ref: ec4335e07f4819e82ec2cc95fba36764e5bcf8f2
dir: /rect.c/
/* * rect.c: Puzzle from nikoli.co.jp. You have a square grid with * numbers in some squares; you must divide the square grid up into * variously sized rectangles, such that every rectangle contains * exactly one numbered square and the area of each rectangle is * equal to the number contained in it. */ /* * TODO: * * - Improve singleton removal. * + It would be nice to limit the size of the generated * rectangles in accordance with existing constraints such as * the maximum rectangle size and the one about not * generating a rectangle the full width or height of the * grid. * + This could be achieved by making a less random choice * about which of the available options to use. * + Alternatively, we could create our rectangle and then * split it up. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <math.h> #include "puzzles.h" enum { COL_BACKGROUND, COL_CORRECT, COL_LINE, COL_TEXT, COL_GRID, COL_DRAG, COL_DRAGERASE, COL_CURSOR, NCOLOURS }; struct game_params { int w, h; float expandfactor; bool unique; }; #define INDEX(state, x, y) (((y) * (state)->w) + (x)) #define index(state, a, x, y) ((a) [ INDEX(state,x,y) ]) #define grid(state,x,y) index(state, (state)->grid, x, y) #define vedge(state,x,y) index(state, (state)->vedge, x, y) #define hedge(state,x,y) index(state, (state)->hedge, x, y) #define CRANGE(state,x,y,dx,dy) ( (x) >= dx && (x) < (state)->w && \ (y) >= dy && (y) < (state)->h ) #define RANGE(state,x,y) CRANGE(state,x,y,0,0) #define HRANGE(state,x,y) CRANGE(state,x,y,0,1) #define VRANGE(state,x,y) CRANGE(state,x,y,1,0) #define PREFERRED_TILE_SIZE 24 #define TILE_SIZE (ds->tilesize) #ifdef SMALL_SCREEN #define BORDER (2) #else #define BORDER (TILE_SIZE * 3 / 4) #endif #define CORNER_TOLERANCE 0.15F #define CENTRE_TOLERANCE 0.15F #define FLASH_TIME 0.13F #define COORD(x) ( (x) * TILE_SIZE + BORDER ) #define FROMCOORD(x) ( ((x) - BORDER) / TILE_SIZE ) struct game_state { int w, h; int *grid; /* contains the numbers */ unsigned char *vedge; /* (w+1) x h */ unsigned char *hedge; /* w x (h+1) */ bool completed, cheated; unsigned char *correct; }; static game_params *default_params(void) { game_params *ret = snew(game_params); ret->w = ret->h = 7; ret->expandfactor = 0.0F; ret->unique = true; return ret; } static bool game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; int w, h; char buf[80]; switch (i) { case 0: w = 7, h = 7; break; case 1: w = 9, h = 9; break; case 2: w = 11, h = 11; break; case 3: w = 13, h = 13; break; case 4: w = 15, h = 15; break; #ifndef SMALL_SCREEN case 5: w = 17, h = 17; break; case 6: w = 19, h = 19; break; #endif default: return false; } sprintf(buf, "%dx%d", w, h); *name = dupstr(buf); *params = ret = snew(game_params); ret->w = w; ret->h = h; ret->expandfactor = 0.0F; ret->unique = true; return true; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(const game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *ret, char const *string) { ret->w = ret->h = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; if (*string == 'x') { string++; ret->h = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; } if (*string == 'e') { string++; ret->expandfactor = (float)atof(string); while (*string && (*string == '.' || isdigit((unsigned char)*string))) string++; } if (*string == 'a') { string++; ret->unique = false; } } static char *encode_params(const game_params *params, bool full) { char data[256]; sprintf(data, "%dx%d", params->w, params->h); if (full && params->expandfactor) sprintf(data + strlen(data), "e%g", params->expandfactor); if (full && !params->unique) strcat(data, "a"); return dupstr(data); } static config_item *game_configure(const game_params *params) { config_item *ret; char buf[80]; ret = snewn(5, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].u.string.sval = dupstr(buf); ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->h); ret[1].u.string.sval = dupstr(buf); ret[2].name = "Expansion factor"; ret[2].type = C_STRING; sprintf(buf, "%g", params->expandfactor); ret[2].u.string.sval = dupstr(buf); ret[3].name = "Ensure unique solution"; ret[3].type = C_BOOLEAN; ret[3].u.boolean.bval = params->unique; ret[4].name = NULL; ret[4].type = C_END; return ret; } static game_params *custom_params(const config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].u.string.sval); ret->h = atoi(cfg[1].u.string.sval); ret->expandfactor = (float)atof(cfg[2].u.string.sval); ret->unique = cfg[3].u.boolean.bval; return ret; } static const char *validate_params(const game_params *params, bool full) { if (params->w <= 0 || params->h <= 0) return "Width and height must both be greater than zero"; if (params->w > INT_MAX / params->h) return "Width times height must not be unreasonably large"; if (params->w*params->h < 2) return "Grid area must be greater than one"; if (params->expandfactor < 0.0F) return "Expansion factor may not be negative"; return NULL; } struct point { int x, y; }; struct rect { int x, y; int w, h; }; struct rectlist { struct rect *rects; int n; }; struct numberdata { int area; int npoints; struct point *points; }; /* ---------------------------------------------------------------------- * Solver for Rectangles games. * * This solver is souped up beyond the needs of actually _solving_ * a puzzle. It is also designed to cope with uncertainty about * where the numbers have been placed. This is because I run it on * my generated grids _before_ placing the numbers, and have it * tell me where I need to place the numbers to ensure a unique * solution. */ static void remove_rect_placement(int w, int h, struct rectlist *rectpositions, int *overlaps, int rectnum, int placement) { int x, y, xx, yy; #ifdef SOLVER_DIAGNOSTICS printf("ruling out rect %d placement at %d,%d w=%d h=%d\n", rectnum, rectpositions[rectnum].rects[placement].x, rectpositions[rectnum].rects[placement].y, rectpositions[rectnum].rects[placement].w, rectpositions[rectnum].rects[placement].h); #endif /* * Decrement each entry in the overlaps array to reflect the * removal of this rectangle placement. */ for (yy = 0; yy < rectpositions[rectnum].rects[placement].h; yy++) { y = yy + rectpositions[rectnum].rects[placement].y; for (xx = 0; xx < rectpositions[rectnum].rects[placement].w; xx++) { x = xx + rectpositions[rectnum].rects[placement].x; assert(overlaps[(rectnum * h + y) * w + x] != 0); if (overlaps[(rectnum * h + y) * w + x] > 0) overlaps[(rectnum * h + y) * w + x]--; } } /* * Remove the placement from the list of positions for that * rectangle, by interchanging it with the one on the end. */ if (placement < rectpositions[rectnum].n - 1) { struct rect t; t = rectpositions[rectnum].rects[rectpositions[rectnum].n - 1]; rectpositions[rectnum].rects[rectpositions[rectnum].n - 1] = rectpositions[rectnum].rects[placement]; rectpositions[rectnum].rects[placement] = t; } rectpositions[rectnum].n--; } static void remove_number_placement(int w, int h, struct numberdata *number, int index, int *rectbyplace) { /* * Remove the entry from the rectbyplace array. */ rectbyplace[number->points[index].y * w + number->points[index].x] = -1; /* * Remove the placement from the list of candidates for that * number, by interchanging it with the one on the end. */ if (index < number->npoints - 1) { struct point t; t = number->points[number->npoints - 1]; number->points[number->npoints - 1] = number->points[index]; number->points[index] = t; } number->npoints--; } /* * Returns 0 for failure to solve due to inconsistency; 1 for * success; 2 for failure to complete a solution due to either * ambiguity or it being too difficult. */ static int rect_solver(int w, int h, int nrects, struct numberdata *numbers, unsigned char *hedge, unsigned char *vedge, random_state *rs) { struct rectlist *rectpositions; int *overlaps, *rectbyplace, *workspace; int i, ret; /* * Start by setting up a list of candidate positions for each * rectangle. */ rectpositions = snewn(nrects, struct rectlist); for (i = 0; i < nrects; i++) { int rw, rh, area = numbers[i].area; int j, minx, miny, maxx, maxy; struct rect *rlist; int rlistn, rlistsize; /* * For each rectangle, begin by finding the bounding * rectangle of its candidate number placements. */ maxx = maxy = -1; minx = w; miny = h; for (j = 0; j < numbers[i].npoints; j++) { if (minx > numbers[i].points[j].x) minx = numbers[i].points[j].x; if (miny > numbers[i].points[j].y) miny = numbers[i].points[j].y; if (maxx < numbers[i].points[j].x) maxx = numbers[i].points[j].x; if (maxy < numbers[i].points[j].y) maxy = numbers[i].points[j].y; } /* * Now loop over all possible rectangle placements * overlapping a point within that bounding rectangle; * ensure each one actually contains a candidate number * placement, and add it to the list. */ rlist = NULL; rlistn = rlistsize = 0; for (rw = 1; rw <= area && rw <= w; rw++) { int x, y; if (area % rw) continue; rh = area / rw; if (rh > h) continue; for (y = miny - rh + 1; y <= maxy; y++) { if (y < 0 || y+rh > h) continue; for (x = minx - rw + 1; x <= maxx; x++) { if (x < 0 || x+rw > w) continue; /* * See if we can find a candidate number * placement within this rectangle. */ for (j = 0; j < numbers[i].npoints; j++) if (numbers[i].points[j].x >= x && numbers[i].points[j].x < x+rw && numbers[i].points[j].y >= y && numbers[i].points[j].y < y+rh) break; if (j < numbers[i].npoints) { /* * Add this to the list of candidate * placements for this rectangle. */ if (rlistn >= rlistsize) { rlistsize = rlistn + 32; rlist = sresize(rlist, rlistsize, struct rect); } rlist[rlistn].x = x; rlist[rlistn].y = y; rlist[rlistn].w = rw; rlist[rlistn].h = rh; #ifdef SOLVER_DIAGNOSTICS printf("rect %d [area %d]: candidate position at" " %d,%d w=%d h=%d\n", i, area, x, y, rw, rh); #endif rlistn++; } } } } rectpositions[i].rects = rlist; rectpositions[i].n = rlistn; } /* * Next, construct a multidimensional array tracking how many * candidate positions for each rectangle overlap each square. * * Indexing of this array is by the formula * * overlaps[(rectindex * h + y) * w + x] * * A positive or zero value indicates what it sounds as if it * should; -1 indicates that this square _cannot_ be part of * this rectangle; and -2 indicates that it _definitely_ is * (which is distinct from 1, because one might very well know * that _if_ square S is part of rectangle R then it must be * because R is placed in a certain position without knowing * that it definitely _is_). */ overlaps = snewn(nrects * w * h, int); memset(overlaps, 0, nrects * w * h * sizeof(int)); for (i = 0; i < nrects; i++) { int j; for (j = 0; j < rectpositions[i].n; j++) { int xx, yy; for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) overlaps[(i * h + yy+rectpositions[i].rects[j].y) * w + xx+rectpositions[i].rects[j].x]++; } } /* * Also we want an array covering the grid once, to make it * easy to figure out which squares are candidate number * placements for which rectangles. (The existence of this * single array assumes that no square starts off as a * candidate number placement for more than one rectangle. This * assumption is justified, because this solver is _either_ * used to solve real problems - in which case there is a * single placement for every number - _or_ used to decide on * number placements for a new puzzle, in which case each * number's placements are confined to the intended position of * the rectangle containing that number.) */ rectbyplace = snewn(w * h, int); for (i = 0; i < w*h; i++) rectbyplace[i] = -1; for (i = 0; i < nrects; i++) { int j; for (j = 0; j < numbers[i].npoints; j++) { int x = numbers[i].points[j].x; int y = numbers[i].points[j].y; assert(rectbyplace[y * w + x] == -1); rectbyplace[y * w + x] = i; } } workspace = snewn(nrects, int); /* * Now run the actual deduction loop. */ while (1) { bool done_something = false; #ifdef SOLVER_DIAGNOSTICS printf("starting deduction loop\n"); for (i = 0; i < nrects; i++) { printf("rect %d overlaps:\n", i); { int x, y; for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { printf("%3d", overlaps[(i * h + y) * w + x]); } printf("\n"); } } } printf("rectbyplace:\n"); { int x, y; for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { printf("%3d", rectbyplace[y * w + x]); } printf("\n"); } } #endif /* * Housekeeping. Look for rectangles whose number has only * one candidate position left, and mark that square as * known if it isn't already. */ for (i = 0; i < nrects; i++) { if (numbers[i].npoints == 1) { int x = numbers[i].points[0].x; int y = numbers[i].points[0].y; if (overlaps[(i * h + y) * w + x] >= -1) { int j; if (overlaps[(i * h + y) * w + x] <= 0) { ret = 0; /* inconsistency */ goto cleanup; } #ifdef SOLVER_DIAGNOSTICS printf("marking %d,%d as known for rect %d" " (sole remaining number position)\n", x, y, i); #endif for (j = 0; j < nrects; j++) overlaps[(j * h + y) * w + x] = -1; overlaps[(i * h + y) * w + x] = -2; } } } /* * Now look at the intersection of all possible placements * for each rectangle, and mark all squares in that * intersection as known for that rectangle if they aren't * already. */ for (i = 0; i < nrects; i++) { int minx, miny, maxx, maxy, xx, yy, j; minx = miny = 0; maxx = w; maxy = h; for (j = 0; j < rectpositions[i].n; j++) { int x = rectpositions[i].rects[j].x; int y = rectpositions[i].rects[j].y; int w = rectpositions[i].rects[j].w; int h = rectpositions[i].rects[j].h; if (minx < x) minx = x; if (miny < y) miny = y; if (maxx > x+w) maxx = x+w; if (maxy > y+h) maxy = y+h; } for (yy = miny; yy < maxy; yy++) for (xx = minx; xx < maxx; xx++) if (overlaps[(i * h + yy) * w + xx] >= -1) { if (overlaps[(i * h + yy) * w + xx] <= 0) { ret = 0; /* inconsistency */ goto cleanup; } #ifdef SOLVER_DIAGNOSTICS printf("marking %d,%d as known for rect %d" " (intersection of all placements)\n", xx, yy, i); #endif for (j = 0; j < nrects; j++) overlaps[(j * h + yy) * w + xx] = -1; overlaps[(i * h + yy) * w + xx] = -2; } } /* * Rectangle-focused deduction. Look at each rectangle in * turn and try to rule out some of its candidate * placements. */ for (i = 0; i < nrects; i++) { int j; for (j = 0; j < rectpositions[i].n; j++) { int xx, yy, k; bool del = false; for (k = 0; k < nrects; k++) workspace[k] = 0; for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) { int y = yy + rectpositions[i].rects[j].y; for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) { int x = xx + rectpositions[i].rects[j].x; if (overlaps[(i * h + y) * w + x] == -1) { /* * This placement overlaps a square * which is _known_ to be part of * another rectangle. Therefore we must * rule it out. */ #ifdef SOLVER_DIAGNOSTICS printf("rect %d placement at %d,%d w=%d h=%d " "contains %d,%d which is known-other\n", i, rectpositions[i].rects[j].x, rectpositions[i].rects[j].y, rectpositions[i].rects[j].w, rectpositions[i].rects[j].h, x, y); #endif del = true; } if (rectbyplace[y * w + x] != -1) { /* * This placement overlaps one of the * candidate number placements for some * rectangle. Count it. */ workspace[rectbyplace[y * w + x]]++; } } } if (!del) { /* * If we haven't ruled this placement out * already, see if it overlaps _all_ of the * candidate number placements for any * rectangle. If so, we can rule it out. */ for (k = 0; k < nrects; k++) if (k != i && workspace[k] == numbers[k].npoints) { #ifdef SOLVER_DIAGNOSTICS printf("rect %d placement at %d,%d w=%d h=%d " "contains all number points for rect %d\n", i, rectpositions[i].rects[j].x, rectpositions[i].rects[j].y, rectpositions[i].rects[j].w, rectpositions[i].rects[j].h, k); #endif del = true; break; } /* * Failing that, see if it overlaps at least * one of the candidate number placements for * itself! (This might not be the case if one * of those number placements has been removed * recently.). */ if (!del && workspace[i] == 0) { #ifdef SOLVER_DIAGNOSTICS printf("rect %d placement at %d,%d w=%d h=%d " "contains none of its own number points\n", i, rectpositions[i].rects[j].x, rectpositions[i].rects[j].y, rectpositions[i].rects[j].w, rectpositions[i].rects[j].h); #endif del = true; } } if (del) { remove_rect_placement(w, h, rectpositions, overlaps, i, j); j--; /* don't skip over next placement */ done_something = true; } } } /* * Square-focused deduction. Look at each square not marked * as known, and see if there are any which can only be * part of a single rectangle. */ { int x, y, n, index; for (y = 0; y < h; y++) for (x = 0; x < w; x++) { /* Known squares are marked as <0 everywhere, so we only need * to check the overlaps entry for rect 0. */ if (overlaps[y * w + x] < 0) continue; /* known already */ n = 0; index = -1; for (i = 0; i < nrects; i++) if (overlaps[(i * h + y) * w + x] > 0) n++, index = i; if (n == 1) { int j; /* * Now we can rule out all placements for * rectangle `index' which _don't_ contain * square x,y. */ #ifdef SOLVER_DIAGNOSTICS printf("square %d,%d can only be in rectangle %d\n", x, y, index); #endif for (j = 0; j < rectpositions[index].n; j++) { struct rect *r = &rectpositions[index].rects[j]; if (x >= r->x && x < r->x + r->w && y >= r->y && y < r->y + r->h) continue; /* this one is OK */ remove_rect_placement(w, h, rectpositions, overlaps, index, j); j--; /* don't skip over next placement */ done_something = true; } } } } /* * If we've managed to deduce anything by normal means, * loop round again and see if there's more to be done. * Only if normal deduction has completely failed us should * we now move on to narrowing down the possible number * placements. */ if (done_something) continue; /* * Now we have done everything we can with the current set * of number placements. So we need to winnow the number * placements so as to narrow down the possibilities. We do * this by searching for a candidate placement (of _any_ * rectangle) which overlaps a candidate placement of the * number for some other rectangle. */ if (rs) { struct rpn { int rect; int placement; int number; } *rpns = NULL; size_t nrpns = 0, rpnsize = 0; int j; for (i = 0; i < nrects; i++) { for (j = 0; j < rectpositions[i].n; j++) { int xx, yy; for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) { int y = yy + rectpositions[i].rects[j].y; for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) { int x = xx + rectpositions[i].rects[j].x; if (rectbyplace[y * w + x] >= 0 && rectbyplace[y * w + x] != i) { /* * Add this to the list of * winnowing possibilities. */ if (nrpns >= rpnsize) { rpnsize = rpnsize * 3 / 2 + 32; rpns = sresize(rpns, rpnsize, struct rpn); } rpns[nrpns].rect = i; rpns[nrpns].placement = j; rpns[nrpns].number = rectbyplace[y * w + x]; nrpns++; } } } } } #ifdef SOLVER_DIAGNOSTICS printf("%d candidate rect placements we could eliminate\n", nrpns); #endif if (nrpns > 0) { /* * Now choose one of these unwanted rectangle * placements, and eliminate it. */ int index = random_upto(rs, nrpns); int k, m; struct rpn rpn = rpns[index]; struct rect r; sfree(rpns); i = rpn.rect; j = rpn.placement; k = rpn.number; r = rectpositions[i].rects[j]; /* * We rule out placement j of rectangle i by means * of removing all of rectangle k's candidate * number placements which do _not_ overlap it. * This will ensure that it is eliminated during * the next pass of rectangle-focused deduction. */ #ifdef SOLVER_DIAGNOSTICS printf("ensuring number for rect %d is within" " rect %d's placement at %d,%d w=%d h=%d\n", k, i, r.x, r.y, r.w, r.h); #endif for (m = 0; m < numbers[k].npoints; m++) { int x = numbers[k].points[m].x; int y = numbers[k].points[m].y; if (x < r.x || x >= r.x + r.w || y < r.y || y >= r.y + r.h) { #ifdef SOLVER_DIAGNOSTICS printf("eliminating number for rect %d at %d,%d\n", k, x, y); #endif remove_number_placement(w, h, &numbers[k], m, rectbyplace); m--; /* don't skip the next one */ done_something = true; } } } } if (!done_something) { #ifdef SOLVER_DIAGNOSTICS printf("terminating deduction loop\n"); #endif break; } } cleanup: ret = 1; for (i = 0; i < nrects; i++) { #ifdef SOLVER_DIAGNOSTICS printf("rect %d has %d possible placements\n", i, rectpositions[i].n); #endif if (rectpositions[i].n <= 0) { ret = 0; /* inconsistency */ } else if (rectpositions[i].n > 1) { ret = 2; /* remaining uncertainty */ } else if (hedge && vedge) { /* * Place the rectangle in its only possible position. */ int x, y; struct rect *r = &rectpositions[i].rects[0]; for (y = 0; y < r->h; y++) { if (r->x > 0) vedge[(r->y+y) * w + r->x] = 1; if (r->x+r->w < w) vedge[(r->y+y) * w + r->x+r->w] = 1; } for (x = 0; x < r->w; x++) { if (r->y > 0) hedge[r->y * w + r->x+x] = 1; if (r->y+r->h < h) hedge[(r->y+r->h) * w + r->x+x] = 1; } } } /* * Free up all allocated storage. */ sfree(workspace); sfree(rectbyplace); sfree(overlaps); for (i = 0; i < nrects; i++) sfree(rectpositions[i].rects); sfree(rectpositions); return ret; } /* ---------------------------------------------------------------------- * Grid generation code. */ /* * This function does one of two things. If passed r==NULL, it * counts the number of possible rectangles which cover the given * square, and returns it in *n. If passed r!=NULL then it _reads_ * *n to find an index, counts the possible rectangles until it * reaches the nth, and writes it into r. * * `scratch' is expected to point to an array of 2 * params->w * ints, used internally as scratch space (and passed in like this * to avoid re-allocating and re-freeing it every time round a * tight loop). */ static void enum_rects(game_params *params, int *grid, struct rect *r, int *n, int sx, int sy, int *scratch) { int rw, rh, mw, mh; int x, y, dx, dy; int maxarea, realmaxarea; int index = 0; int *top, *bottom; /* * Maximum rectangle area is 1/6 of total grid size, unless * this means we can't place any rectangles at all in which * case we set it to 2 at minimum. */ maxarea = params->w * params->h / 6; if (maxarea < 2) maxarea = 2; /* * Scan the grid to find the limits of the region within which * any rectangle containing this point must fall. This will * save us trawling the inside of every rectangle later on to * see if it contains any used squares. */ top = scratch; bottom = scratch + params->w; for (dy = -1; dy <= +1; dy += 2) { int *array = (dy == -1 ? top : bottom); for (dx = -1; dx <= +1; dx += 2) { for (x = sx; x >= 0 && x < params->w; x += dx) { array[x] = -2 * params->h * dy; for (y = sy; y >= 0 && y < params->h; y += dy) { if (index(params, grid, x, y) == -1 && (x == sx || dy*y <= dy*array[x-dx])) array[x] = y; else break; } } } } /* * Now scan again to work out the largest rectangles we can fit * in the grid, so that we can terminate the following loops * early once we get down to not having much space left in the * grid. */ realmaxarea = 0; for (x = 0; x < params->w; x++) { int x2; rh = bottom[x] - top[x] + 1; if (rh <= 0) continue; /* no rectangles can start here */ dx = (x > sx ? -1 : +1); for (x2 = x; x2 >= 0 && x2 < params->w; x2 += dx) if (bottom[x2] < bottom[x] || top[x2] > top[x]) break; rw = abs(x2 - x); if (realmaxarea < rw * rh) realmaxarea = rw * rh; } if (realmaxarea > maxarea) realmaxarea = maxarea; /* * Rectangles which go right the way across the grid are * boring, although they can't be helped in the case of * extremely small grids. (Also they might be generated later * on by the singleton-removal process; we can't help that.) */ mw = params->w - 1; if (mw < 3) mw++; mh = params->h - 1; if (mh < 3) mh++; for (rw = 1; rw <= mw; rw++) for (rh = 1; rh <= mh; rh++) { if (rw * rh > realmaxarea) continue; if (rw * rh == 1) continue; for (x = max(sx - rw + 1, 0); x <= min(sx, params->w - rw); x++) for (y = max(sy - rh + 1, 0); y <= min(sy, params->h - rh); y++) { /* * Check this rectangle against the region we * defined above. */ if (top[x] <= y && top[x+rw-1] <= y && bottom[x] >= y+rh-1 && bottom[x+rw-1] >= y+rh-1) { if (r && index == *n) { r->x = x; r->y = y; r->w = rw; r->h = rh; return; } index++; } } } assert(!r); *n = index; } static void place_rect(game_params *params, int *grid, struct rect r) { int idx = INDEX(params, r.x, r.y); int x, y; for (x = r.x; x < r.x+r.w; x++) for (y = r.y; y < r.y+r.h; y++) { index(params, grid, x, y) = idx; } #ifdef GENERATION_DIAGNOSTICS printf(" placing rectangle at (%d,%d) size %d x %d\n", r.x, r.y, r.w, r.h); #endif } static struct rect find_rect(game_params *params, int *grid, int x, int y) { int idx, w, h; struct rect r; /* * Find the top left of the rectangle. */ idx = index(params, grid, x, y); if (idx < 0) { r.x = x; r.y = y; r.w = r.h = 1; return r; /* 1x1 singleton here */ } y = idx / params->w; x = idx % params->w; /* * Find the width and height of the rectangle. */ for (w = 1; (x+w < params->w && index(params,grid,x+w,y)==idx); w++); for (h = 1; (y+h < params->h && index(params,grid,x,y+h)==idx); h++); r.x = x; r.y = y; r.w = w; r.h = h; return r; } #ifdef GENERATION_DIAGNOSTICS static void display_grid(game_params *params, int *grid, int *numbers, int all) { unsigned char *egrid = snewn((params->w*2+3) * (params->h*2+3), unsigned char); int x, y; int r = (params->w*2+3); memset(egrid, 0, (params->w*2+3) * (params->h*2+3)); for (x = 0; x < params->w; x++) for (y = 0; y < params->h; y++) { int i = index(params, grid, x, y); if (x == 0 || index(params, grid, x-1, y) != i) egrid[(2*y+2) * r + (2*x+1)] = 1; if (x == params->w-1 || index(params, grid, x+1, y) != i) egrid[(2*y+2) * r + (2*x+3)] = 1; if (y == 0 || index(params, grid, x, y-1) != i) egrid[(2*y+1) * r + (2*x+2)] = 1; if (y == params->h-1 || index(params, grid, x, y+1) != i) egrid[(2*y+3) * r + (2*x+2)] = 1; } for (y = 1; y < 2*params->h+2; y++) { for (x = 1; x < 2*params->w+2; x++) { if (!((y|x)&1)) { int k = numbers ? index(params, numbers, x/2-1, y/2-1) : 0; if (k || (all && numbers)) printf("%2d", k); else printf(" "); } else if (!((y&x)&1)) { int v = egrid[y*r+x]; if ((y&1) && v) v = '-'; if ((x&1) && v) v = '|'; if (!v) v = ' '; putchar(v); if (!(x&1)) putchar(v); } else { int c, d = 0; if (egrid[y*r+(x+1)]) d |= 1; if (egrid[(y-1)*r+x]) d |= 2; if (egrid[y*r+(x-1)]) d |= 4; if (egrid[(y+1)*r+x]) d |= 8; c = " ??+?-++?+|+++++"[d]; putchar(c); if (!(x&1)) putchar(c); } } putchar('\n'); } sfree(egrid); } #endif static char *new_game_desc(const game_params *params_in, random_state *rs, char **aux, bool interactive) { game_params params_copy = *params_in; /* structure copy */ game_params *params = ¶ms_copy; int *grid, *numbers = NULL; int x, y, y2, y2last, yx, run, i, nsquares; char *desc, *p; int *enum_rects_scratch; game_params params2real, *params2 = ¶ms2real; while (1) { /* * Set up the smaller width and height which we will use to * generate the base grid. */ params2->w = (int)((float)params->w / (1.0F + params->expandfactor)); if (params2->w < 2 && params->w >= 2) params2->w = 2; params2->h = (int)((float)params->h / (1.0F + params->expandfactor)); if (params2->h < 2 && params->h >= 2) params2->h = 2; grid = snewn(params2->w * params2->h, int); enum_rects_scratch = snewn(2 * params2->w, int); nsquares = 0; for (y = 0; y < params2->h; y++) for (x = 0; x < params2->w; x++) { index(params2, grid, x, y) = -1; nsquares++; } /* * Place rectangles until we can't any more. We do this by * finding a square we haven't yet covered, and randomly * choosing a rectangle to cover it. */ while (nsquares > 0) { int square = random_upto(rs, nsquares); int n; struct rect r; x = params2->w; y = params2->h; for (y = 0; y < params2->h; y++) { for (x = 0; x < params2->w; x++) { if (index(params2, grid, x, y) == -1 && square-- == 0) break; } if (x < params2->w) break; } assert(x < params2->w && y < params2->h); /* * Now see how many rectangles fit around this one. */ enum_rects(params2, grid, NULL, &n, x, y, enum_rects_scratch); if (!n) { /* * There are no possible rectangles covering this * square, meaning it must be a singleton. Mark it * -2 so we know not to keep trying. */ index(params2, grid, x, y) = -2; nsquares--; } else { /* * Pick one at random. */ n = random_upto(rs, n); enum_rects(params2, grid, &r, &n, x, y, enum_rects_scratch); /* * Place it. */ place_rect(params2, grid, r); nsquares -= r.w * r.h; } } sfree(enum_rects_scratch); /* * Deal with singleton spaces remaining in the grid, one by * one. * * We do this by making a local change to the layout. There are * several possibilities: * * +-----+-----+ Here, we can remove the singleton by * | | | extending the 1x2 rectangle below it * +--+--+-----+ into a 1x3. * | | | | * | +--+ | * | | | | * | | | | * | | | | * +--+--+-----+ * * +--+--+--+ Here, that trick doesn't work: there's no * | | | 1 x n rectangle with the singleton at one * | | | end. Instead, we extend a 1 x n rectangle * | | | _out_ from the singleton, shaving a layer * +--+--+ | off the end of another rectangle. So if we * | | | | extended up, we'd make our singleton part * | +--+--+ of a 1x3 and generate a 1x2 where the 2x2 * | | | used to be; or we could extend right into * +--+-----+ a 2x1, turning the 1x3 into a 1x2. * * +-----+--+ Here, we can't even do _that_, since any * | | | direction we choose to extend the singleton * +--+--+ | will produce a new singleton as a result of * | | | | truncating one of the size-2 rectangles. * | +--+--+ Fortunately, this case can _only_ occur when * | | | a singleton is surrounded by four size-2s * +--+-----+ in this fashion; so instead we can simply * replace the whole section with a single 3x3. */ for (x = 0; x < params2->w; x++) { for (y = 0; y < params2->h; y++) { if (index(params2, grid, x, y) < 0) { int dirs[4], ndirs; #ifdef GENERATION_DIAGNOSTICS display_grid(params2, grid, NULL, false); printf("singleton at %d,%d\n", x, y); #endif /* * Check in which directions we can feasibly extend * the singleton. We can extend in a particular * direction iff either: * * - the rectangle on that side of the singleton * is not 2x1, and we are at one end of the edge * of it we are touching * * - it is 2x1 but we are on its short side. * * FIXME: we could plausibly choose between these * based on the sizes of the rectangles they would * create? */ ndirs = 0; if (x < params2->w-1) { struct rect r = find_rect(params2, grid, x+1, y); if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1) dirs[ndirs++] = 1; /* right */ } if (y > 0) { struct rect r = find_rect(params2, grid, x, y-1); if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1) dirs[ndirs++] = 2; /* up */ } if (x > 0) { struct rect r = find_rect(params2, grid, x-1, y); if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1) dirs[ndirs++] = 4; /* left */ } if (y < params2->h-1) { struct rect r = find_rect(params2, grid, x, y+1); if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1) dirs[ndirs++] = 8; /* down */ } if (ndirs > 0) { int which, dir; struct rect r1, r2; memset(&r1, 0, sizeof(struct rect)); memset(&r2, 0, sizeof(struct rect)); which = random_upto(rs, ndirs); dir = dirs[which]; switch (dir) { case 1: /* right */ assert(x < params2->w+1); #ifdef GENERATION_DIAGNOSTICS printf("extending right\n"); #endif r1 = find_rect(params2, grid, x+1, y); r2.x = x; r2.y = y; r2.w = 1 + r1.w; r2.h = 1; if (r1.y == y) r1.y++; r1.h--; break; case 2: /* up */ assert(y > 0); #ifdef GENERATION_DIAGNOSTICS printf("extending up\n"); #endif r1 = find_rect(params2, grid, x, y-1); r2.x = x; r2.y = r1.y; r2.w = 1; r2.h = 1 + r1.h; if (r1.x == x) r1.x++; r1.w--; break; case 4: /* left */ assert(x > 0); #ifdef GENERATION_DIAGNOSTICS printf("extending left\n"); #endif r1 = find_rect(params2, grid, x-1, y); r2.x = r1.x; r2.y = y; r2.w = 1 + r1.w; r2.h = 1; if (r1.y == y) r1.y++; r1.h--; break; case 8: /* down */ assert(y < params2->h+1); #ifdef GENERATION_DIAGNOSTICS printf("extending down\n"); #endif r1 = find_rect(params2, grid, x, y+1); r2.x = x; r2.y = y; r2.w = 1; r2.h = 1 + r1.h; if (r1.x == x) r1.x++; r1.w--; break; default: /* should never happen */ assert(!"invalid direction"); } if (r1.h > 0 && r1.w > 0) place_rect(params2, grid, r1); place_rect(params2, grid, r2); } else { #ifndef NDEBUG /* * Sanity-check that there really is a 3x3 * rectangle surrounding this singleton and it * contains absolutely everything we could * possibly need. */ { int xx, yy; assert(x > 0 && x < params2->w-1); assert(y > 0 && y < params2->h-1); for (xx = x-1; xx <= x+1; xx++) for (yy = y-1; yy <= y+1; yy++) { struct rect r = find_rect(params2,grid,xx,yy); assert(r.x >= x-1); assert(r.y >= y-1); assert(r.x+r.w-1 <= x+1); assert(r.y+r.h-1 <= y+1); } } #endif #ifdef GENERATION_DIAGNOSTICS printf("need the 3x3 trick\n"); #endif /* * FIXME: If the maximum rectangle area for * this grid is less than 9, we ought to * subdivide the 3x3 in some fashion. There are * five other possibilities: * * - a 6 and a 3 * - a 4, a 3 and a 2 * - three 3s * - a 3 and three 2s (two different arrangements). */ { struct rect r; r.x = x-1; r.y = y-1; r.w = r.h = 3; place_rect(params2, grid, r); } } } } } /* * We have now constructed a grid of the size specified in * params2. Now we extend it into a grid of the size specified * in params. We do this in two passes: we extend it vertically * until it's the right height, then we transpose it, then * extend it vertically again (getting it effectively the right * width), then finally transpose again. */ for (i = 0; i < 2; i++) { int *grid2, *expand, *where; game_params params3real, *params3 = ¶ms3real; #ifdef GENERATION_DIAGNOSTICS printf("before expansion:\n"); display_grid(params2, grid, NULL, true); #endif /* * Set up the new grid. */ grid2 = snewn(params2->w * params->h, int); expand = snewn(params2->h-1, int); where = snewn(params2->w, int); params3->w = params2->w; params3->h = params->h; /* * Decide which horizontal edges are going to get expanded, * and by how much. */ for (y = 0; y < params2->h-1; y++) expand[y] = 0; for (y = params2->h; y < params->h; y++) { x = random_upto(rs, params2->h-1); expand[x]++; } #ifdef GENERATION_DIAGNOSTICS printf("expand[] = {"); for (y = 0; y < params2->h-1; y++) printf(" %d", expand[y]); printf(" }\n"); #endif /* * Perform the expansion. The way this works is that we * alternately: * * - copy a row from grid into grid2 * * - invent some number of additional rows in grid2 where * there was previously only a horizontal line between * rows in grid, and make random decisions about where * among these to place each rectangle edge that ran * along this line. */ for (y = y2 = y2last = 0; y < params2->h; y++) { /* * Copy a single line from row y of grid into row y2 of * grid2. */ for (x = 0; x < params2->w; x++) { int val = index(params2, grid, x, y); if (val / params2->w == y && /* rect starts on this line */ (y2 == 0 || /* we're at the very top, or... */ index(params3, grid2, x, y2-1) / params3->w < y2last /* this rect isn't already started */)) index(params3, grid2, x, y2) = INDEX(params3, val % params2->w, y2); else index(params3, grid2, x, y2) = index(params3, grid2, x, y2-1); } /* * If that was the last line, terminate the loop early. */ if (++y2 == params3->h) break; y2last = y2; /* * Invent some number of additional lines. First walk * along this line working out where to put all the * edges that coincide with it. */ yx = -1; for (x = 0; x < params2->w; x++) { if (index(params2, grid, x, y) != index(params2, grid, x, y+1)) { /* * This is a horizontal edge, so it needs * placing. */ if (x == 0 || (index(params2, grid, x-1, y) != index(params2, grid, x, y) && index(params2, grid, x-1, y+1) != index(params2, grid, x, y+1))) { /* * Here we have the chance to make a new * decision. */ yx = random_upto(rs, expand[y]+1); } else { /* * Here we just reuse the previous value of * yx. */ } } else yx = -1; where[x] = yx; } for (yx = 0; yx < expand[y]; yx++) { /* * Invent a single row. For each square in the row, * we copy the grid entry from the square above it, * unless we're starting the new rectangle here. */ for (x = 0; x < params2->w; x++) { if (yx == where[x]) { int val = index(params2, grid, x, y+1); val %= params2->w; val = INDEX(params3, val, y2); index(params3, grid2, x, y2) = val; } else index(params3, grid2, x, y2) = index(params3, grid2, x, y2-1); } y2++; } } sfree(expand); sfree(where); #ifdef GENERATION_DIAGNOSTICS printf("after expansion:\n"); display_grid(params3, grid2, NULL, true); #endif /* * Transpose. */ params2->w = params3->h; params2->h = params3->w; sfree(grid); grid = snewn(params2->w * params2->h, int); for (x = 0; x < params2->w; x++) for (y = 0; y < params2->h; y++) { int idx1 = INDEX(params2, x, y); int idx2 = INDEX(params3, y, x); int tmp; tmp = grid2[idx2]; tmp = (tmp % params3->w) * params2->w + (tmp / params3->w); grid[idx1] = tmp; } sfree(grid2); { int tmp; tmp = params->w; params->w = params->h; params->h = tmp; } #ifdef GENERATION_DIAGNOSTICS printf("after transposition:\n"); display_grid(params2, grid, NULL, true); #endif } /* * Run the solver to narrow down the possible number * placements. */ { struct numberdata *nd; int nnumbers, i, ret; /* Count the rectangles. */ nnumbers = 0; for (y = 0; y < params->h; y++) { for (x = 0; x < params->w; x++) { int idx = INDEX(params, x, y); if (index(params, grid, x, y) == idx) nnumbers++; } } nd = snewn(nnumbers, struct numberdata); /* Now set up each number's candidate position list. */ i = 0; for (y = 0; y < params->h; y++) { for (x = 0; x < params->w; x++) { int idx = INDEX(params, x, y); if (index(params, grid, x, y) == idx) { struct rect r = find_rect(params, grid, x, y); int j, k, m; nd[i].area = r.w * r.h; nd[i].npoints = nd[i].area; nd[i].points = snewn(nd[i].npoints, struct point); m = 0; for (j = 0; j < r.h; j++) for (k = 0; k < r.w; k++) { nd[i].points[m].x = k + r.x; nd[i].points[m].y = j + r.y; m++; } assert(m == nd[i].npoints); i++; } } } if (params->unique) ret = rect_solver(params->w, params->h, nnumbers, nd, NULL, NULL, rs); else ret = 1; /* allow any number placement at all */ if (ret == 1) { /* * Now place the numbers according to the solver's * recommendations. */ numbers = snewn(params->w * params->h, int); for (y = 0; y < params->h; y++) for (x = 0; x < params->w; x++) { index(params, numbers, x, y) = 0; } for (i = 0; i < nnumbers; i++) { int idx = random_upto(rs, nd[i].npoints); int x = nd[i].points[idx].x; int y = nd[i].points[idx].y; index(params,numbers,x,y) = nd[i].area; } } /* * Clean up. */ for (i = 0; i < nnumbers; i++) sfree(nd[i].points); sfree(nd); /* * If we've succeeded, then terminate the loop. */ if (ret == 1) break; } /* * Give up and go round again. */ sfree(grid); } /* * Store the solution in aux. */ { char *ai; int len; len = 2 + (params->w-1)*params->h + (params->h-1)*params->w; ai = snewn(len, char); ai[0] = 'S'; p = ai+1; for (y = 0; y < params->h; y++) for (x = 1; x < params->w; x++) *p++ = (index(params, grid, x, y) != index(params, grid, x-1, y) ? '1' : '0'); for (y = 1; y < params->h; y++) for (x = 0; x < params->w; x++) *p++ = (index(params, grid, x, y) != index(params, grid, x, y-1) ? '1' : '0'); assert(p - ai == len-1); *p = '\0'; *aux = ai; } #ifdef GENERATION_DIAGNOSTICS display_grid(params, grid, numbers, false); #endif desc = snewn(11 * params->w * params->h, char); p = desc; run = 0; for (i = 0; i <= params->w * params->h; i++) { int n = (i < params->w * params->h ? numbers[i] : -1); if (!n) run++; else { if (run) { while (run > 0) { int c = 'a' - 1 + run; if (run > 26) c = 'z'; *p++ = c; run -= c - ('a' - 1); } } else { /* * If there's a number in the very top left or * bottom right, there's no point putting an * unnecessary _ before or after it. */ if (p > desc && n > 0) *p++ = '_'; } if (n > 0) p += sprintf(p, "%d", n); run = 0; } } *p = '\0'; sfree(grid); sfree(numbers); return desc; } static const char *validate_desc(const game_params *params, const char *desc) { int area = params->w * params->h; int squares = 0; while (*desc) { int n = *desc++; if (n >= 'a' && n <= 'z') { squares += n - 'a' + 1; } else if (n == '_') { /* do nothing */; } else if (n > '0' && n <= '9') { squares++; while (*desc >= '0' && *desc <= '9') desc++; } else return "Invalid character in game description"; } if (squares < area) return "Not enough data to fill grid"; if (squares > area) return "Too much data to fit in grid"; return NULL; } static unsigned char *get_correct(game_state *state) { unsigned char *ret; int x, y; ret = snewn(state->w * state->h, unsigned char); memset(ret, 0xFF, state->w * state->h); for (x = 0; x < state->w; x++) for (y = 0; y < state->h; y++) if (index(state,ret,x,y) == 0xFF) { int rw, rh; int xx, yy; int num, area; bool valid; /* * Find a rectangle starting at this point. */ rw = 1; while (x+rw < state->w && !vedge(state,x+rw,y)) rw++; rh = 1; while (y+rh < state->h && !hedge(state,x,y+rh)) rh++; /* * We know what the dimensions of the rectangle * should be if it's there at all. Find out if we * really have a valid rectangle. */ valid = true; /* Check the horizontal edges. */ for (xx = x; xx < x+rw; xx++) { for (yy = y; yy <= y+rh; yy++) { int e = !HRANGE(state,xx,yy) || hedge(state,xx,yy); int ec = (yy == y || yy == y+rh); if (e != ec) valid = false; } } /* Check the vertical edges. */ for (yy = y; yy < y+rh; yy++) { for (xx = x; xx <= x+rw; xx++) { int e = !VRANGE(state,xx,yy) || vedge(state,xx,yy); int ec = (xx == x || xx == x+rw); if (e != ec) valid = false; } } /* * If this is not a valid rectangle with no other * edges inside it, we just mark this square as not * complete and proceed to the next square. */ if (!valid) { index(state, ret, x, y) = 0; continue; } /* * We have a rectangle. Now see what its area is, * and how many numbers are in it. */ num = 0; area = 0; for (xx = x; xx < x+rw; xx++) { for (yy = y; yy < y+rh; yy++) { area++; if (grid(state,xx,yy)) { if (num > 0) valid = false; /* two numbers */ num = grid(state,xx,yy); } } } if (num != area) valid = false; /* * Now fill in the whole rectangle based on the * value of `valid'. */ for (xx = x; xx < x+rw; xx++) { for (yy = y; yy < y+rh; yy++) { index(state, ret, xx, yy) = valid; } } } return ret; } static game_state *new_game(midend *me, const game_params *params, const char *desc) { game_state *state = snew(game_state); int x, y, i, area; state->w = params->w; state->h = params->h; area = state->w * state->h; state->grid = snewn(area, int); state->vedge = snewn(area, unsigned char); state->hedge = snewn(area, unsigned char); state->completed = false; state->cheated = false; i = 0; while (*desc) { int n = *desc++; if (n >= 'a' && n <= 'z') { int run = n - 'a' + 1; assert(i + run <= area); while (run-- > 0) state->grid[i++] = 0; } else if (n == '_') { /* do nothing */; } else if (n > '0' && n <= '9') { assert(i < area); state->grid[i++] = atoi(desc-1); while (*desc >= '0' && *desc <= '9') desc++; } else { assert(!"We can't get here"); } } assert(i == area); for (y = 0; y < state->h; y++) for (x = 0; x < state->w; x++) vedge(state,x,y) = hedge(state,x,y) = 0; state->correct = get_correct(state); return state; } static game_state *dup_game(const game_state *state) { game_state *ret = snew(game_state); ret->w = state->w; ret->h = state->h; ret->vedge = snewn(state->w * state->h, unsigned char); ret->hedge = snewn(state->w * state->h, unsigned char); ret->grid = snewn(state->w * state->h, int); ret->correct = snewn(ret->w * ret->h, unsigned char); ret->completed = state->completed; ret->cheated = state->cheated; memcpy(ret->grid, state->grid, state->w * state->h * sizeof(int)); memcpy(ret->vedge, state->vedge, state->w*state->h*sizeof(unsigned char)); memcpy(ret->hedge, state->hedge, state->w*state->h*sizeof(unsigned char)); memcpy(ret->correct, state->correct, state->w*state->h*sizeof(unsigned char)); return ret; } static void free_game(game_state *state) { sfree(state->grid); sfree(state->vedge); sfree(state->hedge); sfree(state->correct); sfree(state); } static char *solve_game(const game_state *state, const game_state *currstate, const char *ai, const char **error) { unsigned char *vedge, *hedge; int x, y, len; char *ret, *p; int i, j, n; struct numberdata *nd; if (ai) return dupstr(ai); /* * Attempt the in-built solver. */ /* Set up each number's (very short) candidate position list. */ for (i = n = 0; i < state->h * state->w; i++) if (state->grid[i]) n++; nd = snewn(n, struct numberdata); for (i = j = 0; i < state->h * state->w; i++) if (state->grid[i]) { nd[j].area = state->grid[i]; nd[j].npoints = 1; nd[j].points = snewn(1, struct point); nd[j].points[0].x = i % state->w; nd[j].points[0].y = i / state->w; j++; } assert(j == n); vedge = snewn(state->w * state->h, unsigned char); hedge = snewn(state->w * state->h, unsigned char); memset(vedge, 0, state->w * state->h); memset(hedge, 0, state->w * state->h); rect_solver(state->w, state->h, n, nd, hedge, vedge, NULL); /* * Clean up. */ for (i = 0; i < n; i++) sfree(nd[i].points); sfree(nd); len = 2 + (state->w-1)*state->h + (state->h-1)*state->w; ret = snewn(len, char); p = ret; *p++ = 'S'; for (y = 0; y < state->h; y++) for (x = 1; x < state->w; x++) *p++ = vedge[y*state->w+x] ? '1' : '0'; for (y = 1; y < state->h; y++) for (x = 0; x < state->w; x++) *p++ = hedge[y*state->w+x] ? '1' : '0'; *p++ = '\0'; assert(p - ret == len); sfree(vedge); sfree(hedge); return ret; } static bool game_can_format_as_text_now(const game_params *params) { return true; } static char *game_text_format(const game_state *state) { char *ret, *p, buf[80]; int i, x, y, col, maxlen; /* * First determine the number of spaces required to display a * number. We'll use at least two, because one looks a bit * silly. */ col = 2; for (i = 0; i < state->w * state->h; i++) { x = sprintf(buf, "%d", state->grid[i]); if (col < x) col = x; } /* * Now we know the exact total size of the grid we're going to * produce: it's got 2*h+1 rows, each containing w lots of col, * w+1 boundary characters and a trailing newline. */ maxlen = (2*state->h+1) * (state->w * (col+1) + 2); ret = snewn(maxlen+1, char); p = ret; for (y = 0; y <= 2*state->h; y++) { for (x = 0; x <= 2*state->w; x++) { if (x & y & 1) { /* * Display a number. */ int v = grid(state, x/2, y/2); if (v) sprintf(buf, "%*d", col, v); else sprintf(buf, "%*s", col, ""); memcpy(p, buf, col); p += col; } else if (x & 1) { /* * Display a horizontal edge or nothing. */ int h = (y==0 || y==2*state->h ? 1 : HRANGE(state, x/2, y/2) && hedge(state, x/2, y/2)); int i; if (h) h = '-'; else h = ' '; for (i = 0; i < col; i++) *p++ = h; } else if (y & 1) { /* * Display a vertical edge or nothing. */ int v = (x==0 || x==2*state->w ? 1 : VRANGE(state, x/2, y/2) && vedge(state, x/2, y/2)); if (v) *p++ = '|'; else *p++ = ' '; } else { /* * Display a corner, or a vertical edge, or a * horizontal edge, or nothing. */ int hl = (y==0 || y==2*state->h ? 1 : HRANGE(state, (x-1)/2, y/2) && hedge(state, (x-1)/2, y/2)); int hr = (y==0 || y==2*state->h ? 1 : HRANGE(state, (x+1)/2, y/2) && hedge(state, (x+1)/2, y/2)); int vu = (x==0 || x==2*state->w ? 1 : VRANGE(state, x/2, (y-1)/2) && vedge(state, x/2, (y-1)/2)); int vd = (x==0 || x==2*state->w ? 1 : VRANGE(state, x/2, (y+1)/2) && vedge(state, x/2, (y+1)/2)); if (!hl && !hr && !vu && !vd) *p++ = ' '; else if (hl && hr && !vu && !vd) *p++ = '-'; else if (!hl && !hr && vu && vd) *p++ = '|'; else *p++ = '+'; } } *p++ = '\n'; } assert(p - ret == maxlen); *p = '\0'; return ret; } struct game_ui { /* * These coordinates are 2 times the obvious grid coordinates. * Hence, the top left of the grid is (0,0), the grid point to * the right of that is (2,0), the one _below that_ is (2,2) * and so on. This is so that we can specify a drag start point * on an edge (one odd coordinate) or in the middle of a square * (two odd coordinates) rather than always at a corner. * * -1,-1 means no drag is in progress. */ int drag_start_x; int drag_start_y; int drag_end_x; int drag_end_y; /* * This flag is set as soon as a dragging action moves the * mouse pointer away from its starting point, so that even if * the pointer _returns_ to its starting point the action is * treated as a small drag rather than a click. */ bool dragged; /* This flag is set if we're doing an erase operation (i.e. * removing edges in the centre of the rectangle without altering * the outlines). */ bool erasing; /* * These are the co-ordinates of the top-left and bottom-right squares * in the drag box, respectively, or -1 otherwise. */ int x1; int y1; int x2; int y2; /* * These are the coordinates of a cursor, whether it's visible, and * whether it was used to start a drag. */ int cur_x, cur_y; bool cur_visible, cur_dragging; }; static void reset_ui(game_ui *ui) { ui->drag_start_x = -1; ui->drag_start_y = -1; ui->drag_end_x = -1; ui->drag_end_y = -1; ui->x1 = -1; ui->y1 = -1; ui->x2 = -1; ui->y2 = -1; ui->dragged = false; } static game_ui *new_ui(const game_state *state) { game_ui *ui = snew(game_ui); reset_ui(ui); ui->erasing = false; ui->cur_x = ui->cur_y = 0; ui->cur_visible = false; ui->cur_dragging = false; return ui; } static void free_ui(game_ui *ui) { sfree(ui); } static char *encode_ui(const game_ui *ui) { return NULL; } static void decode_ui(game_ui *ui, const char *encoding) { } static void coord_round(float x, float y, int *xr, int *yr) { float xs, ys, xv, yv, dx, dy, dist; /* * Find the nearest square-centre. */ xs = (float)floor(x) + 0.5F; ys = (float)floor(y) + 0.5F; /* * And find the nearest grid vertex. */ xv = (float)floor(x + 0.5F); yv = (float)floor(y + 0.5F); /* * We allocate clicks in parts of the grid square to either * corners, edges or square centres, as follows: * * +--+--------+--+ * | | | | * +--+ +--+ * | `. ,' | * | +--+ | * | | | | * | +--+ | * | ,' `. | * +--+ +--+ * | | | | * +--+--------+--+ * * (Not to scale!) * * In other words: we measure the square distance (i.e. * max(dx,dy)) from the click to the nearest corner, and if * it's within CORNER_TOLERANCE then we return a corner click. * We measure the square distance from the click to the nearest * centre, and if that's within CENTRE_TOLERANCE we return a * centre click. Failing that, we find which of the two edge * centres is nearer to the click and return that edge. */ /* * Check for corner click. */ dx = (float)fabs(x - xv); dy = (float)fabs(y - yv); dist = (dx > dy ? dx : dy); if (dist < CORNER_TOLERANCE) { *xr = 2 * (int)xv; *yr = 2 * (int)yv; } else { /* * Check for centre click. */ dx = (float)fabs(x - xs); dy = (float)fabs(y - ys); dist = (dx > dy ? dx : dy); if (dist < CENTRE_TOLERANCE) { *xr = 1 + 2 * (int)xs; *yr = 1 + 2 * (int)ys; } else { /* * Failing both of those, see which edge we're closer to. * Conveniently, this is simply done by testing the relative * magnitude of dx and dy (which are currently distances from * the square centre). */ if (dx > dy) { /* Vertical edge: x-coord of corner, * y-coord of square centre. */ *xr = 2 * (int)xv; *yr = 1 + 2 * (int)floor(ys); } else { /* Horizontal edge: x-coord of square centre, * y-coord of corner. */ *xr = 1 + 2 * (int)floor(xs); *yr = 2 * (int)yv; } } } } /* * Returns true if it has made any change to the grid. */ static bool grid_draw_rect(const game_state *state, unsigned char *hedge, unsigned char *vedge, int c, bool really, bool outline, int x1, int y1, int x2, int y2) { int x, y; bool changed = false; /* * Draw horizontal edges of rectangles. */ for (x = x1; x < x2; x++) for (y = y1; y <= y2; y++) if (HRANGE(state,x,y)) { int val = index(state,hedge,x,y); if (y == y1 || y == y2) { if (!outline) continue; val = c; } else if (c == 1) val = 0; changed = changed || (index(state,hedge,x,y) != val); if (really) index(state,hedge,x,y) = val; } /* * Draw vertical edges of rectangles. */ for (y = y1; y < y2; y++) for (x = x1; x <= x2; x++) if (VRANGE(state,x,y)) { int val = index(state,vedge,x,y); if (x == x1 || x == x2) { if (!outline) continue; val = c; } else if (c == 1) val = 0; changed = changed || (index(state,vedge,x,y) != val); if (really) index(state,vedge,x,y) = val; } return changed; } static bool ui_draw_rect(const game_state *state, const game_ui *ui, unsigned char *hedge, unsigned char *vedge, int c, bool really, bool outline) { return grid_draw_rect(state, hedge, vedge, c, really, outline, ui->x1, ui->y1, ui->x2, ui->y2); } static void game_changed_state(game_ui *ui, const game_state *oldstate, const game_state *newstate) { } struct game_drawstate { bool started; int w, h, tilesize; unsigned long *visible; }; static const char *current_key_label(const game_ui *ui, const game_state *state, int button) { if (IS_CURSOR_SELECT(button) && ui->cur_visible && !(ui->drag_start_x >= 0 && !ui->cur_dragging)) { if (ui->cur_dragging) { if (!ui->dragged) return "Cancel"; if ((button == CURSOR_SELECT2) == ui->erasing) return "Done"; return "Cancel"; } return button == CURSOR_SELECT ? "Mark" : "Erase"; } return ""; } static char *interpret_move(const game_state *from, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { int xc, yc; bool startdrag = false, enddrag = false, active = false, erasing = false; char buf[80], *ret; button &= ~MOD_MASK; coord_round(FROMCOORD((float)x), FROMCOORD((float)y), &xc, &yc); if (button == LEFT_BUTTON || button == RIGHT_BUTTON) { if (ui->drag_start_x >= 0 && ui->cur_dragging) reset_ui(ui); /* cancel keyboard dragging */ startdrag = true; ui->cur_visible = ui->cur_dragging = false; active = true; erasing = (button == RIGHT_BUTTON); } else if (button == LEFT_RELEASE || button == RIGHT_RELEASE) { /* We assert we should have had a LEFT_BUTTON first. */ if (ui->cur_visible) { ui->cur_visible = false; active = true; } assert(!ui->cur_dragging); enddrag = true; erasing = (button == RIGHT_RELEASE); } else if (IS_CURSOR_MOVE(button)) { move_cursor(button, &ui->cur_x, &ui->cur_y, from->w, from->h, false); ui->cur_visible = true; active = true; if (!ui->cur_dragging) return UI_UPDATE; coord_round((float)ui->cur_x + 0.5F, (float)ui->cur_y + 0.5F, &xc, &yc); } else if (IS_CURSOR_SELECT(button)) { if (ui->drag_start_x >= 0 && !ui->cur_dragging) { /* * If a mouse drag is in progress, ignore attempts to * start a keyboard one. */ return NULL; } if (!ui->cur_visible) { assert(!ui->cur_dragging); ui->cur_visible = true; return UI_UPDATE; } coord_round((float)ui->cur_x + 0.5F, (float)ui->cur_y + 0.5F, &xc, &yc); erasing = (button == CURSOR_SELECT2); if (ui->cur_dragging) { ui->cur_dragging = false; enddrag = true; active = true; } else { ui->cur_dragging = true; startdrag = true; active = true; } } else if (button == '\b' || button == 27) { if (!ui->cur_dragging) { ui->cur_visible = false; } else { assert(ui->cur_visible); reset_ui(ui); /* cancel keyboard dragging */ ui->cur_dragging = false; } return UI_UPDATE; } else if (button != LEFT_DRAG && button != RIGHT_DRAG) { return NULL; } if (startdrag && xc >= 0 && xc <= 2*from->w && yc >= 0 && yc <= 2*from->h) { ui->drag_start_x = xc; ui->drag_start_y = yc; ui->drag_end_x = -1; ui->drag_end_y = -1; ui->dragged = false; ui->erasing = erasing; active = true; } if (ui->drag_start_x >= 0 && (xc != ui->drag_end_x || yc != ui->drag_end_y)) { int t; if (ui->drag_end_x != -1 && ui->drag_end_y != -1) ui->dragged = true; ui->drag_end_x = xc; ui->drag_end_y = yc; active = true; if (xc >= 0 && xc <= 2*from->w && yc >= 0 && yc <= 2*from->h) { ui->x1 = ui->drag_start_x; ui->x2 = ui->drag_end_x; if (ui->x2 < ui->x1) { t = ui->x1; ui->x1 = ui->x2; ui->x2 = t; } ui->y1 = ui->drag_start_y; ui->y2 = ui->drag_end_y; if (ui->y2 < ui->y1) { t = ui->y1; ui->y1 = ui->y2; ui->y2 = t; } ui->x1 = ui->x1 / 2; /* rounds down */ ui->x2 = (ui->x2+1) / 2; /* rounds up */ ui->y1 = ui->y1 / 2; /* rounds down */ ui->y2 = (ui->y2+1) / 2; /* rounds up */ } else { ui->x1 = -1; ui->y1 = -1; ui->x2 = -1; ui->y2 = -1; } } ret = NULL; if (enddrag && (ui->drag_start_x >= 0)) { if (xc >= 0 && xc <= 2*from->w && yc >= 0 && yc <= 2*from->h && erasing == ui->erasing) { if (ui->dragged) { if (ui_draw_rect(from, ui, from->hedge, from->vedge, 1, false, !ui->erasing)) { sprintf(buf, "%c%d,%d,%d,%d", (int)(ui->erasing ? 'E' : 'R'), ui->x1, ui->y1, ui->x2 - ui->x1, ui->y2 - ui->y1); ret = dupstr(buf); } } else { if ((xc & 1) && !(yc & 1) && HRANGE(from,xc/2,yc/2)) { sprintf(buf, "H%d,%d", xc/2, yc/2); ret = dupstr(buf); } if ((yc & 1) && !(xc & 1) && VRANGE(from,xc/2,yc/2)) { sprintf(buf, "V%d,%d", xc/2, yc/2); ret = dupstr(buf); } } } reset_ui(ui); active = true; } if (ret) return ret; /* a move has been made */ else if (active) return UI_UPDATE; else return NULL; } static game_state *execute_move(const game_state *from, const char *move) { game_state *ret; int x1, y1, x2, y2, mode; if (move[0] == 'S') { const char *p = move+1; int x, y; ret = dup_game(from); ret->cheated = true; for (y = 0; y < ret->h; y++) for (x = 1; x < ret->w; x++) { vedge(ret, x, y) = (*p == '1'); if (*p) p++; } for (y = 1; y < ret->h; y++) for (x = 0; x < ret->w; x++) { hedge(ret, x, y) = (*p == '1'); if (*p) p++; } sfree(ret->correct); ret->correct = get_correct(ret); return ret; } else if ((move[0] == 'R' || move[0] == 'E') && sscanf(move+1, "%d,%d,%d,%d", &x1, &y1, &x2, &y2) == 4 && x1 >= 0 && x2 >= 0 && x1+x2 <= from->w && y1 >= 0 && y2 >= 0 && y1+y2 <= from->h) { x2 += x1; y2 += y1; mode = move[0]; } else if ((move[0] == 'H' || move[0] == 'V') && sscanf(move+1, "%d,%d", &x1, &y1) == 2 && (move[0] == 'H' ? HRANGE(from, x1, y1) : VRANGE(from, x1, y1))) { mode = move[0]; } else return NULL; /* can't parse move string */ ret = dup_game(from); if (mode == 'R' || mode == 'E') { grid_draw_rect(ret, ret->hedge, ret->vedge, 1, true, mode == 'R', x1, y1, x2, y2); } else if (mode == 'H') { hedge(ret,x1,y1) = !hedge(ret,x1,y1); } else if (mode == 'V') { vedge(ret,x1,y1) = !vedge(ret,x1,y1); } sfree(ret->correct); ret->correct = get_correct(ret); /* * We've made a real change to the grid. Check to see * if the game has been completed. */ if (!ret->completed) { int x, y; bool ok; ok = true; for (x = 0; x < ret->w; x++) for (y = 0; y < ret->h; y++) if (!index(ret, ret->correct, x, y)) ok = false; if (ok) ret->completed = true; } return ret; } /* ---------------------------------------------------------------------- * Drawing routines. */ #define CORRECT (1L<<16) #define CURSOR (1L<<17) #define COLOUR(k) ( (k)==1 ? COL_LINE : (k)==2 ? COL_DRAG : COL_DRAGERASE ) #define MAX4(x,y,z,w) ( max(max(x,y),max(z,w)) ) static void game_compute_size(const game_params *params, int tilesize, int *x, int *y) { /* Ick: fake up `ds->tilesize' for macro expansion purposes */ struct { int tilesize; } ads, *ds = &ads; ads.tilesize = tilesize; *x = params->w * TILE_SIZE + 2*BORDER + 1; *y = params->h * TILE_SIZE + 2*BORDER + 1; } static void game_set_size(drawing *dr, game_drawstate *ds, const game_params *params, int tilesize) { ds->tilesize = tilesize; } static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); ret[COL_GRID * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0]; ret[COL_GRID * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_GRID * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2]; ret[COL_DRAG * 3 + 0] = 1.0F; ret[COL_DRAG * 3 + 1] = 0.0F; ret[COL_DRAG * 3 + 2] = 0.0F; ret[COL_DRAGERASE * 3 + 0] = 0.2F; ret[COL_DRAGERASE * 3 + 1] = 0.2F; ret[COL_DRAGERASE * 3 + 2] = 1.0F; ret[COL_CORRECT * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0]; ret[COL_CORRECT * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_CORRECT * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2]; ret[COL_LINE * 3 + 0] = 0.0F; ret[COL_LINE * 3 + 1] = 0.0F; ret[COL_LINE * 3 + 2] = 0.0F; ret[COL_TEXT * 3 + 0] = 0.0F; ret[COL_TEXT * 3 + 1] = 0.0F; ret[COL_TEXT * 3 + 2] = 0.0F; ret[COL_CURSOR * 3 + 0] = 1.0F; ret[COL_CURSOR * 3 + 1] = 0.5F; ret[COL_CURSOR * 3 + 2] = 0.5F; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); int i; ds->started = false; ds->w = state->w; ds->h = state->h; ds->visible = snewn(ds->w * ds->h, unsigned long); ds->tilesize = 0; /* not decided yet */ for (i = 0; i < ds->w * ds->h; i++) ds->visible[i] = 0xFFFF; return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->visible); sfree(ds); } static void draw_tile(drawing *dr, game_drawstate *ds, const game_state *state, int x, int y, unsigned char *hedge, unsigned char *vedge, unsigned char *corners, unsigned long bgflags) { int cx = COORD(x), cy = COORD(y); char str[80]; draw_rect(dr, cx, cy, TILE_SIZE+1, TILE_SIZE+1, COL_GRID); draw_rect(dr, cx+1, cy+1, TILE_SIZE-1, TILE_SIZE-1, (bgflags & CURSOR) ? COL_CURSOR : (bgflags & CORRECT) ? COL_CORRECT : COL_BACKGROUND); if (grid(state,x,y)) { sprintf(str, "%d", grid(state,x,y)); draw_text(dr, cx+TILE_SIZE/2, cy+TILE_SIZE/2, FONT_VARIABLE, TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, COL_TEXT, str); } /* * Draw edges. */ if (!HRANGE(state,x,y) || index(state,hedge,x,y)) draw_rect(dr, cx, cy, TILE_SIZE+1, 2, HRANGE(state,x,y) ? COLOUR(index(state,hedge,x,y)) : COL_LINE); if (!HRANGE(state,x,y+1) || index(state,hedge,x,y+1)) draw_rect(dr, cx, cy+TILE_SIZE-1, TILE_SIZE+1, 2, HRANGE(state,x,y+1) ? COLOUR(index(state,hedge,x,y+1)) : COL_LINE); if (!VRANGE(state,x,y) || index(state,vedge,x,y)) draw_rect(dr, cx, cy, 2, TILE_SIZE+1, VRANGE(state,x,y) ? COLOUR(index(state,vedge,x,y)) : COL_LINE); if (!VRANGE(state,x+1,y) || index(state,vedge,x+1,y)) draw_rect(dr, cx+TILE_SIZE-1, cy, 2, TILE_SIZE+1, VRANGE(state,x+1,y) ? COLOUR(index(state,vedge,x+1,y)) : COL_LINE); /* * Draw corners. */ if (index(state,corners,x,y)) draw_rect(dr, cx, cy, 2, 2, COLOUR(index(state,corners,x,y))); if (x+1 < state->w && index(state,corners,x+1,y)) draw_rect(dr, cx+TILE_SIZE-1, cy, 2, 2, COLOUR(index(state,corners,x+1,y))); if (y+1 < state->h && index(state,corners,x,y+1)) draw_rect(dr, cx, cy+TILE_SIZE-1, 2, 2, COLOUR(index(state,corners,x,y+1))); if (x+1 < state->w && y+1 < state->h && index(state,corners,x+1,y+1)) draw_rect(dr, cx+TILE_SIZE-1, cy+TILE_SIZE-1, 2, 2, COLOUR(index(state,corners,x+1,y+1))); draw_update(dr, cx, cy, TILE_SIZE+1, TILE_SIZE+1); } static void game_redraw(drawing *dr, game_drawstate *ds, const game_state *oldstate, const game_state *state, int dir, const game_ui *ui, float animtime, float flashtime) { int x, y; unsigned char *hedge, *vedge, *corners; if (ui->dragged) { hedge = snewn(state->w*state->h, unsigned char); vedge = snewn(state->w*state->h, unsigned char); memcpy(hedge, state->hedge, state->w*state->h); memcpy(vedge, state->vedge, state->w*state->h); ui_draw_rect(state, ui, hedge, vedge, ui->erasing ? 3 : 2, true, true); } else { hedge = state->hedge; vedge = state->vedge; } corners = snewn(state->w * state->h, unsigned char); memset(corners, 0, state->w * state->h); for (x = 0; x < state->w; x++) for (y = 0; y < state->h; y++) { if (x > 0) { int e = index(state, vedge, x, y); if (index(state,corners,x,y) < e) index(state,corners,x,y) = e; if (y+1 < state->h && index(state,corners,x,y+1) < e) index(state,corners,x,y+1) = e; } if (y > 0) { int e = index(state, hedge, x, y); if (index(state,corners,x,y) < e) index(state,corners,x,y) = e; if (x+1 < state->w && index(state,corners,x+1,y) < e) index(state,corners,x+1,y) = e; } } if (!ds->started) { draw_rect(dr, COORD(0)-1, COORD(0)-1, ds->w*TILE_SIZE+3, ds->h*TILE_SIZE+3, COL_LINE); ds->started = true; draw_update(dr, 0, 0, state->w * TILE_SIZE + 2*BORDER + 1, state->h * TILE_SIZE + 2*BORDER + 1); } for (x = 0; x < state->w; x++) for (y = 0; y < state->h; y++) { unsigned long c = 0; if (HRANGE(state,x,y)) c |= index(state,hedge,x,y); if (HRANGE(state,x,y+1)) c |= index(state,hedge,x,y+1) << 2; if (VRANGE(state,x,y)) c |= index(state,vedge,x,y) << 4; if (VRANGE(state,x+1,y)) c |= index(state,vedge,x+1,y) << 6; c |= index(state,corners,x,y) << 8; if (x+1 < state->w) c |= index(state,corners,x+1,y) << 10; if (y+1 < state->h) c |= index(state,corners,x,y+1) << 12; if (x+1 < state->w && y+1 < state->h) /* cast to prevent 2<<14 sign-extending on promotion to long */ c |= (unsigned long)index(state,corners,x+1,y+1) << 14; if (index(state, state->correct, x, y) && !flashtime) c |= CORRECT; if (ui->cur_visible && ui->cur_x == x && ui->cur_y == y) c |= CURSOR; if (index(ds,ds->visible,x,y) != c) { draw_tile(dr, ds, state, x, y, hedge, vedge, corners, (c & (CORRECT|CURSOR)) ); index(ds,ds->visible,x,y) = c; } } { char buf[256]; if (ui->dragged && ui->x1 >= 0 && ui->y1 >= 0 && ui->x2 >= 0 && ui->y2 >= 0) { sprintf(buf, "%dx%d ", ui->x2-ui->x1, ui->y2-ui->y1); } else { buf[0] = '\0'; } if (state->cheated) strcat(buf, "Auto-solved."); else if (state->completed) strcat(buf, "COMPLETED!"); status_bar(dr, buf); } if (hedge != state->hedge) { sfree(hedge); sfree(vedge); } sfree(corners); } static float game_anim_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { return 0.0F; } static float game_flash_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { if (!oldstate->completed && newstate->completed && !oldstate->cheated && !newstate->cheated) return FLASH_TIME; return 0.0F; } static void game_get_cursor_location(const game_ui *ui, const game_drawstate *ds, const game_state *state, const game_params *params, int *x, int *y, int *w, int *h) { if(ui->cur_visible) { *x = COORD(ui->cur_x); *y = COORD(ui->cur_y); *w = *h = TILE_SIZE; } } static int game_status(const game_state *state) { return state->completed ? +1 : 0; } static void game_print_size(const game_params *params, float *x, float *y) { int pw, ph; /* * I'll use 5mm squares by default. */ game_compute_size(params, 500, &pw, &ph); *x = pw / 100.0F; *y = ph / 100.0F; } static void game_print(drawing *dr, const game_state *state, int tilesize) { int w = state->w, h = state->h; int ink = print_mono_colour(dr, 0); int x, y; /* Ick: fake up `ds->tilesize' for macro expansion purposes */ game_drawstate ads, *ds = &ads; game_set_size(dr, ds, NULL, tilesize); /* * Border. */ print_line_width(dr, TILE_SIZE / 10); draw_rect_outline(dr, COORD(0), COORD(0), w*TILE_SIZE, h*TILE_SIZE, ink); /* * Grid. We have to make the grid lines particularly thin, * because users will be drawing lines _along_ them and we want * those lines to be visible. */ print_line_width(dr, TILE_SIZE / 256); for (x = 1; x < w; x++) draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), ink); for (y = 1; y < h; y++) draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), ink); /* * Solution. */ print_line_width(dr, TILE_SIZE / 10); for (y = 0; y <= h; y++) for (x = 0; x <= w; x++) { if (HRANGE(state,x,y) && hedge(state,x,y)) draw_line(dr, COORD(x), COORD(y), COORD(x+1), COORD(y), ink); if (VRANGE(state,x,y) && vedge(state,x,y)) draw_line(dr, COORD(x), COORD(y), COORD(x), COORD(y+1), ink); } /* * Clues. */ for (y = 0; y < h; y++) for (x = 0; x < w; x++) if (grid(state,x,y)) { char str[80]; sprintf(str, "%d", grid(state,x,y)); draw_text(dr, COORD(x)+TILE_SIZE/2, COORD(y)+TILE_SIZE/2, FONT_VARIABLE, TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, ink, str); } } #ifdef COMBINED #define thegame rect #endif const struct game thegame = { "Rectangles", "games.rectangles", "rect", default_params, game_fetch_preset, NULL, decode_params, encode_params, free_params, dup_params, true, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, true, solve_game, true, game_can_format_as_text_now, game_text_format, new_ui, free_ui, encode_ui, decode_ui, NULL, /* game_request_keys */ game_changed_state, current_key_label, interpret_move, execute_move, PREFERRED_TILE_SIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_get_cursor_location, game_status, true, false, game_print_size, game_print, true, /* wants_statusbar */ false, NULL, /* timing_state */ 0, /* flags */ }; /* vim: set shiftwidth=4 tabstop=8: */