->edges; if (state->lines[line2_index] != LINE_UNKNOWN) continue; /* Infer dline flags from linedsf */ can1 = edsf_canonify(sstate->linedsf, line1_index, &inv1); can2 = edsf_canonify(sstate->linedsf, line2_index, &inv2); if (can1 == can2 && inv1 != inv2) { /* These are opposites, so set dline atmostone/atleastone */ if (set_atmostone(dlines, dline_index)) diff = min(diff, DIFF_NORMAL); if (set_atleastone(dlines, dline_index)) diff = min(diff, DIFF_NORMAL); continue; } /* Infer linedsf from dline flags */ if (is_atmostone(dlines, dline_index) && is_atleastone(dlines, dline_index)) { if (merge_lines(sstate, line1_index, line2_index, 1)) diff = min(diff, DIFF_HARD); } } /* Deductions with small number of LINE_UNKNOWNs, based on overall * parity of lines. */ yes = sstate->dot_yes_count[i]; no = sstate->dot_no_count[i]; unknown = N - yes - no; diff_tmp = parity_deductions(sstate, d->edges, yes % 2, unknown); diff = min(diff, diff_tmp); } /* ------ Edge dsf deductions ------ */ /* If the state of a line is known, deduce the state of its canonical line * too, and vice versa. */ for (i = 0; i < g->num_edges; i++) { int can, inv; enum line_state s; can = edsf_canonify(sstate->linedsf, i, &inv); if (can == i) continue; s = sstate->state->lines[can]; if (s != LINE_UNKNOWN) { if (solver_set_line(sstate, i, inv ? OPP(s) : s)) diff = min(diff, DIFF_EASY); } else { s = sstate->state->lines[i]; if (s != LINE_UNKNOWN) { if (solver_set_line(sstate, can, inv ? OPP(s) : s)) diff = min(diff, DIFF_EASY); } } } return diff; } static int loop_deductions(solver_state *sstate) { int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0; game_state *state = sstate->state; grid *g = state->game_grid; int shortest_chainlen = g->num_dots; int loop_found = FALSE; int dots_connected; int progress = FALSE; int i; /* * Go through the grid and update for all the new edges. * Since merge_dots() is idempotent, the simplest way to * do this is just to update for _all_ the edges. * Also, while we're here, we count the edges. */ for (i = 0; i < g->num_edges; i++) { if (state->lines[i] == LINE_YES) { loop_found |= merge_dots(sstate, i); edgecount++; } } /* * Count the clues, count the satisfied clues, and count the * satisfied-minus-one clues. */ for (i = 0; i < g->num_faces; i++) { int c = state->clues[i]; if (c >= 0) { int o = sstate->face_yes_count[i]; if (o == c) satclues++; else if (o == c-1) sm1clues++; clues++; } } for (i = 0; i < g->num_dots; ++i) { dots_connected = sstate->looplen[dsf_canonify(sstate->dotdsf, i)]; if (dots_connected > 1) shortest_chainlen = min(shortest_chainlen, dots_connected); } assert(sstate->solver_status == SOLVER_INCOMPLETE); if (satclues == clues && shortest_chainlen == edgecount) { sstate->solver_status = SOLVER_SOLVED; /* This discovery clearly counts as progress, even if we haven't * just added any lines or anything */ progress = TRUE; goto finished_loop_deductionsing; } /* * Now go through looking for LINE_UNKNOWN edges which * connect two dots that are already in the same * equivalence class. If we find one, test to see if the * loop it would create is a solution. */ for (i = 0; i < g->num_edges; i++) { grid_edge *e = g->edges + i; int d1 = e->dot1 - g->dots; int d2 = e->dot2 - g->dots; int eqclass, val; if (state->lines[i] != LINE_UNKNOWN) continue; eqclass = dsf_canonify(sstate->dotdsf, d1); if (eqclass != dsf_canonify(sstate->dotdsf, d2)) continue; val = LINE_NO; /* loop is bad until proven otherwise */ /* * This edge would form a loop. Next * question: how long would the loop be? * Would it equal the total number of edges * (plus the one we'd be adding if we added * it)? */ if (sstate->looplen[eqclass] == edgecount + 1) { int sm1_nearby; /* * This edge would form a loop which * took in all the edges in the entire * grid. So now we need to work out * whether it would be a valid solution * to the puzzle, which means we have to * check if it satisfies all the clues. * This means that every clue must be * either satisfied or satisfied-minus- * 1, and also that the number of * satisfied-minus-1 clues must be at * most two and they must lie on either * side of this edge. */ sm1_nearby = 0; if (e->face1) { int f = e->face1 - g->faces; int c = state->clues[f]; if (c >= 0 && sstate->face_yes_count[f] == c - 1) sm1_nearby++; } if (e->face2) { int f = e->face2 - g->faces; int c = state->clues[f]; if (c >= 0 && sstate->face_yes_count[f] == c - 1) sm1_nearby++; } if (sm1clues == sm1_nearby && sm1clues + satclues == clues) { val = LINE_YES; /* loop is good! */ } } /* * Right. Now we know that adding this edge * would form a loop, and we know whether * that loop would be a viable solution or * not. * * If adding this edge produces a solution, * then we know we've found _a_ solution but * we don't know that it's _the_ solution - * if it were provably the solution then * we'd have deduced this edge some time ago * without the need to do loop detection. So * in this state we return SOLVER_AMBIGUOUS, * which has the effect that hitting Solve * on a user-provided puzzle will fill in a * solution but using the solver to * construct new puzzles won't consider this * a reasonable deduction for the user to * make. */ progress = solver_set_line(sstate, i, val); assert(progress == TRUE); if (val == LINE_YES) { sstate->solver_status = SOLVER_AMBIGUOUS; goto finished_loop_deductionsing; } } finished_loop_deductionsing: return progress ? DIFF_EASY : DIFF_MAX; } /* This will return a dynamically allocated solver_state containing the (more) * solved grid */ static solver_state *solve_game_rec(const solver_state *sstate_start) { solver_state *sstate; /* Index of the solver we should call next. */ int i = 0; /* As a speed-optimisation, we avoid re-running solvers that we know * won't make any progress. This happens when a high-difficulty * solver makes a deduction that can only help other high-difficulty * solvers. * For example: if a new 'dline' flag is set by dline_deductions, the * trivial_deductions solver cannot do anything with this information. * If we've already run the trivial_deductions solver (because it's * earlier in the list), there's no point running it again. * * Therefore: if a solver is earlier in the list than "threshold_index", * we don't bother running it if it's difficulty level is less than * "threshold_diff". */ int threshold_diff = 0; int threshold_index = 0; sstate = dup_solver_state(sstate_start); check_caches(sstate); while (i < NUM_SOLVERS) { if (sstate->solver_status == SOLVER_MISTAKE) return sstate; if (sstate->solver_status == SOLVER_SOLVED || sstate->solver_status == SOLVER_AMBIGUOUS) { /* solver finished */ break; } if ((solver_diffs[i] >= threshold_diff || i >= threshold_index) && solver_diffs[i] <= sstate->diff) { /* current_solver is eligible, so use it */ int next_diff = solver_fns[i](sstate); if (next_diff != DIFF_MAX) { /* solver made progress, so use new thresholds and * start again at top of list. */ threshold_diff = next_diff; threshold_index = i; i = 0; continue; } } /* current_solver is ineligible, or failed to make progress, so * go to the next solver in the list */ i++; } if (sstate->solver_status == SOLVER_SOLVED || sstate->solver_status == SOLVER_AMBIGUOUS) { /* s/LINE_UNKNOWN/LINE_NO/g */ array_setall(sstate->state->lines, LINE_UNKNOWN, LINE_NO, sstate->state->game_grid->num_edges); return sstate; } return sstate; } static char *solve_game(game_state *state, game_state *currstate, char *aux, char **error) { char *soln = NULL; solver_state *sstate, *new_sstate; sstate = new_solver_state(state, DIFF_MAX); new_sstate = solve_game_rec(sstate); if (new_sstate->solver_status == SOLVER_SOLVED) { soln = encode_solve_move(new_sstate->state); } else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) { soln = encode_solve_move(new_sstate->state); /**error = "Solver found ambiguous solutions"; */ } else { soln = encode_solve_move(new_sstate->state); /**error = "Solver failed"; */ } free_solver_state(new_sstate); free_solver_state(sstate); return soln; } /* ---------------------------------------------------------------------- * Drawing and mouse-handling */ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, int x, int y, int button) { grid *g = state->game_grid; grid_edge *e; int i; char *ret, buf[80]; char button_char = ' '; enum line_state old_state; button &= ~MOD_MASK; /* Convert mouse-click (x,y) to grid coordinates */ x -= BORDER(ds->tilesize); y -= BORDER(ds->tilesize); x = x * g->tilesize / ds->tilesize; y = y * g->tilesize / ds->tilesize; x += g->lowest_x; y += g->lowest_y; e = grid_nearest_edge(g, x, y); if (e == NULL) return NULL; i = e - g->edges; /* I think it's only possible to play this game with mouse clicks, sorry */ /* Maybe will add mouse drag support some time */ old_state = state->lines[i]; switch (button) { case LEFT_BUTTON: switch (old_state) { case LINE_UNKNOWN: button_char = 'y'; break; case LINE_YES: #ifdef STYLUS_BASED button_char = 'n'; break; #endif case LINE_NO: button_char = 'u'; break; } break; case MIDDLE_BUTTON: button_char = 'u'; break; case RIGHT_BUTTON: switch (old_state) { case LINE_UNKNOWN: button_char = 'n'; break; case LINE_NO: #ifdef STYLUS_BASED button_char = 'y'; break; #endif case LINE_YES: button_char = 'u'; break; } break; default: return NULL; } sprintf(buf, "%d%c", i, (int)button_char); ret = dupstr(buf); return ret; } static game_state *execute_move(game_state *state, char *move) { int i; game_state *newstate = dup_game(state); if (move[0] == 'S') { move++; newstate->cheated = TRUE; } while (*move) { i = atoi(move); if (i < 0 || i >= newstate->game_grid->num_edges) goto fail; move += strspn(move, "1234567890"); switch (*(move++)) { case 'y': newstate->lines[i] = LINE_YES; break; case 'n': newstate->lines[i] = LINE_NO; break; case 'u': newstate->lines[i] = LINE_UNKNOWN; break; default: goto fail; } } /* * Check for completion. */ if (check_completion(newstate)) newstate->solved = TRUE; return newstate; fail: free_game(newstate); return NULL; } /* ---------------------------------------------------------------------- * Drawing routines. */ /* Convert from grid coordinates to screen coordinates */ static void grid_to_screen(const game_drawstate *ds, const grid *g, int grid_x, int grid_y, int *x, int *y) { *x = grid_x - g->lowest_x; *y = grid_y - g->lowest_y; *x = *x * ds->tilesize / g->tilesize; *y = *y * ds->tilesize / g->tilesize; *x += BORDER(ds->tilesize); *y += BORDER(ds->tilesize); } /* Returns (into x,y) position of centre of face for rendering the text clue. */ static void face_text_pos(const game_drawstate *ds, const grid *g, const grid_face *f, int *x, int *y) { int i; /* Simplest solution is the centroid. Might not work in some cases. */ /* Another algorithm to look into: * Find the midpoints of the sides, find the bounding-box, * then take the centre of that. */ /* Best solution probably involves incentres (inscribed circles) */ int sx = 0, sy = 0; /* sums */ for (i = 0; i < f->order; i++) { grid_dot *d = f->dots[i]; sx += d->x; sy += d->y; } sx /= f->order; sy /= f->order; /* convert to screen coordinates */ grid_to_screen(ds, g, sx, sy, x, y); } static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, game_state *state, int dir, game_ui *ui, float animtime, float flashtime) { grid *g = state->game_grid; int border = BORDER(ds->tilesize); int i, n; char c[2]; int line_colour, flash_changed; int clue_mistake; int clue_satisfied; if (!ds->started) { /* * The initial contents of the window are not guaranteed and * can vary with front ends. To be on the safe side, all games * should start by drawing a big background-colour rectangle * covering the whole window. */ int grid_width = g->highest_x - g->lowest_x; int grid_height = g->highest_y - g->lowest_y; int w = grid_width * ds->tilesize / g->tilesize; int h = grid_height * ds->tilesize / g->tilesize; draw_rect(dr, 0, 0, w + 2 * border + 1, h + 2 * border + 1, COL_BACKGROUND); /* Draw clues */ for (i = 0; i < g->num_faces; i++) { grid_face *f; int x, y; c[0] = CLUE2CHAR(state->clues[i]); c[1] = '\0'; f = g->faces + i; face_text_pos(ds, g, f, &x, &y); draw_text(dr, x, y, FONT_VARIABLE, ds->tilesize/2, ALIGN_VCENTRE | ALIGN_HCENTRE, COL_FOREGROUND, c); } draw_update(dr, 0, 0, w + 2 * border, h + 2 * border); } if (flashtime > 0 && (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3)) { flash_changed = !ds->flashing; ds->flashing = TRUE; } else { flash_changed = ds->flashing; ds->flashing = FALSE; } /* Some platforms may perform anti-aliasing, which may prevent clean * repainting of lines when the colour is changed. * If a line needs to be over-drawn in a different colour, erase a * bounding-box around the line, then flag all nearby objects for redraw. */ if (ds->started) { const char redraw_flag = (char)(1<<7); for (i = 0; i < g->num_edges; i++) { char prev_ds = (ds->lines[i] & ~redraw_flag); char new_ds = state->lines[i]; if (state->line_errors[i]) new_ds = DS_LINE_ERROR; /* If we're changing state, AND * the previous state was a coloured line */ if ((prev_ds != new_ds) && (prev_ds != LINE_NO)) { grid_edge *e = g->edges + i; int x1 = e->dot1->x; int y1 = e->dot1->y; int x2 = e->dot2->x; int y2 = e->dot2->y; int xmin, xmax, ymin, ymax; int j; grid_to_screen(ds, g, x1, y1, &x1, &y1); grid_to_screen(ds, g, x2, y2, &x2, &y2); /* Allow extra margin for dots, and thickness of lines */ xmin = min(x1, x2) - 2; xmax = max(x1, x2) + 2; ymin = min(y1, y2) - 2; ymax = max(y1, y2) + 2; /* For testing, I find it helpful to change COL_BACKGROUND * to COL_SATISFIED here. */ draw_rect(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1, COL_BACKGROUND); draw_update(dr, xmin, ymin, xmax - xmin + 1, ymax - ymin + 1); /* Mark nearby lines for redraw */ for (j = 0; j < e->dot1->order; j++) ds->lines[e->dot1->edges[j] - g->edges] |= redraw_flag; for (j = 0; j < e->dot2->order; j++) ds->lines[e->dot2->edges[j] - g->edges] |= redraw_flag; /* Mark nearby clues for redraw. Use a value that is * neither TRUE nor FALSE for this. */ if (e->face1) ds->clue_error[e->face1 - g->faces] = 2; if (e->face2) ds->clue_error[e->face2 - g->faces] = 2; } } } /* Redraw clue colours if necessary */ for (i = 0; i < g->num_faces; i++) { grid_face *f = g->faces + i; int sides = f->order; int j; n = state->clues[i]; if (n < 0) continue; c[0] = CLUE2CHAR(n); c[1] = '\0'; clue_mistake = (face_order(state, i, LINE_YES) > n || face_order(state, i, LINE_NO ) > (sides-n)); clue_satisfied = (face_order(state, i, LINE_YES) == n && face_order(state, i, LINE_NO ) == (sides-n)); if (clue_mistake != ds->clue_error[i] || clue_satisfied != ds->clue_satisfied[i]) { int x, y; face_text_pos(ds, g, f, &x, &y); /* There seems to be a certain amount of trial-and-error * involved in working out the correct bounding-box for * the text. */ draw_rect(dr, x - ds->tilesize/4 - 1, y - ds->tilesize/4 - 3, ds->tilesize/2 + 2, ds->tilesize/2 + 5, COL_BACKGROUND); draw_text(dr, x, y, FONT_VARIABLE, ds->tilesize/2, ALIGN_VCENTRE | ALIGN_HCENTRE, clue_mistake ? COL_MISTAKE : clue_satisfied ? COL_SATISFIED : COL_FOREGROUND, c); draw_update(dr, x - ds->tilesize/4 - 1, y - ds->tilesize/4 - 3, ds->tilesize/2 + 2, ds->tilesize/2 + 5); ds->clue_error[i] = clue_mistake; ds->clue_satisfied[i] = clue_satisfied; /* Sometimes, the bounding-box encroaches into the surrounding * lines (particularly if the window is resized fairly small). * So redraw them. */ for (j = 0; j < f->order; j++) ds->lines[f->edges[j] - g->edges] = -1; } } /* Lines */ for (i = 0; i < g->num_edges; i++) { grid_edge *e = g->edges + i; int x1, x2, y1, y2; int xmin, ymin, xmax, ymax; char new_ds, need_draw; new_ds = state->lines[i]; if (state->line_errors[i]) new_ds = DS_LINE_ERROR; need_draw = (new_ds != ds->lines[i]) ? TRUE : FALSE; if (flash_changed && (state->lines[i] == LINE_YES)) need_draw = TRUE; if (!ds->started) need_draw = TRUE; /* draw everything at the start */ ds->lines[i] = new_ds; if (!need_draw) continue; if (state->line_errors[i]) line_colour = COL_MISTAKE; else if (state->lines[i] == LINE_UNKNOWN) line_colour = COL_LINEUNKNOWN; else if (state->lines[i] == LINE_NO) line_colour = COL_FAINT; else if (ds->flashing) line_colour = COL_HIGHLIGHT; else line_colour = COL_FOREGROUND; /* Convert from grid to screen coordinates */ grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1); grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2); xmin = min(x1, x2); xmax = max(x1, x2); ymin = min(y1, y2); ymax = max(y1, y2); if (line_colour == COL_FAINT) { static int draw_faint_lines = -1; if (draw_faint_lines < 0) { char *env = getenv("LOOPY_FAINT_LINES"); draw_faint_lines = (!env || (env[0] == 'y' || env[0] == 'Y')); } if (draw_faint_lines) draw_line(dr, x1, y1, x2, y2, line_colour); } else { /* (dx, dy) points roughly from (x1, y1) to (x2, y2). * The line is then "fattened" in a (roughly) perpendicular * direction to create a thin rectangle. */ int dx = (x1 > x2) ? -1 : ((x1 < x2) ? 1 : 0); int dy = (y1 > y2) ? -1 : ((y1 < y2) ? 1 : 0); int points[8]; points[0] = x1 + dy; points[1] = y1 - dx; points[2] = x1 - dy; points[3] = y1 + dx; points[4] = x2 - dy; points[5] = y2 + dx; points[6] = x2 + dy; points[7] = y2 - dx; draw_polygon(dr, points, 4, line_colour, line_colour); } if (ds->started) { /* Draw dots at ends of the line */ draw_circle(dr, x1, y1, 2, COL_FOREGROUND, COL_FOREGROUND); draw_circle(dr, x2, y2, 2, COL_FOREGROUND, COL_FOREGROUND); } draw_update(dr, xmin-2, ymin-2, xmax - xmin + 4, ymax - ymin + 4); } /* Draw dots */ if (!ds->started) { for (i = 0; i < g->num_dots; i++) { grid_dot *d = g->dots + i; int x, y; grid_to_screen(ds, g, d->x, d->y, &x, &y); draw_circle(dr, x, y, 2, COL_FOREGROUND, COL_FOREGROUND); } } ds->started = TRUE; } static float game_flash_length(game_state *oldstate, game_state *newstate, int dir, game_ui *ui) { if (!oldstate->solved && newstate->solved && !oldstate->cheated && !newstate->cheated) { return FLASH_TIME; } return 0.0F; } static void game_print_size(game_params *params, float *x, float *y) { int pw, ph; /* * I'll use 7mm "squares" by default. */ game_compute_size(params, 700, &pw, &ph); *x = pw / 100.0F; *y = ph / 100.0F; } static void game_print(drawing *dr, game_state *state, int tilesize) { int ink = print_mono_colour(dr, 0); int i; game_drawstate ads, *ds = &ads; grid *g = state->game_grid; ds->tilesize = tilesize; for (i = 0; i < g->num_dots; i++) { int x, y; grid_to_screen(ds, g, g->dots[i].x, g->dots[i].y, &x, &y); draw_circle(dr, x, y, ds->tilesize / 15, ink, ink); } /* * Clues. */ for (i = 0; i < g->num_faces; i++) { grid_face *f = g->faces + i; int clue = state->clues[i]; if (clue >= 0) { char c[2]; int x, y; c[0] = CLUE2CHAR(clue); c[1] = '\0'; face_text_pos(ds, g, f, &x, &y); draw_text(dr, x, y, FONT_VARIABLE, ds->tilesize / 2, ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c); } } /* * Lines. */ for (i = 0; i < g->num_edges; i++) { int thickness = (state->lines[i] == LINE_YES) ? 30 : 150; grid_edge *e = g->edges + i; int x1, y1, x2, y2; grid_to_screen(ds, g, e->dot1->x, e->dot1->y, &x1, &y1); grid_to_screen(ds, g, e->dot2->x, e->dot2->y, &x2, &y2); if (state->lines[i] == LINE_YES) { /* (dx, dy) points from (x1, y1) to (x2, y2). * The line is then "fattened" in a perpendicular * direction to create a thin rectangle. */ double d = sqrt(SQ((double)x1 - x2) + SQ((double)y1 - y2)); double dx = (x2 - x1) / d; double dy = (y2 - y1) / d; int points[8]; dx = (dx * ds->tilesize) / thickness; dy = (dy * ds->tilesize) / thickness; points[0] = x1 + (int)dy; points[1] = y1 - (int)dx; points[2] = x1 - (int)dy; points[3] = y1 + (int)dx; points[4] = x2 - (int)dy; points[5] = y2 + (int)dx; points[6] = x2 + (int)dy; points[7] = y2 - (int)dx; draw_polygon(dr, points, 4, ink, ink); } else { /* Draw a dotted line */ int divisions = 6; int j; for (j = 1; j < divisions; j++) { /* Weighted average */ int x = (x1 * (divisions -j) + x2 * j) / divisions; int y = (y1 * (divisions -j) + y2 * j) / divisions; draw_circle(dr, x, y, ds->tilesize / thickness, ink, ink); } } } } #ifdef COMBINED #define thegame loopy #endif const struct game thegame = { "Loopy", "games.loopy", "loopy", default_params, game_fetch_preset, decode_params, encode_params, free_params, dup_params, TRUE, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, 1, solve_game, TRUE, game_can_format_as_text_now, game_text_format, new_ui, free_ui, encode_ui, decode_ui, game_changed_state, interpret_move, execute_move, PREFERRED_TILE_SIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, TRUE, FALSE, game_print_size, game_print, FALSE /* wants_statusbar */, FALSE, game_timing_state, 0, /* mouse_priorities */ }; #ifdef STANDALONE_SOLVER /* * Half-hearted standalone solver. It can't output the solution to * anything but a square puzzle, and it can't log the deductions * it makes either. But it can solve square puzzles, and more * importantly it can use its solver to grade the difficulty of * any puzzle you give it. */ #include <stdarg.h> int main(int argc, char **argv) { game_params *p; game_state *s; char *id = NULL, *desc, *err; int grade = FALSE; int ret, diff; #if 0 /* verbose solver not supported here (yet) */ int really_verbose = FALSE; #endif while (--argc > 0) { char *p = *++argv; #if 0 /* verbose solver not supported here (yet) */ if (!strcmp(p, "-v")) { really_verbose = TRUE; } else #endif if (!strcmp(p, "-g")) { grade = TRUE; } else if (*p == '-') { fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p); return 1; } else { id = p; } } if (!id) { fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]); return 1; } desc = strchr(id, ':'); if (!desc) { fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]); return 1; } *desc++ = '\0'; p = default_params(); decode_params(p, id); err = validate_desc(p, desc); if (err) { fprintf(stderr, "%s: %s\n", argv[0], err); return 1; } s = new_game(NULL, p, desc); /* * When solving an Easy puzzle, we don't want to bother the * user with Hard-level deductions. For this reason, we grade * the puzzle internally before doing anything else. */ ret = -1; /* placate optimiser */ for (diff = 0; diff < DIFF_MAX; diff++) { solver_state *sstate_new; solver_state *sstate = new_solver_state((game_state *)s, diff); sstate_new = solve_game_rec(sstate); if (sstate_new->solver_status == SOLVER_MISTAKE) ret = 0; else if (sstate_new->solver_status == SOLVER_SOLVED) ret = 1; else ret = 2; free_solver_state(sstate_new); free_solver_state(sstate); if (ret < 2) break; } if (diff == DIFF_MAX) { if (grade) printf("Difficulty rating: harder than Hard, or ambiguous\n"); else printf("Unable to find a unique solution\n"); } else { if (grade) { if (ret == 0) printf("Difficulty rating: impossible (no solution exists)\n"); else if (ret == 1) printf("Difficulty rating: %s\n", diffnames[diff]); } else { solver_state *sstate_new; solver_state *sstate = new_solver_state((game_state *)s, diff); /* If we supported a verbose solver, we'd set verbosity here */ sstate_new = solve_game_rec(sstate); if (sstate_new->solver_status == SOLVER_MISTAKE) printf("Puzzle is inconsistent\n"); else { assert(sstate_new->solver_status == SOLVER_SOLVED); if (s->grid_type == 0) { fputs(game_text_format(sstate_new->state), stdout); } else { printf("Unable to output non-square grids\n"); } } free_solver_state(sstate_new); free_solver_state(sstate); } } return 0; } #endif