ref: cc54c09413a08ea150fd8cc6706ed61ccc8ce47e
dir: /loopy.c/
/* * loopy.c: An implementation of the Nikoli game 'Loop the loop'. * (c) Mike Pinna, 2005, 2006 * * vim: set shiftwidth=4 :set textwidth=80: */ /* * TODO: * * - Setting very high recursion depth seems to cause memory munching: are we * recursing before checking completion, by any chance? * * - There's an interesting deductive technique which makes use of topology * rather than just graph theory. Each _square_ in the grid is either inside * or outside the loop; you can tell that two squares are on the same side * of the loop if they're separated by an x (or, more generally, by a path * crossing no LINE_UNKNOWNs and an even number of LINE_YESes), and on the * opposite side of the loop if they're separated by a line (or an odd * number of LINE_YESes and no LINE_UNKNOWNs). Oh, and any square separated * from the outside of the grid by a LINE_YES or a LINE_NO is on the inside * or outside respectively. So if you can track this for all squares, you * figure out the state of the line between a pair once their relative * insideness is known. * * - (Just a speed optimisation.) Consider some todo list queue where every * time we modify something we mark it for consideration by other bits of * the solver, to save iteration over things that have already been done. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <math.h> #include "puzzles.h" #include "tree234.h" /* Debugging options */ /*#define DEBUG_CACHES*/ /*#define SHOW_WORKING*/ /* ---------------------------------------------------------------------- * Struct, enum and function declarations */ enum { COL_BACKGROUND, COL_FOREGROUND, COL_HIGHLIGHT, COL_MISTAKE, NCOLOURS }; struct game_state { int w, h; /* Put -1 in a square that doesn't get a clue */ signed char *clues; /* Arrays of line states, stored left-to-right, top-to-bottom */ char *hl, *vl; int solved; int cheated; int recursion_depth; }; enum solver_status { SOLVER_SOLVED, /* This is the only solution the solver could find */ SOLVER_MISTAKE, /* This is definitely not a solution */ SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */ SOLVER_INCOMPLETE /* This may be a partial solution */ }; typedef struct normal { char *dot_atleastone; char *dot_atmostone; } normal_mode_state; typedef struct hard { int *linedsf; } hard_mode_state; typedef struct solver_state { game_state *state; int recursion_remaining; enum solver_status solver_status; /* NB looplen is the number of dots that are joined together at a point, ie a * looplen of 1 means there are no lines to a particular dot */ int *looplen; /* caches */ char *dot_yescount; char *dot_nocount; char *square_yescount; char *square_nocount; char *dot_solved, *square_solved; int *dotdsf; normal_mode_state *normal; hard_mode_state *hard; } solver_state; /* * Difficulty levels. I do some macro ickery here to ensure that my * enum and the various forms of my name list always match up. */ #define DIFFLIST(A) \ A(EASY,Easy,e,easy_mode_deductions) \ A(NORMAL,Normal,n,normal_mode_deductions) \ A(HARD,Hard,h,hard_mode_deductions) #define ENUM(upper,title,lower,fn) DIFF_ ## upper, #define TITLE(upper,title,lower,fn) #title, #define ENCODE(upper,title,lower,fn) #lower #define CONFIG(upper,title,lower,fn) ":" #title #define SOLVER_FN_DECL(upper,title,lower,fn) static int fn(solver_state *); #define SOLVER_FN(upper,title,lower,fn) &fn, enum { DIFFLIST(ENUM) DIFF_MAX }; static char const *const diffnames[] = { DIFFLIST(TITLE) }; static char const diffchars[] = DIFFLIST(ENCODE); #define DIFFCONFIG DIFFLIST(CONFIG) DIFFLIST(SOLVER_FN_DECL); static int (*(solver_fns[]))(solver_state *) = { DIFFLIST(SOLVER_FN) }; struct game_params { int w, h; int diff; int rec; }; enum line_state { LINE_YES, LINE_UNKNOWN, LINE_NO }; #define OPP(state) \ (2 - state) enum direction { UP, LEFT, RIGHT, DOWN }; #define OPP_DIR(dir) \ (3 - dir) struct game_drawstate { int started; int tilesize, linewidth; int flashing; char *hl, *vl; char *clue_error; }; static char *game_text_format(game_state *state); static char *state_to_text(const game_state *state); static char *validate_desc(game_params *params, char *desc); static int get_line_status_from_point(const game_state *state, int x, int y, enum direction d); static int dot_order(const game_state* state, int i, int j, char line_type); static int square_order(const game_state* state, int i, int j, char line_type); static solver_state *solve_game_rec(const solver_state *sstate, int diff); #ifdef DEBUG_CACHES static void check_caches(const solver_state* sstate); #else #define check_caches(s) #endif /* ---------------------------------------------------------------------- * Preprocessor magic */ /* General constants */ #define PREFERRED_TILE_SIZE 32 #define TILE_SIZE (ds->tilesize) #define LINEWIDTH (ds->linewidth) #define BORDER (TILE_SIZE / 2) #define FLASH_TIME 0.5F /* Counts of various things that we're interested in */ #define HL_COUNT(state) ((state)->w * ((state)->h + 1)) #define VL_COUNT(state) (((state)->w + 1) * (state)->h) #define LINE_COUNT(state) (HL_COUNT(state) + VL_COUNT(state)) #define DOT_COUNT(state) (((state)->w + 1) * ((state)->h + 1)) #define SQUARE_COUNT(state) ((state)->w * (state)->h) /* For indexing into arrays */ #define DOT_INDEX(state, x, y) ((x) + ((state)->w + 1) * (y)) #define SQUARE_INDEX(state, x, y) ((x) + ((state)->w) * (y)) #define HL_INDEX(state, x, y) SQUARE_INDEX(state, x, y) #define VL_INDEX(state, x, y) DOT_INDEX(state, x, y) /* Useful utility functions */ #define LEGAL_DOT(state, i, j) ((i) >= 0 && (j) >= 0 && \ (i) <= (state)->w && (j) <= (state)->h) #define LEGAL_SQUARE(state, i, j) ((i) >= 0 && (j) >= 0 && \ (i) < (state)->w && (j) < (state)->h) #define CLUE_AT(state, i, j) (LEGAL_SQUARE(state, i, j) ? \ LV_CLUE_AT(state, i, j) : -1) #define LV_CLUE_AT(state, i, j) ((state)->clues[SQUARE_INDEX(state, i, j)]) #define BIT_SET(field, bit) ((field) & (1<<(bit))) #define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \ ((field) |= (1<<(bit)), TRUE)) #define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \ ((field) &= ~(1<<(bit)), TRUE) : FALSE) #define DIR2STR(d) \ ((d == UP) ? "up" : \ (d == DOWN) ? "down" : \ (d == LEFT) ? "left" : \ (d == RIGHT) ? "right" : "oops") #define CLUE2CHAR(c) \ ((c < 0) ? ' ' : c + '0') /* Lines that have particular relationships with given dots or squares */ #define ABOVE_SQUARE(state, i, j) ((state)->hl[(i) + (state)->w * (j)]) #define BELOW_SQUARE(state, i, j) ABOVE_SQUARE(state, i, (j)+1) #define LEFTOF_SQUARE(state, i, j) ((state)->vl[(i) + ((state)->w + 1) * (j)]) #define RIGHTOF_SQUARE(state, i, j) LEFTOF_SQUARE(state, (i)+1, j) /* * These macros return rvalues only, but can cope with being passed * out-of-range coordinates. */ /* XXX replace these with functions so we can create an array of function * pointers for nicer iteration over them. This could probably be done with * loads of other things for eliminating many nasty hacks. */ #define ABOVE_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || j <= 0) ? \ LINE_NO : LV_ABOVE_DOT(state, i, j)) #define BELOW_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || j >= (state)->h) ? \ LINE_NO : LV_BELOW_DOT(state, i, j)) #define LEFTOF_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || i <= 0) ? \ LINE_NO : LV_LEFTOF_DOT(state, i, j)) #define RIGHTOF_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || i >= (state)->w)? \ LINE_NO : LV_RIGHTOF_DOT(state, i, j)) /* * These macros expect to be passed valid coordinates, and return * lvalues. */ #define LV_BELOW_DOT(state, i, j) ((state)->vl[VL_INDEX(state, i, j)]) #define LV_ABOVE_DOT(state, i, j) LV_BELOW_DOT(state, i, (j)-1) #define LV_RIGHTOF_DOT(state, i, j) ((state)->hl[HL_INDEX(state, i, j)]) #define LV_LEFTOF_DOT(state, i, j) LV_RIGHTOF_DOT(state, (i)-1, j) /* Counts of interesting things */ #define DOT_YES_COUNT(sstate, i, j) \ ((sstate)->dot_yescount[DOT_INDEX((sstate)->state, i, j)]) #define DOT_NO_COUNT(sstate, i, j) \ ((sstate)->dot_nocount[DOT_INDEX((sstate)->state, i, j)]) #define SQUARE_YES_COUNT(sstate, i, j) \ ((sstate)->square_yescount[SQUARE_INDEX((sstate)->state, i, j)]) #define SQUARE_NO_COUNT(sstate, i, j) \ ((sstate)->square_nocount[SQUARE_INDEX((sstate)->state, i, j)]) /* Iterators. NB these iterate over height more slowly than over width so that * the elements come out in 'reading' order */ /* XXX considering adding a 'current' element to each of these which gets the * address of the current dot, say. But expecting we'd need more than that * most of the time. */ #define FORALL(i, j, w, h) \ for ((j) = 0; (j) < (h); ++(j)) \ for ((i) = 0; (i) < (w); ++(i)) #define FORALL_DOTS(state, i, j) \ FORALL(i, j, (state)->w + 1, (state)->h + 1) #define FORALL_SQUARES(state, i, j) \ FORALL(i, j, (state)->w, (state)->h) #define FORALL_HL(state, i, j) \ FORALL(i, j, (state)->w, (state)->h+1) #define FORALL_VL(state, i, j) \ FORALL(i, j, (state)->w+1, (state)->h) /* ---------------------------------------------------------------------- * General struct manipulation and other straightforward code */ static game_state *dup_game(game_state *state) { game_state *ret = snew(game_state); ret->h = state->h; ret->w = state->w; ret->solved = state->solved; ret->cheated = state->cheated; ret->clues = snewn(SQUARE_COUNT(state), signed char); memcpy(ret->clues, state->clues, SQUARE_COUNT(state)); ret->hl = snewn(HL_COUNT(state), char); memcpy(ret->hl, state->hl, HL_COUNT(state)); ret->vl = snewn(VL_COUNT(state), char); memcpy(ret->vl, state->vl, VL_COUNT(state)); ret->recursion_depth = state->recursion_depth; return ret; } static void free_game(game_state *state) { if (state) { sfree(state->clues); sfree(state->hl); sfree(state->vl); sfree(state); } } static solver_state *new_solver_state(const game_state *state, int diff) { int i, j; solver_state *ret = snew(solver_state); ret->state = dup_game((game_state *)state); ret->recursion_remaining = state->recursion_depth; ret->solver_status = SOLVER_INCOMPLETE; ret->dotdsf = snew_dsf(DOT_COUNT(state)); ret->looplen = snewn(DOT_COUNT(state), int); for (i = 0; i < DOT_COUNT(state); i++) { ret->looplen[i] = 1; } ret->dot_solved = snewn(DOT_COUNT(state), char); ret->square_solved = snewn(SQUARE_COUNT(state), char); memset(ret->dot_solved, FALSE, DOT_COUNT(state)); memset(ret->square_solved, FALSE, SQUARE_COUNT(state)); ret->dot_yescount = snewn(DOT_COUNT(state), char); memset(ret->dot_yescount, 0, DOT_COUNT(state)); ret->dot_nocount = snewn(DOT_COUNT(state), char); memset(ret->dot_nocount, 0, DOT_COUNT(state)); ret->square_yescount = snewn(SQUARE_COUNT(state), char); memset(ret->square_yescount, 0, SQUARE_COUNT(state)); ret->square_nocount = snewn(SQUARE_COUNT(state), char); memset(ret->square_nocount, 0, SQUARE_COUNT(state)); /* dot_nocount needs special initialisation as we define lines coming off * dots on edges as fixed at NO */ FORALL_DOTS(state, i, j) { if (i == 0 || i == state->w) ++ret->dot_nocount[DOT_INDEX(state, i, j)]; if (j == 0 || j == state->h) ++ret->dot_nocount[DOT_INDEX(state, i, j)]; } if (diff < DIFF_NORMAL) { ret->normal = NULL; } else { ret->normal = snew(normal_mode_state); ret->normal->dot_atmostone = snewn(DOT_COUNT(state), char); memset(ret->normal->dot_atmostone, 0, DOT_COUNT(state)); ret->normal->dot_atleastone = snewn(DOT_COUNT(state), char); memset(ret->normal->dot_atleastone, 0, DOT_COUNT(state)); } if (diff < DIFF_HARD) { ret->hard = NULL; } else { ret->hard = snew(hard_mode_state); ret->hard->linedsf = snew_dsf(LINE_COUNT(state)); } return ret; } static void free_solver_state(solver_state *sstate) { if (sstate) { free_game(sstate->state); sfree(sstate->dotdsf); sfree(sstate->looplen); sfree(sstate->dot_solved); sfree(sstate->square_solved); sfree(sstate->dot_yescount); sfree(sstate->dot_nocount); sfree(sstate->square_yescount); sfree(sstate->square_nocount); if (sstate->normal) { sfree(sstate->normal->dot_atleastone); sfree(sstate->normal->dot_atmostone); sfree(sstate->normal); } if (sstate->hard) { sfree(sstate->hard->linedsf); sfree(sstate->hard); } sfree(sstate); } } static solver_state *dup_solver_state(const solver_state *sstate) { game_state *state; solver_state *ret = snew(solver_state); ret->state = state = dup_game(sstate->state); ret->recursion_remaining = sstate->recursion_remaining; ret->solver_status = sstate->solver_status; ret->dotdsf = snewn(DOT_COUNT(state), int); ret->looplen = snewn(DOT_COUNT(state), int); memcpy(ret->dotdsf, sstate->dotdsf, DOT_COUNT(state) * sizeof(int)); memcpy(ret->looplen, sstate->looplen, DOT_COUNT(state) * sizeof(int)); ret->dot_solved = snewn(DOT_COUNT(state), char); ret->square_solved = snewn(SQUARE_COUNT(state), char); memcpy(ret->dot_solved, sstate->dot_solved, DOT_COUNT(state)); memcpy(ret->square_solved, sstate->square_solved, SQUARE_COUNT(state)); ret->dot_yescount = snewn(DOT_COUNT(state), char); memcpy(ret->dot_yescount, sstate->dot_yescount, DOT_COUNT(state)); ret->dot_nocount = snewn(DOT_COUNT(state), char); memcpy(ret->dot_nocount, sstate->dot_nocount, DOT_COUNT(state)); ret->square_yescount = snewn(SQUARE_COUNT(state), char); memcpy(ret->square_yescount, sstate->square_yescount, SQUARE_COUNT(state)); ret->square_nocount = snewn(SQUARE_COUNT(state), char); memcpy(ret->square_nocount, sstate->square_nocount, SQUARE_COUNT(state)); if (sstate->normal) { ret->normal = snew(normal_mode_state); ret->normal->dot_atmostone = snewn(DOT_COUNT(state), char); memcpy(ret->normal->dot_atmostone, sstate->normal->dot_atmostone, DOT_COUNT(state)); ret->normal->dot_atleastone = snewn(DOT_COUNT(state), char); memcpy(ret->normal->dot_atleastone, sstate->normal->dot_atleastone, DOT_COUNT(state)); } else { ret->normal = NULL; } if (sstate->hard) { ret->hard = snew(hard_mode_state); ret->hard->linedsf = snewn(LINE_COUNT(state), int); memcpy(ret->hard->linedsf, sstate->hard->linedsf, LINE_COUNT(state) * sizeof(int)); } else { ret->hard = NULL; } return ret; } static game_params *default_params(void) { game_params *ret = snew(game_params); #ifdef SLOW_SYSTEM ret->h = 4; ret->w = 4; #else ret->h = 10; ret->w = 10; #endif ret->diff = DIFF_EASY; ret->rec = 0; return ret; } static game_params *dup_params(game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static const game_params presets[] = { { 4, 4, DIFF_EASY, 0 }, { 4, 4, DIFF_NORMAL, 0 }, { 4, 4, DIFF_HARD, 0 }, { 7, 7, DIFF_EASY, 0 }, { 7, 7, DIFF_NORMAL, 0 }, { 7, 7, DIFF_HARD, 0 }, { 10, 10, DIFF_EASY, 0 }, { 10, 10, DIFF_NORMAL, 0 }, { 10, 10, DIFF_HARD, 0 }, #ifndef SLOW_SYSTEM { 15, 15, DIFF_EASY, 0 }, { 15, 15, DIFF_NORMAL, 0 }, { 15, 15, DIFF_HARD, 0 }, #ifndef SMALL_SCREEN { 30, 20, DIFF_EASY, 0 }, { 30, 20, DIFF_NORMAL, 0 }, { 30, 20, DIFF_HARD, 0 } #endif #endif }; static int game_fetch_preset(int i, char **name, game_params **params) { game_params *tmppar; char buf[80]; if (i < 0 || i >= lenof(presets)) return FALSE; tmppar = snew(game_params); *tmppar = presets[i]; *params = tmppar; sprintf(buf, "%dx%d %s", tmppar->h, tmppar->w, diffnames[tmppar->diff]); *name = dupstr(buf); return TRUE; } static void free_params(game_params *params) { sfree(params); } static void decode_params(game_params *params, char const *string) { params->h = params->w = atoi(string); params->rec = 0; params->diff = DIFF_EASY; while (*string && isdigit((unsigned char)*string)) string++; if (*string == 'x') { string++; params->h = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; } if (*string == 'r') { string++; params->rec = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; } if (*string == 'd') { int i; string++; for (i = 0; i < DIFF_MAX; i++) if (*string == diffchars[i]) params->diff = i; if (*string) string++; } } static char *encode_params(game_params *params, int full) { char str[80]; sprintf(str, "%dx%d", params->w, params->h); if (full) sprintf(str + strlen(str), "r%dd%c", params->rec, diffchars[params->diff]); return dupstr(str); } static config_item *game_configure(game_params *params) { config_item *ret; char buf[80]; ret = snewn(4, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].sval = dupstr(buf); ret[0].ival = 0; ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->h); ret[1].sval = dupstr(buf); ret[1].ival = 0; ret[2].name = "Difficulty"; ret[2].type = C_CHOICES; ret[2].sval = DIFFCONFIG; ret[2].ival = params->diff; ret[3].name = NULL; ret[3].type = C_END; ret[3].sval = NULL; ret[3].ival = 0; return ret; } static game_params *custom_params(config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].sval); ret->h = atoi(cfg[1].sval); ret->rec = 0; ret->diff = cfg[2].ival; return ret; } static char *validate_params(game_params *params, int full) { if (params->w < 4 || params->h < 4) return "Width and height must both be at least 4"; if (params->rec < 0) return "Recursion depth can't be negative"; /* * This shouldn't be able to happen at all, since decode_params * and custom_params will never generate anything that isn't * within range. */ assert(params->diff < DIFF_MAX); return NULL; } /* Returns a newly allocated string describing the current puzzle */ static char *state_to_text(const game_state *state) { char *retval; char *description = snewn(SQUARE_COUNT(state) + 1, char); char *dp = description; int empty_count = 0; int i, j; FORALL_SQUARES(state, i, j) { if (CLUE_AT(state, i, j) < 0) { if (empty_count > 25) { dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1)); empty_count = 0; } empty_count++; } else { if (empty_count) { dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1)); empty_count = 0; } dp += sprintf(dp, "%c", (int)CLUE2CHAR(CLUE_AT(state, i, j))); } } if (empty_count) dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1)); retval = dupstr(description); sfree(description); return retval; } /* We require that the params pass the test in validate_params and that the * description fills the entire game area */ static char *validate_desc(game_params *params, char *desc) { int count = 0; for (; *desc; ++desc) { if (*desc >= '0' && *desc <= '9') { count++; continue; } if (*desc >= 'a') { count += *desc - 'a' + 1; continue; } return "Unknown character in description"; } if (count < SQUARE_COUNT(params)) return "Description too short for board size"; if (count > SQUARE_COUNT(params)) return "Description too long for board size"; return NULL; } /* Sums the lengths of the numbers in range [0,n) */ /* See equivalent function in solo.c for justification of this. */ static int len_0_to_n(int n) { int len = 1; /* Counting 0 as a bit of a special case */ int i; for (i = 1; i < n; i *= 10) { len += max(n - i, 0); } return len; } static char *encode_solve_move(const game_state *state) { int len, i, j; char *ret, *p; /* This is going to return a string representing the moves needed to set * every line in a grid to be the same as the ones in 'state'. The exact * length of this string is predictable. */ len = 1; /* Count the 'S' prefix */ /* Numbers in horizontal lines */ /* Horizontal lines, x position */ len += len_0_to_n(state->w) * (state->h + 1); /* Horizontal lines, y position */ len += len_0_to_n(state->h + 1) * (state->w); /* Vertical lines, y position */ len += len_0_to_n(state->h) * (state->w + 1); /* Vertical lines, x position */ len += len_0_to_n(state->w + 1) * (state->h); /* For each line we also have two letters and a comma */ len += 3 * (LINE_COUNT(state)); ret = snewn(len + 1, char); p = ret; p += sprintf(p, "S"); FORALL_HL(state, i, j) { switch (RIGHTOF_DOT(state, i, j)) { case LINE_YES: p += sprintf(p, "%d,%dhy", i, j); break; case LINE_NO: p += sprintf(p, "%d,%dhn", i, j); break; } } FORALL_VL(state, i, j) { switch (BELOW_DOT(state, i, j)) { case LINE_YES: p += sprintf(p, "%d,%dvy", i, j); break; case LINE_NO: p += sprintf(p, "%d,%dvn", i, j); break; } } /* No point in doing sums like that if they're going to be wrong */ assert(strlen(ret) <= (size_t)len); return ret; } static game_ui *new_ui(game_state *state) { return NULL; } static void free_ui(game_ui *ui) { } static char *encode_ui(game_ui *ui) { return NULL; } static void decode_ui(game_ui *ui, char *encoding) { } static void game_changed_state(game_ui *ui, game_state *oldstate, game_state *newstate) { } #define SIZE(d) ((d) * TILE_SIZE + 2 * BORDER + 1) static void game_compute_size(game_params *params, int tilesize, int *x, int *y) { struct { int tilesize; } ads, *ds = &ads; ads.tilesize = tilesize; *x = SIZE(params->w); *y = SIZE(params->h); } static void game_set_size(drawing *dr, game_drawstate *ds, game_params *params, int tilesize) { ds->tilesize = tilesize; ds->linewidth = max(1,tilesize/16); } static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(4 * NCOLOURS, float); frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); ret[COL_FOREGROUND * 3 + 0] = 0.0F; ret[COL_FOREGROUND * 3 + 1] = 0.0F; ret[COL_FOREGROUND * 3 + 2] = 0.0F; ret[COL_HIGHLIGHT * 3 + 0] = 1.0F; ret[COL_HIGHLIGHT * 3 + 1] = 1.0F; ret[COL_HIGHLIGHT * 3 + 2] = 1.0F; ret[COL_MISTAKE * 3 + 0] = 1.0F; ret[COL_MISTAKE * 3 + 1] = 0.0F; ret[COL_MISTAKE * 3 + 2] = 0.0F; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(drawing *dr, game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); ds->tilesize = ds->linewidth = 0; ds->started = 0; ds->hl = snewn(HL_COUNT(state), char); ds->vl = snewn(VL_COUNT(state), char); ds->clue_error = snewn(SQUARE_COUNT(state), char); ds->flashing = 0; memset(ds->hl, LINE_UNKNOWN, HL_COUNT(state)); memset(ds->vl, LINE_UNKNOWN, VL_COUNT(state)); memset(ds->clue_error, 0, SQUARE_COUNT(state)); return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->clue_error); sfree(ds->hl); sfree(ds->vl); sfree(ds); } static int game_timing_state(game_state *state, game_ui *ui) { return TRUE; } static float game_anim_length(game_state *oldstate, game_state *newstate, int dir, game_ui *ui) { return 0.0F; } static char *game_text_format(game_state *state) { int i, j; int len; char *ret, *rp; len = (2 * state->w + 2) * (2 * state->h + 1); rp = ret = snewn(len + 1, char); #define DRAW_HL \ switch (ABOVE_SQUARE(state, i, j)) { \ case LINE_YES: \ rp += sprintf(rp, " -"); \ break; \ case LINE_NO: \ rp += sprintf(rp, " x"); \ break; \ case LINE_UNKNOWN: \ rp += sprintf(rp, " "); \ break; \ default: \ assert(!"Illegal line state for HL"); \ } #define DRAW_VL \ switch (LEFTOF_SQUARE(state, i, j)) { \ case LINE_YES: \ rp += sprintf(rp, "|"); \ break; \ case LINE_NO: \ rp += sprintf(rp, "x"); \ break; \ case LINE_UNKNOWN: \ rp += sprintf(rp, " "); \ break; \ default: \ assert(!"Illegal line state for VL"); \ } for (j = 0; j < state->h; ++j) { for (i = 0; i < state->w; ++i) { DRAW_HL; } rp += sprintf(rp, " \n"); for (i = 0; i < state->w; ++i) { DRAW_VL; rp += sprintf(rp, "%c", (int)CLUE2CHAR(CLUE_AT(state, i, j))); } DRAW_VL; rp += sprintf(rp, "\n"); } for (i = 0; i < state->w; ++i) { DRAW_HL; } rp += sprintf(rp, " \n"); assert(strlen(ret) == len); return ret; } /* ---------------------------------------------------------------------- * Debug code */ #ifdef DEBUG_CACHES static void check_caches(const solver_state* sstate) { int i, j; const game_state *state = sstate->state; FORALL_DOTS(state, i, j) { #if 0 fprintf(stderr, "dot [%d,%d] y: %d %d n: %d %d\n", i, j, dot_order(state, i, j, LINE_YES), sstate->dot_yescount[i + (state->w + 1) * j], dot_order(state, i, j, LINE_NO), sstate->dot_nocount[i + (state->w + 1) * j]); #endif assert(dot_order(state, i, j, LINE_YES) == DOT_YES_COUNT(sstate, i, j)); assert(dot_order(state, i, j, LINE_NO) == DOT_NO_COUNT(sstate, i, j)); } FORALL_SQUARES(state, i, j) { #if 0 fprintf(stderr, "square [%d,%d] y: %d %d n: %d %d\n", i, j, square_order(state, i, j, LINE_YES), sstate->square_yescount[i + state->w * j], square_order(state, i, j, LINE_NO), sstate->square_nocount[i + state->w * j]); #endif assert(square_order(state, i, j, LINE_YES) == SQUARE_YES_COUNT(sstate, i, j)); assert(square_order(state, i, j, LINE_NO) == SQUARE_NO_COUNT(sstate, i, j)); } } #if 0 #define check_caches(s) \ do { \ fprintf(stderr, "check_caches at line %d\n", __LINE__); \ check_caches(s); \ } while (0) #endif #endif /* DEBUG_CACHES */ /* ---------------------------------------------------------------------- * Solver utility functions */ static int set_line_bydot(solver_state *sstate, int x, int y, enum direction d, enum line_state line_new #ifdef SHOW_WORKING , const char *reason #endif ) { game_state *state = sstate->state; /* This line borders at most two squares in our board. We figure out the * x and y positions of those squares so we can record that their yes or no * counts have been changed */ int sq1_x=-1, sq1_y=-1, sq2_x=-1, sq2_y=-1; int otherdot_x=-1, otherdot_y=-1; int progress = FALSE; #if 0 fprintf(stderr, "set_line_bydot [%d,%d], %s, %d\n", x, y, DIR2STR(d), line_new); #endif assert(line_new != LINE_UNKNOWN); check_caches(sstate); switch (d) { case LEFT: assert(x > 0); if (LEFTOF_DOT(state, x, y) != line_new) { LV_LEFTOF_DOT(state, x, y) = line_new; otherdot_x = x-1; otherdot_y = y; sq1_x = x-1; sq1_y = y-1; sq2_x = x-1; sq2_y = y; progress = TRUE; } break; case RIGHT: assert(x < state->w); if (RIGHTOF_DOT(state, x, y) != line_new) { LV_RIGHTOF_DOT(state, x, y) = line_new; otherdot_x = x+1; otherdot_y = y; sq1_x = x; sq1_y = y-1; sq2_x = x; sq2_y = y; progress = TRUE; } break; case UP: assert(y > 0); if (ABOVE_DOT(state, x, y) != line_new) { LV_ABOVE_DOT(state, x, y) = line_new; otherdot_x = x; otherdot_y = y-1; sq1_x = x-1; sq1_y = y-1; sq2_x = x; sq2_y = y-1; progress = TRUE; } break; case DOWN: assert(y < state->h); if (BELOW_DOT(state, x, y) != line_new) { LV_BELOW_DOT(state, x, y) = line_new; otherdot_x = x; otherdot_y = y+1; sq1_x = x-1; sq1_y = y; sq2_x = x; sq2_y = y; progress = TRUE; } break; } if (!progress) return progress; #ifdef SHOW_WORKING fprintf(stderr, "set line [%d,%d] -> [%d,%d] to %s (%s)\n", x, y, otherdot_x, otherdot_y, line_new == LINE_YES ? "YES" : "NO", reason); #endif /* Above we updated the cache for the dot that the line in question reaches * from the dot we've been told about. Here we update that for the dot * named in our arguments. */ if (line_new == LINE_YES) { if (sq1_x >= 0 && sq1_y >= 0) ++SQUARE_YES_COUNT(sstate, sq1_x, sq1_y); if (sq2_x < state->w && sq2_y < state->h) ++SQUARE_YES_COUNT(sstate, sq2_x, sq2_y); ++DOT_YES_COUNT(sstate, x, y); ++DOT_YES_COUNT(sstate, otherdot_x, otherdot_y); } else { if (sq1_x >= 0 && sq1_y >= 0) ++SQUARE_NO_COUNT(sstate, sq1_x, sq1_y); if (sq2_x < state->w && sq2_y < state->h) ++SQUARE_NO_COUNT(sstate, sq2_x, sq2_y); ++DOT_NO_COUNT(sstate, x, y); ++DOT_NO_COUNT(sstate, otherdot_x, otherdot_y); } check_caches(sstate); return progress; } #ifdef SHOW_WORKING #define set_line_bydot(a, b, c, d, e) \ set_line_bydot(a, b, c, d, e, __FUNCTION__) #endif /* * Merge two dots due to the existence of an edge between them. * Updates the dsf tracking equivalence classes, and keeps track of * the length of path each dot is currently a part of. * Returns TRUE if the dots were already linked, ie if they are part of a * closed loop, and false otherwise. */ static int merge_dots(solver_state *sstate, int x1, int y1, int x2, int y2) { int i, j, len; i = y1 * (sstate->state->w + 1) + x1; j = y2 * (sstate->state->w + 1) + x2; i = dsf_canonify(sstate->dotdsf, i); j = dsf_canonify(sstate->dotdsf, j); if (i == j) { return TRUE; } else { len = sstate->looplen[i] + sstate->looplen[j]; dsf_merge(sstate->dotdsf, i, j); i = dsf_canonify(sstate->dotdsf, i); sstate->looplen[i] = len; return FALSE; } } /* Seriously, these should be functions */ #define LINEDSF_INDEX(state, x, y, d) \ ((d == UP) ? ((y-1) * (state->w + 1) + x) : \ (d == DOWN) ? ((y) * (state->w + 1) + x) : \ (d == LEFT) ? ((y) * (state->w) + x-1 + VL_COUNT(state)) : \ (d == RIGHT) ? ((y) * (state->w) + x + VL_COUNT(state)) : \ (assert(!"bad direction value"), 0)) static void linedsf_deindex(const game_state *state, int i, int *px, int *py, enum direction *pd) { int i_mod; if (i < VL_COUNT(state)) { *(pd) = DOWN; *(px) = (i) % (state->w+1); *(py) = (i) / (state->w+1); } else { i_mod = i - VL_COUNT(state); *(pd) = RIGHT; *(px) = (i_mod) % (state->w); *(py) = (i_mod) / (state->w); } } /* Merge two lines because the solver has deduced that they must be either * identical or opposite. Returns TRUE if this is new information, otherwise * FALSE. */ static int merge_lines(solver_state *sstate, int x1, int y1, enum direction d1, int x2, int y2, enum direction d2, int inverse #ifdef SHOW_WORKING , const char *reason #endif ) { int i, j, inv_tmp; i = LINEDSF_INDEX(sstate->state, x1, y1, d1); j = LINEDSF_INDEX(sstate->state, x2, y2, d2); assert(i < LINE_COUNT(sstate->state)); assert(j < LINE_COUNT(sstate->state)); i = edsf_canonify(sstate->hard->linedsf, i, &inv_tmp); inverse ^= inv_tmp; j = edsf_canonify(sstate->hard->linedsf, j, &inv_tmp); inverse ^= inv_tmp; edsf_merge(sstate->hard->linedsf, i, j, inverse); #ifdef SHOW_WORKING if (i != j) { fprintf(stderr, "%s [%d,%d,%s] [%d,%d,%s] %s(%s)\n", __FUNCTION__, x1, y1, DIR2STR(d1), x2, y2, DIR2STR(d2), inverse ? "inverse " : "", reason); } #endif return (i != j); } #ifdef SHOW_WORKING #define merge_lines(a, b, c, d, e, f, g, h) \ merge_lines(a, b, c, d, e, f, g, h, __FUNCTION__) #endif /* Return 0 if the given lines are not in the same equivalence class, 1 if they * are known identical, or 2 if they are known opposite */ #if 0 static int lines_related(solver_state *sstate, int x1, int y1, enum direction d1, int x2, int y2, enum direction d2) { int i, j, inv1, inv2; i = LINEDSF_INDEX(sstate->state, x1, y1, d1); j = LINEDSF_INDEX(sstate->state, x2, y2, d2); i = edsf_canonify(sstate->hard->linedsf, i, &inv1); j = edsf_canonify(sstate->hard->linedsf, j, &inv2); if (i == j) return (inv1 == inv2) ? 1 : 2; else return 0; } #endif /* Count the number of lines of a particular type currently going into the * given dot. Lines going off the edge of the board are assumed fixed no. */ static int dot_order(const game_state* state, int i, int j, char line_type) { int n = 0; if (i > 0) { if (line_type == LV_LEFTOF_DOT(state, i, j)) ++n; } else { if (line_type == LINE_NO) ++n; } if (i < state->w) { if (line_type == LV_RIGHTOF_DOT(state, i, j)) ++n; } else { if (line_type == LINE_NO) ++n; } if (j > 0) { if (line_type == LV_ABOVE_DOT(state, i, j)) ++n; } else { if (line_type == LINE_NO) ++n; } if (j < state->h) { if (line_type == LV_BELOW_DOT(state, i, j)) ++n; } else { if (line_type == LINE_NO) ++n; } return n; } /* Count the number of lines of a particular type currently surrounding the * given square */ static int square_order(const game_state* state, int i, int j, char line_type) { int n = 0; if (ABOVE_SQUARE(state, i, j) == line_type) ++n; if (BELOW_SQUARE(state, i, j) == line_type) ++n; if (LEFTOF_SQUARE(state, i, j) == line_type) ++n; if (RIGHTOF_SQUARE(state, i, j) == line_type) ++n; return n; } /* Set all lines bordering a dot of type old_type to type new_type * Return value tells caller whether this function actually did anything */ static int dot_setall(solver_state *sstate, int i, int j, char old_type, char new_type) { int retval = FALSE, r; game_state *state = sstate->state; if (old_type == new_type) return FALSE; if (i > 0 && LEFTOF_DOT(state, i, j) == old_type) { r = set_line_bydot(sstate, i, j, LEFT, new_type); assert(r == TRUE); retval = TRUE; } if (i < state->w && RIGHTOF_DOT(state, i, j) == old_type) { r = set_line_bydot(sstate, i, j, RIGHT, new_type); assert(r == TRUE); retval = TRUE; } if (j > 0 && ABOVE_DOT(state, i, j) == old_type) { r = set_line_bydot(sstate, i, j, UP, new_type); assert(r == TRUE); retval = TRUE; } if (j < state->h && BELOW_DOT(state, i, j) == old_type) { r = set_line_bydot(sstate, i, j, DOWN, new_type); assert(r == TRUE); retval = TRUE; } return retval; } /* Set all lines bordering a square of type old_type to type new_type */ static int square_setall(solver_state *sstate, int i, int j, char old_type, char new_type) { int r = FALSE; game_state *state = sstate->state; #if 0 fprintf(stderr, "square_setall [%d,%d] from %d to %d\n", i, j, old_type, new_type); #endif if (ABOVE_SQUARE(state, i, j) == old_type) { r = set_line_bydot(sstate, i, j, RIGHT, new_type); assert(r == TRUE); } if (BELOW_SQUARE(state, i, j) == old_type) { r = set_line_bydot(sstate, i, j+1, RIGHT, new_type); assert(r == TRUE); } if (LEFTOF_SQUARE(state, i, j) == old_type) { r = set_line_bydot(sstate, i, j, DOWN, new_type); assert(r == TRUE); } if (RIGHTOF_SQUARE(state, i, j) == old_type) { r = set_line_bydot(sstate, i+1, j, DOWN, new_type); assert(r == TRUE); } return r; } /* ---------------------------------------------------------------------- * Loop generation and clue removal */ /* We're going to store a list of current candidate squares for lighting. * Each square gets a 'score', which tells us how adding that square right * now would affect the length of the solution loop. We're trying to * maximise that quantity so will bias our random selection of squares to * light towards those with high scores */ struct square { int score; unsigned long random; int x, y; }; static int get_square_cmpfn(void *v1, void *v2) { struct square *s1 = v1; struct square *s2 = v2; int r; r = s1->x - s2->x; if (r) return r; r = s1->y - s2->y; if (r) return r; return 0; } static int square_sort_cmpfn(void *v1, void *v2) { struct square *s1 = v1; struct square *s2 = v2; int r; r = s2->score - s1->score; if (r) { return r; } if (s1->random < s2->random) return -1; else if (s1->random > s2->random) return 1; /* * It's _just_ possible that two squares might have been given * the same random value. In that situation, fall back to * comparing based on the coordinates. This introduces a tiny * directional bias, but not a significant one. */ return get_square_cmpfn(v1, v2); } enum { SQUARE_LIT, SQUARE_UNLIT }; #define SQUARE_STATE(i, j) \ ( LEGAL_SQUARE(state, i, j) ? \ LV_SQUARE_STATE(i,j) : \ SQUARE_UNLIT ) #define LV_SQUARE_STATE(i, j) board[SQUARE_INDEX(state, i, j)] /* Generate a new complete set of clues for the given game_state (respecting * the dimensions provided by said game_state) */ static void add_full_clues(game_state *state, random_state *rs) { signed char *clues; char *board; int i, j, a, b, c; int board_area = SQUARE_COUNT(state); int t; struct square *square, *tmpsquare, *sq; struct square square_pos; /* These will contain exactly the same information, sorted into different * orders */ tree234 *lightable_squares_sorted, *lightable_squares_gettable; #define SQUARE_REACHABLE(i,j) \ (t = (SQUARE_STATE(i-1, j) == SQUARE_LIT || \ SQUARE_STATE(i+1, j) == SQUARE_LIT || \ SQUARE_STATE(i, j-1) == SQUARE_LIT || \ SQUARE_STATE(i, j+1) == SQUARE_LIT), \ t) /* One situation in which we may not light a square is if that'll leave one * square above/below and one left/right of us unlit, separated by a lit * square diagnonal from us */ #define SQUARE_DIAGONAL_VIOLATION(i, j, h, v) \ (t = (SQUARE_STATE((i)+(h), (j)) == SQUARE_UNLIT && \ SQUARE_STATE((i), (j)+(v)) == SQUARE_UNLIT && \ SQUARE_STATE((i)+(h), (j)+(v)) == SQUARE_LIT), \ t) /* We also may not light a square if it will form a loop of lit squares * around some unlit squares, as then the game soln won't have a single * loop */ #define SQUARE_LOOP_VIOLATION(i, j, lit1, lit2) \ (SQUARE_STATE((i)+1, (j)) == lit1 && \ SQUARE_STATE((i)-1, (j)) == lit1 && \ SQUARE_STATE((i), (j)+1) == lit2 && \ SQUARE_STATE((i), (j)-1) == lit2) #define CAN_LIGHT_SQUARE(i, j) \ (SQUARE_REACHABLE(i, j) && \ !SQUARE_DIAGONAL_VIOLATION(i, j, -1, -1) && \ !SQUARE_DIAGONAL_VIOLATION(i, j, +1, -1) && \ !SQUARE_DIAGONAL_VIOLATION(i, j, -1, +1) && \ !SQUARE_DIAGONAL_VIOLATION(i, j, +1, +1) && \ !SQUARE_LOOP_VIOLATION(i, j, SQUARE_LIT, SQUARE_UNLIT) && \ !SQUARE_LOOP_VIOLATION(i, j, SQUARE_UNLIT, SQUARE_LIT)) #define IS_LIGHTING_CANDIDATE(i, j) \ (SQUARE_STATE(i, j) == SQUARE_UNLIT && \ CAN_LIGHT_SQUARE(i,j)) /* The 'score' of a square reflects its current desirability for selection * as the next square to light. We want to encourage moving into uncharted * areas so we give scores according to how many of the square's neighbours * are currently unlit. */ /* UNLIT SCORE * 3 2 * 2 0 * 1 -2 */ #define SQUARE_SCORE(i,j) \ (2*((SQUARE_STATE(i-1, j) == SQUARE_UNLIT) + \ (SQUARE_STATE(i+1, j) == SQUARE_UNLIT) + \ (SQUARE_STATE(i, j-1) == SQUARE_UNLIT) + \ (SQUARE_STATE(i, j+1) == SQUARE_UNLIT)) - 4) /* When a square gets lit, this defines how far away from that square we * need to go recomputing scores */ #define SCORE_DISTANCE 1 board = snewn(board_area, char); clues = state->clues; /* Make a board */ memset(board, SQUARE_UNLIT, board_area); /* Seed the board with a single lit square near the middle */ i = state->w / 2; j = state->h / 2; if (state->w & 1 && random_bits(rs, 1)) ++i; if (state->h & 1 && random_bits(rs, 1)) ++j; LV_SQUARE_STATE(i, j) = SQUARE_LIT; /* We need a way of favouring squares that will increase our loopiness. * We do this by maintaining a list of all candidate squares sorted by * their score and choose randomly from that with appropriate skew. * In order to avoid consistently biasing towards particular squares, we * need the sort order _within_ each group of scores to be completely * random. But it would be abusing the hospitality of the tree234 data * structure if our comparison function were nondeterministic :-). So with * each square we associate a random number that does not change during a * particular run of the generator, and use that as a secondary sort key. * Yes, this means we will be biased towards particular random squares in * any one run but that doesn't actually matter. */ lightable_squares_sorted = newtree234(square_sort_cmpfn); lightable_squares_gettable = newtree234(get_square_cmpfn); #define ADD_SQUARE(s) \ do { \ sq = add234(lightable_squares_sorted, s); \ assert(sq == s); \ sq = add234(lightable_squares_gettable, s); \ assert(sq == s); \ } while (0) #define REMOVE_SQUARE(s) \ do { \ sq = del234(lightable_squares_sorted, s); \ assert(sq); \ sq = del234(lightable_squares_gettable, s); \ assert(sq); \ } while (0) #define HANDLE_DIR(a, b) \ square = snew(struct square); \ square->x = (i)+(a); \ square->y = (j)+(b); \ square->score = 2; \ square->random = random_bits(rs, 31); \ ADD_SQUARE(square); HANDLE_DIR(-1, 0); HANDLE_DIR( 1, 0); HANDLE_DIR( 0,-1); HANDLE_DIR( 0, 1); #undef HANDLE_DIR /* Light squares one at a time until the board is interesting enough */ while (TRUE) { /* We have count234(lightable_squares) possibilities, and in * lightable_squares_sorted they are sorted with the most desirable * first. */ c = count234(lightable_squares_sorted); if (c == 0) break; assert(c == count234(lightable_squares_gettable)); /* Check that the best square available is any good */ square = (struct square *)index234(lightable_squares_sorted, 0); assert(square); /* * We never want to _decrease_ the loop's perimeter. Making * moves that leave the perimeter the same is occasionally * useful: if it were _never_ done then the user would be * able to deduce illicitly that any degree-zero vertex was * on the outside of the loop. So we do it sometimes but * not always. */ if (square->score < 0 || (square->score == 0 && random_upto(rs, 2) == 0)) { break; } assert(square->score == SQUARE_SCORE(square->x, square->y)); assert(SQUARE_STATE(square->x, square->y) == SQUARE_UNLIT); assert(square->x >= 0 && square->x < state->w); assert(square->y >= 0 && square->y < state->h); /* Update data structures */ LV_SQUARE_STATE(square->x, square->y) = SQUARE_LIT; REMOVE_SQUARE(square); /* We might have changed the score of any squares up to 2 units away in * any direction */ for (b = -SCORE_DISTANCE; b <= SCORE_DISTANCE; b++) { for (a = -SCORE_DISTANCE; a <= SCORE_DISTANCE; a++) { if (!a && !b) continue; square_pos.x = square->x + a; square_pos.y = square->y + b; if (square_pos.x < 0 || square_pos.x >= state->w || square_pos.y < 0 || square_pos.y >= state->h) { continue; } tmpsquare = find234(lightable_squares_gettable, &square_pos, NULL); if (tmpsquare) { assert(tmpsquare->x == square_pos.x); assert(tmpsquare->y == square_pos.y); assert(SQUARE_STATE(tmpsquare->x, tmpsquare->y) == SQUARE_UNLIT); REMOVE_SQUARE(tmpsquare); } else { tmpsquare = snew(struct square); tmpsquare->x = square_pos.x; tmpsquare->y = square_pos.y; tmpsquare->random = random_bits(rs, 31); } tmpsquare->score = SQUARE_SCORE(tmpsquare->x, tmpsquare->y); if (IS_LIGHTING_CANDIDATE(tmpsquare->x, tmpsquare->y)) { ADD_SQUARE(tmpsquare); } else { sfree(tmpsquare); } } } sfree(square); } /* Clean up */ while ((square = delpos234(lightable_squares_gettable, 0)) != NULL) sfree(square); freetree234(lightable_squares_gettable); freetree234(lightable_squares_sorted); /* Copy out all the clues */ FORALL_SQUARES(state, i, j) { c = SQUARE_STATE(i, j); LV_CLUE_AT(state, i, j) = 0; if (SQUARE_STATE(i-1, j) != c) ++LV_CLUE_AT(state, i, j); if (SQUARE_STATE(i+1, j) != c) ++LV_CLUE_AT(state, i, j); if (SQUARE_STATE(i, j-1) != c) ++LV_CLUE_AT(state, i, j); if (SQUARE_STATE(i, j+1) != c) ++LV_CLUE_AT(state, i, j); } sfree(board); } static int game_has_unique_soln(const game_state *state, int diff) { int ret; solver_state *sstate_new; solver_state *sstate = new_solver_state((game_state *)state, diff); sstate_new = solve_game_rec(sstate, diff); assert(sstate_new->solver_status != SOLVER_MISTAKE); ret = (sstate_new->solver_status == SOLVER_SOLVED); free_solver_state(sstate_new); free_solver_state(sstate); return ret; } /* Remove clues one at a time at random. */ static game_state *remove_clues(game_state *state, random_state *rs, int diff) { int *square_list, squares; game_state *ret = dup_game(state), *saved_ret; int n; #ifdef SHOW_WORKING char *desc; #endif /* We need to remove some clues. We'll do this by forming a list of all * available clues, shuffling it, then going along one at a * time clearing each clue in turn for which doing so doesn't render the * board unsolvable. */ squares = state->w * state->h; square_list = snewn(squares, int); for (n = 0; n < squares; ++n) { square_list[n] = n; } shuffle(square_list, squares, sizeof(int), rs); for (n = 0; n < squares; ++n) { saved_ret = dup_game(ret); LV_CLUE_AT(ret, square_list[n] % state->w, square_list[n] / state->w) = -1; #ifdef SHOW_WORKING desc = state_to_text(ret); fprintf(stderr, "%dx%d:%s\n", state->w, state->h, desc); sfree(desc); #endif if (game_has_unique_soln(ret, diff)) { free_game(saved_ret); } else { free_game(ret); ret = saved_ret; } } sfree(square_list); return ret; } static char *new_game_desc(game_params *params, random_state *rs, char **aux, int interactive) { /* solution and description both use run-length encoding in obvious ways */ char *retval; game_state *state = snew(game_state), *state_new; state->h = params->h; state->w = params->w; state->clues = snewn(SQUARE_COUNT(params), signed char); state->hl = snewn(HL_COUNT(params), char); state->vl = snewn(VL_COUNT(params), char); newboard_please: memset(state->hl, LINE_UNKNOWN, HL_COUNT(params)); memset(state->vl, LINE_UNKNOWN, VL_COUNT(params)); state->solved = state->cheated = FALSE; state->recursion_depth = params->rec; /* Get a new random solvable board with all its clues filled in. Yes, this * can loop for ever if the params are suitably unfavourable, but * preventing games smaller than 4x4 seems to stop this happening */ do { add_full_clues(state, rs); } while (!game_has_unique_soln(state, params->diff)); state_new = remove_clues(state, rs, params->diff); free_game(state); state = state_new; if (params->diff > 0 && game_has_unique_soln(state, params->diff-1)) { #ifdef SHOW_WORKING fprintf(stderr, "Rejecting board, it is too easy\n"); #endif goto newboard_please; } retval = state_to_text(state); free_game(state); assert(!validate_desc(params, retval)); return retval; } static game_state *new_game(midend *me, game_params *params, char *desc) { int i,j; game_state *state = snew(game_state); int empties_to_make = 0; int n; const char *dp = desc; state->recursion_depth = 0; /* XXX pending removal, probably */ state->h = params->h; state->w = params->w; state->clues = snewn(SQUARE_COUNT(params), signed char); state->hl = snewn(HL_COUNT(params), char); state->vl = snewn(VL_COUNT(params), char); state->solved = state->cheated = FALSE; FORALL_SQUARES(params, i, j) { if (empties_to_make) { empties_to_make--; LV_CLUE_AT(state, i, j) = -1; continue; } assert(*dp); n = *dp - '0'; if (n >= 0 && n < 10) { LV_CLUE_AT(state, i, j) = n; } else { n = *dp - 'a' + 1; assert(n > 0); LV_CLUE_AT(state, i, j) = -1; empties_to_make = n - 1; } ++dp; } memset(state->hl, LINE_UNKNOWN, HL_COUNT(params)); memset(state->vl, LINE_UNKNOWN, VL_COUNT(params)); return state; } enum { LOOP_NONE=0, LOOP_SOLN, LOOP_NOT_SOLN }; /* ---------------------------------------------------------------------- * Solver logic * * Our solver modes operate as follows. Each mode also uses the modes above it. * * Easy Mode * Just implement the rules of the game. * * Normal Mode * For each pair of lines through each dot we store a bit for whether * at least one of them is on and whether at most one is on. (If we know * both or neither is on that's already stored more directly.) That's six * bits per dot. Bit number n represents the lines shown in dline_desc. * * Advanced Mode * Use edsf data structure to make equivalence classes of lines that are * known identical to or opposite to one another. */ /* The order the following are defined in is very important, see below. * The last two fields may seem non-obvious: they specify that when talking * about a square the dx and dy offsets should be added to the square coords to * get to the right dot. Where dx and dy are -1 this means that the dline * doesn't make sense for a square. */ /* XXX can this be done with a struct instead? */ #define DLINES \ DLINE(DLINE_UD, UP, DOWN, -1, -1) \ DLINE(DLINE_LR, LEFT, RIGHT, -1, -1) \ DLINE(DLINE_UR, UP, RIGHT, 0, 1) \ DLINE(DLINE_DL, DOWN, LEFT, 1, 0) \ DLINE(DLINE_UL, UP, LEFT, 1, 1) \ DLINE(DLINE_DR, DOWN, RIGHT, 0, 0) #define OPP_DLINE(dline_desc) ((dline_desc) ^ 1) enum dline_desc { #define DLINE(desc, dir1, dir2, dx, dy) \ desc, DLINES #undef DLINE }; struct dline { enum dline_desc desc; enum direction dir1, dir2; int dx, dy; }; const static struct dline dlines[] = { #define DLINE(desc, dir1, dir2, dx, dy) \ { desc, dir1, dir2, dx, dy }, DLINES #undef DLINE }; #define FORALL_DOT_DLINES(dl_iter) \ for (dl_iter = 0; dl_iter < lenof(dlines); ++dl_iter) #define FORALL_SQUARE_DLINES(dl_iter) \ for (dl_iter = 2; dl_iter < lenof(dlines); ++dl_iter) #define DL2STR(d) \ ((d==DLINE_UD) ? "DLINE_UD": \ (d==DLINE_LR) ? "DLINE_LR": \ (d==DLINE_UR) ? "DLINE_UR": \ (d==DLINE_DL) ? "DLINE_DL": \ (d==DLINE_UL) ? "DLINE_UL": \ (d==DLINE_DR) ? "DLINE_DR": \ "oops") #define CHECK_DLINE_SENSIBLE(d) assert(dlines[(d)].dx != -1 && dlines[(d)].dy != -1) /* This will fail an assertion if the directions handed to it are the same, as * no dline corresponds to that */ static enum dline_desc dline_desc_from_dirs(enum direction dir1, enum direction dir2) { int i; assert (dir1 != dir2); for (i = 0; i < lenof(dlines); ++i) { if ((dir1 == dlines[i].dir1 && dir2 == dlines[i].dir2) || (dir1 == dlines[i].dir2 && dir2 == dlines[i].dir1)) { return dlines[i].desc; } } assert(!"dline not found"); return DLINE_UD; /* placate compiler */ } /* The following functions allow you to get or set info about the selected * dline corresponding to the dot or square at [i,j]. You'll get an assertion * failure if you talk about a dline that doesn't exist, ie if you ask about * non-touching lines around a square. */ static int get_dot_dline(const game_state *state, const char *dline_array, int i, int j, enum dline_desc desc) { /* fprintf(stderr, "get_dot_dline %p [%d,%d] %s\n", dline_array, i, j, DL2STR(desc)); */ return BIT_SET(dline_array[i + (state->w + 1) * j], desc); } static int set_dot_dline(game_state *state, char *dline_array, int i, int j, enum dline_desc desc #ifdef SHOW_WORKING , const char *reason #endif ) { int ret; ret = SET_BIT(dline_array[i + (state->w + 1) * j], desc); #ifdef SHOW_WORKING if (ret) fprintf(stderr, "set_dot_dline %p [%d,%d] %s (%s)\n", dline_array, i, j, DL2STR(desc), reason); #endif return ret; } static int get_square_dline(game_state *state, char *dline_array, int i, int j, enum dline_desc desc) { CHECK_DLINE_SENSIBLE(desc); /* fprintf(stderr, "get_square_dline %p [%d,%d] %s\n", dline_array, i, j, DL2STR(desc)); */ return BIT_SET(dline_array[(i+dlines[desc].dx) + (state->w + 1) * (j+dlines[desc].dy)], desc); } static int set_square_dline(game_state *state, char *dline_array, int i, int j, enum dline_desc desc #ifdef SHOW_WORKING , const char *reason #endif ) { int ret; CHECK_DLINE_SENSIBLE(desc); ret = SET_BIT(dline_array[(i+dlines[desc].dx) + (state->w + 1) * (j+dlines[desc].dy)], desc); #ifdef SHOW_WORKING if (ret) fprintf(stderr, "set_square_dline %p [%d,%d] %s (%s)\n", dline_array, i, j, DL2STR(desc), reason); #endif return ret; } #ifdef SHOW_WORKING #define set_dot_dline(a, b, c, d, e) \ set_dot_dline(a, b, c, d, e, __FUNCTION__) #define set_square_dline(a, b, c, d, e) \ set_square_dline(a, b, c, d, e, __FUNCTION__) #endif static int set_dot_opp_dline(game_state *state, char *dline_array, int i, int j, enum dline_desc desc) { return set_dot_dline(state, dline_array, i, j, OPP_DLINE(desc)); } static int set_square_opp_dline(game_state *state, char *dline_array, int i, int j, enum dline_desc desc) { return set_square_dline(state, dline_array, i, j, OPP_DLINE(desc)); } /* Find out if both the lines in the given dline are UNKNOWN */ static int dline_both_unknown(const game_state *state, int i, int j, enum dline_desc desc) { return (get_line_status_from_point(state, i, j, dlines[desc].dir1) == LINE_UNKNOWN) && (get_line_status_from_point(state, i, j, dlines[desc].dir2) == LINE_UNKNOWN); } #define SQUARE_DLINES \ HANDLE_DLINE(DLINE_UL, RIGHTOF_SQUARE, BELOW_SQUARE, 1, 1); \ HANDLE_DLINE(DLINE_UR, LEFTOF_SQUARE, BELOW_SQUARE, 0, 1); \ HANDLE_DLINE(DLINE_DL, RIGHTOF_SQUARE, ABOVE_SQUARE, 1, 0); \ HANDLE_DLINE(DLINE_DR, LEFTOF_SQUARE, ABOVE_SQUARE, 0, 0); #define DOT_DLINES \ HANDLE_DLINE(DLINE_UD, ABOVE_DOT, BELOW_DOT); \ HANDLE_DLINE(DLINE_LR, LEFTOF_DOT, RIGHTOF_DOT); \ HANDLE_DLINE(DLINE_UL, ABOVE_DOT, LEFTOF_DOT); \ HANDLE_DLINE(DLINE_UR, ABOVE_DOT, RIGHTOF_DOT); \ HANDLE_DLINE(DLINE_DL, BELOW_DOT, LEFTOF_DOT); \ HANDLE_DLINE(DLINE_DR, BELOW_DOT, RIGHTOF_DOT); static void array_setall(char *array, char from, char to, int len) { char *p = array, *p_old = p; int len_remaining = len; while ((p = memchr(p, from, len_remaining))) { *p = to; len_remaining -= p - p_old; p_old = p; } } static int get_line_status_from_point(const game_state *state, int x, int y, enum direction d) { switch (d) { case LEFT: return LEFTOF_DOT(state, x, y); case RIGHT: return RIGHTOF_DOT(state, x, y); case UP: return ABOVE_DOT(state, x, y); case DOWN: return BELOW_DOT(state, x, y); } return 0; } /* First and second args are coord offset from top left of square to one end * of line in question, third and fourth args are the direction from the first * end of the line to the second. Fifth arg is the direction of the line from * the coord offset position. * How confusing. */ #define SQUARE_LINES \ SQUARE_LINE( 0, 0, RIGHT, RIGHTOF_DOT, UP); \ SQUARE_LINE( 0, +1, RIGHT, RIGHTOF_DOT, DOWN); \ SQUARE_LINE( 0, 0, DOWN, BELOW_DOT, LEFT); \ SQUARE_LINE(+1, 0, DOWN, BELOW_DOT, RIGHT); /* Set pairs of lines around this square which are known to be identical to * the given line_state */ static int square_setall_identical(solver_state *sstate, int x, int y, enum line_state line_new) { /* can[dir] contains the canonical line associated with the line in * direction dir from the square in question. Similarly inv[dir] is * whether or not the line in question is inverse to its canonical * element. */ int can[4], inv[4], i, j; int retval = FALSE; i = 0; #if 0 fprintf(stderr, "Setting all identical unknown lines around square " "[%d,%d] to %d:\n", x, y, line_new); #endif #define SQUARE_LINE(dx, dy, linedir, dir_dot, sqdir) \ can[sqdir] = \ edsf_canonify(sstate->hard->linedsf, \ LINEDSF_INDEX(sstate->state, x+(dx), y+(dy), linedir), \ &inv[sqdir]); SQUARE_LINES; #undef SQUARE_LINE for (j = 0; j < 4; ++j) { for (i = 0; i < 4; ++i) { if (i == j) continue; if (can[i] == can[j] && inv[i] == inv[j]) { /* Lines in directions i and j are identical. * Only do j now, we'll do i when the loop causes us to * consider {i,j} in the opposite order. */ #define SQUARE_LINE(dx, dy, dir, c, sqdir) \ if (j == sqdir) { \ retval = set_line_bydot(sstate, x+(dx), y+(dy), dir, line_new); \ if (retval) { \ break; \ } \ } SQUARE_LINES; #undef SQUARE_LINE } } } return retval; } #if 0 /* Set all identical lines passing through the current dot to the chosen line * state. (implicitly this only looks at UNKNOWN lines) */ static int dot_setall_identical(solver_state *sstate, int x, int y, enum line_state line_new) { /* The implementation of this is a little naughty but I can't see how to do * it elegantly any other way */ int can[4], inv[4], i, j; enum direction d; int retval = FALSE; for (d = 0; d < 4; ++d) { can[d] = edsf_canonify(sstate->hard->linedsf, LINEDSF_INDEX(sstate->state, x, y, d), inv+d); } for (j = 0; j < 4; ++j) { next_j: for (i = 0; i < j; ++i) { if (can[i] == can[j] && inv[i] == inv[j]) { /* Lines in directions i and j are identical */ if (get_line_status_from_point(sstate->state, x, y, j) == LINE_UNKNOWN) { set_line_bydot(sstate->state, x, y, j, line_new); retval = TRUE; goto next_j; } } } } return retval; } #endif static int square_setboth_in_dline(solver_state *sstate, enum dline_desc dd, int i, int j, enum line_state line_new) { int retval = FALSE; const struct dline dll = dlines[dd], *dl = &dll; #if 0 fprintf(stderr, "square_setboth_in_dline %s [%d,%d] to %d\n", DL2STR(dd), i, j, line_new); #endif CHECK_DLINE_SENSIBLE(dd); retval |= set_line_bydot(sstate, i+dl->dx, j+dl->dy, dl->dir1, line_new); retval |= set_line_bydot(sstate, i+dl->dx, j+dl->dy, dl->dir2, line_new); return retval; } /* Call this function to register that the two unknown lines going into the dot * [x,y] are identical or opposite (depending on the value of 'inverse'). This * function will cause an assertion failure if anything other than exactly two * lines into the dot are unknown. * As usual returns TRUE if any progress was made, otherwise FALSE. */ static int dot_relate_2_unknowns(solver_state *sstate, int x, int y, int inverse) { enum direction d1=DOWN, d2=DOWN; /* Just to keep compiler quiet */ int dirs_set = 0; #define TRY_DIR(d) \ if (get_line_status_from_point(sstate->state, x, y, d) == \ LINE_UNKNOWN) { \ if (dirs_set == 0) \ d1 = d; \ else { \ assert(dirs_set == 1); \ d2 = d; \ } \ dirs_set++; \ } while (0) TRY_DIR(UP); TRY_DIR(DOWN); TRY_DIR(LEFT); TRY_DIR(RIGHT); #undef TRY_DIR assert(dirs_set == 2); assert(d1 != d2); #if 0 fprintf(stderr, "Lines in direction %s and %s from dot [%d,%d] are %s\n", DIR2STR(d1), DIR2STR(d2), x, y, inverse?"opposite":"the same"); #endif return merge_lines(sstate, x, y, d1, x, y, d2, inverse); } /* Very similar to dot_relate_2_unknowns. */ static int square_relate_2_unknowns(solver_state *sstate, int x, int y, int inverse) { enum direction d1=DOWN, d2=DOWN; int x1=-1, y1=-1, x2=-1, y2=-1; int dirs_set = 0; #if 0 fprintf(stderr, "2 unknowns around square [%d,%d] are %s\n", x, y, inverse?"opposite":"the same"); #endif #define TRY_DIR(i, j, d, dir_sq) \ do { \ if (dir_sq(sstate->state, x, y) == LINE_UNKNOWN) { \ if (dirs_set == 0) { \ d1 = d; x1 = i; y1 = j; \ } else { \ assert(dirs_set == 1); \ d2 = d; x2 = i; y2 = j; \ } \ dirs_set++; \ } \ } while (0) TRY_DIR(x, y, RIGHT, ABOVE_SQUARE); TRY_DIR(x, y, DOWN, LEFTOF_SQUARE); TRY_DIR(x+1, y, DOWN, RIGHTOF_SQUARE); TRY_DIR(x, y+1, RIGHT, BELOW_SQUARE); #undef TRY_DIR assert(dirs_set == 2); #if 0 fprintf(stderr, "Line in direction %s from dot [%d,%d] and line in direction %s from dot [%2d,%2d] are %s\n", DIR2STR(d1), x1, y1, DIR2STR(d2), x2, y2, inverse?"opposite":"the same"); #endif return merge_lines(sstate, x1, y1, d1, x2, y2, d2, inverse); } /* Figure out if any dlines can be 'collapsed' (and do so if they can). This * can happen if one of the lines is known and due to the dline status this * tells us state of the other, or if there's an interaction with the linedsf * (ie if atmostone is set for a dline and the lines are known identical they * must both be LINE_NO, etc). XXX at the moment only the former is * implemented, and indeed the latter should be implemented in the hard mode * solver only. */ static int dot_collapse_dlines(solver_state *sstate, int i, int j) { int progress = FALSE; enum direction dir1, dir2; int dir1st; int dlset; game_state *state = sstate->state; enum dline_desc dd; for (dir1 = 0; dir1 < 4; dir1++) { dir1st = get_line_status_from_point(state, i, j, dir1); if (dir1st == LINE_UNKNOWN) continue; /* dir2 iterates over the whole range rather than starting at dir1+1 * because test below is asymmetric */ for (dir2 = 0; dir2 < 4; dir2++) { if (dir1 == dir2) continue; if ((i == 0 && (dir1 == LEFT || dir2 == LEFT)) || (j == 0 && (dir1 == UP || dir2 == UP)) || (i == state->w && (dir1 == RIGHT || dir2 == RIGHT)) || (j == state->h && (dir1 == DOWN || dir2 == DOWN))) { continue; } #if 0 fprintf(stderr, "dot_collapse_dlines [%d,%d], %s %s\n", i, j, DIR2STR(dir1), DIR2STR(dir2)); #endif if (get_line_status_from_point(state, i, j, dir2) == LINE_UNKNOWN) { dd = dline_desc_from_dirs(dir1, dir2); dlset = get_dot_dline(state, sstate->normal->dot_atmostone, i, j, dd); if (dlset && dir1st == LINE_YES) { /* fprintf(stderr, "setting %s to NO\n", DIR2STR(dir2)); */ progress |= set_line_bydot(sstate, i, j, dir2, LINE_NO); } dlset = get_dot_dline(state, sstate->normal->dot_atleastone, i, j, dd); if (dlset && dir1st == LINE_NO) { /* fprintf(stderr, "setting %s to YES\n", DIR2STR(dir2)); */ progress |= set_line_bydot(sstate, i, j, dir2, LINE_YES); } } } } return progress; } /* * These are the main solver functions. * * Their return values are diff values corresponding to the lowest mode solver * that would notice the work that they have done. For example if the normal * mode solver adds actual lines or crosses, it will return DIFF_EASY as the * easy mode solver might be able to make progress using that. It doesn't make * sense for one of them to return a diff value higher than that of the * function itself. * * Each function returns the lowest value it can, as early as possible, in * order to try and pass as much work as possible back to the lower level * solvers which progress more quickly. */ /* PROPOSED NEW DESIGN: * We have a work queue consisting of 'events' notifying us that something has * happened that a particular solver mode might be interested in. For example * the hard mode solver might do something that helps the normal mode solver at * dot [x,y] in which case it will enqueue an event recording this fact. Then * we pull events off the work queue, and hand each in turn to the solver that * is interested in them. If a solver reports that it failed we pass the same * event on to progressively more advanced solvers and the loop detector. Once * we've exhausted an event, or it has helped us progress, we drop it and * continue to the next one. The events are sorted first in order of solver * complexity (easy first) then order of insertion (oldest first). * Once we run out of events we loop over each permitted solver in turn * (easiest first) until either a deduction is made (and an event therefore * emerges) or no further deductions can be made (in which case we've failed). * * QUESTIONS: * * How do we 'loop over' a solver when both dots and squares are concerned. * Answer: first all squares then all dots. */ static int easy_mode_deductions(solver_state *sstate) { int i, j, h, w, current_yes, current_no; game_state *state; int diff = DIFF_MAX; state = sstate->state; h = state->h; w = state->w; /* Per-square deductions */ FORALL_SQUARES(state, i, j) { if (sstate->square_solved[SQUARE_INDEX(state, i, j)]) continue; current_yes = SQUARE_YES_COUNT(sstate, i, j); current_no = SQUARE_NO_COUNT(sstate, i, j); if (current_yes + current_no == 4) { sstate->square_solved[SQUARE_INDEX(state, i, j)] = TRUE; /* diff = min(diff, DIFF_EASY); */ continue; } if (CLUE_AT(state, i, j) < 0) continue; if (CLUE_AT(state, i, j) < current_yes) { #if 0 fprintf(stderr, "detected error [%d,%d] in %s at line %d\n", i, j, __FUNCTION__, __LINE__); #endif sstate->solver_status = SOLVER_MISTAKE; return DIFF_EASY; } if (CLUE_AT(state, i, j) == current_yes) { if (square_setall(sstate, i, j, LINE_UNKNOWN, LINE_NO)) diff = min(diff, DIFF_EASY); sstate->square_solved[SQUARE_INDEX(state, i, j)] = TRUE; continue; } if (4 - CLUE_AT(state, i, j) < current_no) { #if 0 fprintf(stderr, "detected error [%d,%d] in %s at line %d\n", i, j, __FUNCTION__, __LINE__); #endif sstate->solver_status = SOLVER_MISTAKE; return DIFF_EASY; } if (4 - CLUE_AT(state, i, j) == current_no) { if (square_setall(sstate, i, j, LINE_UNKNOWN, LINE_YES)) diff = min(diff, DIFF_EASY); sstate->square_solved[SQUARE_INDEX(state, i, j)] = TRUE; continue; } } check_caches(sstate); /* Per-dot deductions */ FORALL_DOTS(state, i, j) { if (sstate->dot_solved[DOT_INDEX(state, i, j)]) continue; switch (DOT_YES_COUNT(sstate, i, j)) { case 0: switch (DOT_NO_COUNT(sstate, i, j)) { case 3: #if 0 fprintf(stderr, "dot [%d,%d]: 0 yes, 3 no\n", i, j); #endif dot_setall(sstate, i, j, LINE_UNKNOWN, LINE_NO); diff = min(diff, DIFF_EASY); /* fall through */ case 4: sstate->dot_solved[DOT_INDEX(state, i, j)] = TRUE; break; } break; case 1: switch (DOT_NO_COUNT(sstate, i, j)) { case 2: /* 1 yes, 2 no */ #if 0 fprintf(stderr, "dot [%d,%d]: 1 yes, 2 no\n", i, j); #endif dot_setall(sstate, i, j, LINE_UNKNOWN, LINE_YES); diff = min(diff, DIFF_EASY); sstate->dot_solved[DOT_INDEX(state, i, j)] = TRUE; break; case 3: /* 1 yes, 3 no */ #if 0 fprintf(stderr, "detected error [%d,%d] in %s at line %d\n", i, j, __FUNCTION__, __LINE__); #endif sstate->solver_status = SOLVER_MISTAKE; return DIFF_EASY; } break; case 2: #if 0 fprintf(stderr, "dot [%d,%d]: 2 yes\n", i, j); #endif dot_setall(sstate, i, j, LINE_UNKNOWN, LINE_NO); diff = min(diff, DIFF_EASY); sstate->dot_solved[DOT_INDEX(state, i, j)] = TRUE; break; case 3: case 4: #if 0 fprintf(stderr, "detected error [%d,%d] in %s at line %d\n", i, j, __FUNCTION__, __LINE__); #endif sstate->solver_status = SOLVER_MISTAKE; return DIFF_EASY; } } check_caches(sstate); return diff; } static int normal_mode_deductions(solver_state *sstate) { int i, j; game_state *state = sstate->state; enum dline_desc dd; int diff = DIFF_MAX; FORALL_SQUARES(state, i, j) { if (sstate->square_solved[SQUARE_INDEX(state, i, j)]) continue; if (CLUE_AT(state, i, j) < 0) continue; switch (CLUE_AT(state, i, j)) { case 1: #if 0 fprintf(stderr, "clue [%d,%d] is 1, doing dline ops\n", i, j); #endif FORALL_SQUARE_DLINES(dd) { /* At most one of any DLINE can be set */ if (set_square_dline(state, sstate->normal->dot_atmostone, i, j, dd)) { diff = min(diff, DIFF_NORMAL); } if (get_square_dline(state, sstate->normal->dot_atleastone, i, j, dd)) { /* This DLINE provides enough YESes to solve the clue */ if (square_setboth_in_dline(sstate, OPP_DLINE(dd), i, j, LINE_NO)) { diff = min(diff, DIFF_EASY); } } } break; case 2: /* If at least one of one DLINE is set, at most one * of the opposing one is and vice versa */ #if 0 fprintf(stderr, "clue [%d,%d] is 2, doing dline ops\n", i, j); #endif FORALL_SQUARE_DLINES(dd) { if (get_square_dline(state, sstate->normal->dot_atmostone, i, j, dd)) { if (set_square_opp_dline(state, sstate->normal->dot_atleastone, i, j, dd)) { diff = min(diff, DIFF_NORMAL); } } if (get_square_dline(state, sstate->normal->dot_atleastone, i, j, dd)) { if (set_square_opp_dline(state, sstate->normal->dot_atmostone, i, j, dd)) { diff = min(diff, DIFF_NORMAL); } } } break; case 3: #if 0 fprintf(stderr, "clue [%d,%d] is 3, doing dline ops\n", i, j); #endif FORALL_SQUARE_DLINES(dd) { /* At least one of any DLINE must be set */ if (set_square_dline(state, sstate->normal->dot_atleastone, i, j, dd)) { diff = min(diff, DIFF_NORMAL); } if (get_square_dline(state, sstate->normal->dot_atmostone, i, j, dd)) { /* This DLINE provides enough NOs to solve the clue */ if (square_setboth_in_dline(sstate, OPP_DLINE(dd), i, j, LINE_YES)) { diff = min(diff, DIFF_EASY); } } } break; } } check_caches(sstate); if (diff < DIFF_NORMAL) return diff; FORALL_DOTS(state, i, j) { if (sstate->dot_solved[DOT_INDEX(state, i, j)]) continue; #if 0 text = game_text_format(state); fprintf(stderr, "-----------------\n%s", text); sfree(text); #endif switch (DOT_YES_COUNT(sstate, i, j)) { case 0: switch (DOT_NO_COUNT(sstate, i, j)) { case 1: /* Make note that at most one of each unknown DLINE * is YES */ break; } break; case 1: switch (DOT_NO_COUNT(sstate, i, j)) { case 1: /* 1 yes, 1 no, so exactly one of unknowns is * yes */ #if 0 fprintf(stderr, "dot [%d,%d]: 1 yes, 1 no\n", i, j); #endif FORALL_DOT_DLINES(dd) { if (dline_both_unknown(state, i, j, dd)) { if (set_dot_dline(state, sstate->normal->dot_atleastone, i, j, dd)) { diff = min(diff, DIFF_NORMAL); } } } /* fall through */ case 0: #if 0 fprintf(stderr, "dot [%d,%d]: 1 yes, 0 or 1 no\n", i, j); #endif /* 1 yes, fewer than 2 no, so at most one of * unknowns is yes */ FORALL_DOT_DLINES(dd) { if (dline_both_unknown(state, i, j, dd)) { if (set_dot_dline(state, sstate->normal->dot_atmostone, i, j, dd)) { diff = min(diff, DIFF_NORMAL); } } } break; } break; } /* DLINE deductions that don't depend on the exact number of * LINE_YESs or LINE_NOs */ /* If at least one of a dline in a dot is YES, at most one * of the opposite dline to that dot must be YES. */ FORALL_DOT_DLINES(dd) { if (get_dot_dline(state, sstate->normal->dot_atleastone, i, j, dd)) { if (set_dot_opp_dline(state, sstate->normal->dot_atmostone, i, j, dd)) { diff = min(diff, DIFF_NORMAL); } } } if (dot_collapse_dlines(sstate, i, j)) diff = min(diff, DIFF_EASY); } check_caches(sstate); return diff; } static int hard_mode_deductions(solver_state *sstate) { int i, j, a, b, s; game_state *state = sstate->state; const int h=state->h, w=state->w; enum direction dir1, dir2; int can1, can2, inv1, inv2; int diff = DIFF_MAX; enum dline_desc dd; FORALL_SQUARES(state, i, j) { if (sstate->square_solved[SQUARE_INDEX(state, i, j)]) continue; switch (CLUE_AT(state, i, j)) { case -1: continue; case 1: if (square_setall_identical(sstate, i, j, LINE_NO)) diff = min(diff, DIFF_EASY); break; case 3: if (square_setall_identical(sstate, i, j, LINE_YES)) diff = min(diff, DIFF_EASY); break; } if (SQUARE_YES_COUNT(sstate, i, j) + SQUARE_NO_COUNT(sstate, i, j) == 2) { /* There are exactly two unknown lines bordering this * square. */ if (SQUARE_YES_COUNT(sstate, i, j) + 1 == CLUE_AT(state, i, j)) { /* They must be different */ if (square_relate_2_unknowns(sstate, i, j, TRUE)) diff = min(diff, DIFF_HARD); } } } check_caches(sstate); FORALL_DOTS(state, i, j) { if (DOT_YES_COUNT(sstate, i, j) == 1 && DOT_NO_COUNT(sstate, i, j) == 1) { if (dot_relate_2_unknowns(sstate, i, j, TRUE)) diff = min(diff, DIFF_HARD); continue; } if (DOT_YES_COUNT(sstate, i, j) == 0 && DOT_NO_COUNT(sstate, i, j) == 2) { if (dot_relate_2_unknowns(sstate, i, j, FALSE)) diff = min(diff, DIFF_HARD); continue; } } /* If two lines into a dot are related, the other two lines into that dot * are related in the same way. */ /* iter over points that aren't on edges */ for (i = 1; i < w; ++i) { for (j = 1; j < h; ++j) { if (sstate->dot_solved[DOT_INDEX(state, i, j)]) continue; /* iter over directions */ for (dir1 = 0; dir1 < 4; ++dir1) { for (dir2 = dir1+1; dir2 < 4; ++dir2) { /* canonify both lines */ can1 = edsf_canonify (sstate->hard->linedsf, LINEDSF_INDEX(state, i, j, dir1), &inv1); can2 = edsf_canonify (sstate->hard->linedsf, LINEDSF_INDEX(state, i, j, dir2), &inv2); /* merge opposite lines */ if (can1 == can2) { if (merge_lines(sstate, i, j, OPP_DIR(dir1), i, j, OPP_DIR(dir2), inv1 ^ inv2)) { diff = min(diff, DIFF_HARD); } } } } } } /* If the state of a line is known, deduce the state of its canonical line * too. */ FORALL_DOTS(state, i, j) { /* Do this even if the dot we're on is solved */ if (i < w) { can1 = edsf_canonify(sstate->hard->linedsf, LINEDSF_INDEX(state, i, j, RIGHT), &inv1); linedsf_deindex(state, can1, &a, &b, &dir1); s = RIGHTOF_DOT(state, i, j); if (s != LINE_UNKNOWN) { if (set_line_bydot(sstate, a, b, dir1, inv1 ? OPP(s) : s)) diff = min(diff, DIFF_EASY); } } if (j < h) { can1 = edsf_canonify(sstate->hard->linedsf, LINEDSF_INDEX(state, i, j, DOWN), &inv1); linedsf_deindex(state, can1, &a, &b, &dir1); s = BELOW_DOT(state, i, j); if (s != LINE_UNKNOWN) { if (set_line_bydot(sstate, a, b, dir1, inv1 ? OPP(s) : s)) diff = min(diff, DIFF_EASY); } } } /* Interactions between dline and linedsf */ FORALL_DOTS(state, i, j) { if (sstate->dot_solved[DOT_INDEX(state, i, j)]) continue; FORALL_DOT_DLINES(dd) { const struct dline dll = dlines[dd], *dl = &dll; if (i == 0 && (dl->dir1 == LEFT || dl->dir2 == LEFT)) continue; if (i == w && (dl->dir1 == RIGHT || dl->dir2 == RIGHT)) continue; if (j == 0 && (dl->dir1 == UP || dl->dir2 == UP)) continue; if (j == h && (dl->dir1 == DOWN || dl->dir2 == DOWN)) continue; if (get_dot_dline(state, sstate->normal->dot_atleastone, i, j, dd) && get_dot_dline(state, sstate->normal->dot_atmostone, i, j, dd)) { /* atleastone && atmostone => inverse */ if (merge_lines(sstate, i, j, dl->dir1, i, j, dl->dir2, 1)) { diff = min(diff, DIFF_HARD); } } else { /* don't have atleastone and atmostone for this dline */ can1 = edsf_canonify(sstate->hard->linedsf, LINEDSF_INDEX(state, i, j, dl->dir1), &inv1); can2 = edsf_canonify(sstate->hard->linedsf, LINEDSF_INDEX(state, i, j, dl->dir2), &inv2); if (can1 == can2) { if (inv1 == inv2) { /* identical => collapse dline */ if (get_dot_dline(state, sstate->normal->dot_atleastone, i, j, dd)) { if (set_line_bydot(sstate, i, j, dl->dir1, LINE_YES)) { diff = min(diff, DIFF_EASY); } if (set_line_bydot(sstate, i, j, dl->dir2, LINE_YES)) { diff = min(diff, DIFF_EASY); } } else if (get_dot_dline(state, sstate->normal->dot_atmostone, i, j, dd)) { if (set_line_bydot(sstate, i, j, dl->dir1, LINE_NO)) { diff = min(diff, DIFF_EASY); } if (set_line_bydot(sstate, i, j, dl->dir2, LINE_NO)) { diff = min(diff, DIFF_EASY); } } } else { /* inverse => atleastone && atmostone */ if (set_dot_dline(state, sstate->normal->dot_atleastone, i, j, dd)) { diff = min(diff, DIFF_NORMAL); } if (set_dot_dline(state, sstate->normal->dot_atmostone, i, j, dd)) { diff = min(diff, DIFF_NORMAL); } } } } } } /* If the state of the canonical line for line 'l' is known, deduce the * state of 'l' */ FORALL_DOTS(state, i, j) { if (sstate->dot_solved[DOT_INDEX(state, i, j)]) continue; if (i < w) { can1 = edsf_canonify(sstate->hard->linedsf, LINEDSF_INDEX(state, i, j, RIGHT), &inv1); linedsf_deindex(state, can1, &a, &b, &dir1); s = get_line_status_from_point(state, a, b, dir1); if (s != LINE_UNKNOWN) { if (set_line_bydot(sstate, i, j, RIGHT, inv1 ? OPP(s) : s)) diff = min(diff, DIFF_EASY); } } if (j < h) { can1 = edsf_canonify(sstate->hard->linedsf, LINEDSF_INDEX(state, i, j, DOWN), &inv1); linedsf_deindex(state, can1, &a, &b, &dir1); s = get_line_status_from_point(state, a, b, dir1); if (s != LINE_UNKNOWN) { if (set_line_bydot(sstate, i, j, DOWN, inv1 ? OPP(s) : s)) diff = min(diff, DIFF_EASY); } } } return diff; } static int loop_deductions(solver_state *sstate) { int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0; game_state *state = sstate->state; int shortest_chainlen = DOT_COUNT(state); int loop_found = FALSE; int d; int dots_connected; int progress = FALSE; int i, j; /* * Go through the grid and update for all the new edges. * Since merge_dots() is idempotent, the simplest way to * do this is just to update for _all_ the edges. * * Also, while we're here, we count the edges, count the * clues, count the satisfied clues, and count the * satisfied-minus-one clues. */ FORALL_DOTS(state, i, j) { if (RIGHTOF_DOT(state, i, j) == LINE_YES) { loop_found |= merge_dots(sstate, i, j, i+1, j); edgecount++; } if (BELOW_DOT(state, i, j) == LINE_YES) { loop_found |= merge_dots(sstate, i, j, i, j+1); edgecount++; } if (CLUE_AT(state, i, j) >= 0) { int c = CLUE_AT(state, i, j); int o = SQUARE_YES_COUNT(sstate, i, j); if (o == c) satclues++; else if (o == c-1) sm1clues++; clues++; } } for (i = 0; i < DOT_COUNT(state); ++i) { dots_connected = sstate->looplen[dsf_canonify(sstate->dotdsf, i)]; if (dots_connected > 1) shortest_chainlen = min(shortest_chainlen, dots_connected); } assert(sstate->solver_status == SOLVER_INCOMPLETE); if (satclues == clues && shortest_chainlen == edgecount) { sstate->solver_status = SOLVER_SOLVED; /* This discovery clearly counts as progress, even if we haven't * just added any lines or anything */ progress = TRUE; goto finished_loop_deductionsing; } /* * Now go through looking for LINE_UNKNOWN edges which * connect two dots that are already in the same * equivalence class. If we find one, test to see if the * loop it would create is a solution. */ FORALL_DOTS(state, i, j) { for (d = 0; d < 2; d++) { int i2, j2, eqclass, val; if (d == 0) { if (RIGHTOF_DOT(state, i, j) != LINE_UNKNOWN) continue; i2 = i+1; j2 = j; } else { if (BELOW_DOT(state, i, j) != LINE_UNKNOWN) { continue; } i2 = i; j2 = j+1; } eqclass = dsf_canonify(sstate->dotdsf, j * (state->w+1) + i); if (eqclass != dsf_canonify(sstate->dotdsf, j2 * (state->w+1) + i2)) { continue; } val = LINE_NO; /* loop is bad until proven otherwise */ /* * This edge would form a loop. Next * question: how long would the loop be? * Would it equal the total number of edges * (plus the one we'd be adding if we added * it)? */ if (sstate->looplen[eqclass] == edgecount + 1) { int sm1_nearby; int cx, cy; /* * This edge would form a loop which * took in all the edges in the entire * grid. So now we need to work out * whether it would be a valid solution * to the puzzle, which means we have to * check if it satisfies all the clues. * This means that every clue must be * either satisfied or satisfied-minus- * 1, and also that the number of * satisfied-minus-1 clues must be at * most two and they must lie on either * side of this edge. */ sm1_nearby = 0; cx = i - (j2-j); cy = j - (i2-i); if (CLUE_AT(state, cx,cy) >= 0 && square_order(state, cx,cy, LINE_YES) == CLUE_AT(state, cx,cy) - 1) { sm1_nearby++; } if (CLUE_AT(state, i, j) >= 0 && SQUARE_YES_COUNT(sstate, i, j) == CLUE_AT(state, i, j) - 1) { sm1_nearby++; } if (sm1clues == sm1_nearby && sm1clues + satclues == clues) { val = LINE_YES; /* loop is good! */ } } /* * Right. Now we know that adding this edge * would form a loop, and we know whether * that loop would be a viable solution or * not. * * If adding this edge produces a solution, * then we know we've found _a_ solution but * we don't know that it's _the_ solution - * if it were provably the solution then * we'd have deduced this edge some time ago * without the need to do loop detection. So * in this state we return SOLVER_AMBIGUOUS, * which has the effect that hitting Solve * on a user-provided puzzle will fill in a * solution but using the solver to * construct new puzzles won't consider this * a reasonable deduction for the user to * make. */ if (d == 0) { progress = set_line_bydot(sstate, i, j, RIGHT, val); assert(progress == TRUE); } else { progress = set_line_bydot(sstate, i, j, DOWN, val); assert(progress == TRUE); } if (val == LINE_YES) { sstate->solver_status = SOLVER_AMBIGUOUS; goto finished_loop_deductionsing; } } } finished_loop_deductionsing: return progress ? DIFF_EASY : DIFF_MAX; } /* This will return a dynamically allocated solver_state containing the (more) * solved grid */ static solver_state *solve_game_rec(const solver_state *sstate_start, int diff) { int i, j; int w, h; solver_state *sstate, *sstate_saved, *sstate_tmp; solver_state *sstate_rec_solved; int recursive_soln_count; int solver_progress; game_state *state; /* Indicates which solver we should call next. This is a sensible starting * point */ int current_solver = DIFF_EASY, next_solver; #ifdef SHOW_WORKING char *text; #endif #if 0 printf("solve_game_rec: recursion_remaining = %d\n", sstate_start->recursion_remaining); #endif sstate = dup_solver_state(sstate_start); /* Cache the values of some variables for readability */ state = sstate->state; h = state->h; w = state->w; sstate_saved = NULL; nonrecursive_solver: solver_progress = FALSE; check_caches(sstate); do { #ifdef SHOW_WORKING text = game_text_format(state); fprintf(stderr, "-----------------\n%s", text); sfree(text); #endif if (sstate->solver_status == SOLVER_MISTAKE) return sstate; /* fprintf(stderr, "Invoking solver %d\n", current_solver); */ next_solver = solver_fns[current_solver](sstate); if (next_solver == DIFF_MAX) { /* fprintf(stderr, "Current solver failed\n"); */ if (current_solver < diff && current_solver + 1 < DIFF_MAX) { /* Try next beefier solver */ next_solver = current_solver + 1; } else { /* fprintf(stderr, "Doing loop deductions\n"); */ next_solver = loop_deductions(sstate); } } if (sstate->solver_status == SOLVER_SOLVED || sstate->solver_status == SOLVER_AMBIGUOUS) { /* fprintf(stderr, "Solver completed\n"); */ break; } /* Once we've looped over all permitted solvers then the loop * deductions without making any progress, we'll exit this while loop */ current_solver = next_solver; } while (current_solver < DIFF_MAX); if (sstate->solver_status == SOLVER_SOLVED || sstate->solver_status == SOLVER_AMBIGUOUS) { /* s/LINE_UNKNOWN/LINE_NO/g */ array_setall(sstate->state->hl, LINE_UNKNOWN, LINE_NO, HL_COUNT(sstate->state)); array_setall(sstate->state->vl, LINE_UNKNOWN, LINE_NO, VL_COUNT(sstate->state)); return sstate; } /* Perform recursive calls */ if (sstate->recursion_remaining) { sstate_saved = dup_solver_state(sstate); sstate->recursion_remaining--; recursive_soln_count = 0; sstate_rec_solved = NULL; /* Memory management: * sstate_saved won't be modified but needs to be freed when we have * finished with it. * sstate is expected to contain our 'best' solution by the time we * finish this section of code. It's the thing we'll try adding lines * to, seeing if they make it more solvable. * If sstate_rec_solved is non-NULL, it will supersede sstate * eventually. sstate_tmp should not hold a value persistently. */ /* NB SOLVER_AMBIGUOUS is like SOLVER_SOLVED except the solver is aware * of the possibility of additional solutions. So as soon as we have a * SOLVER_AMBIGUOUS we can safely propagate it back to our caller, but * if we get a SOLVER_SOLVED we want to keep trying in case we find * further solutions and have to mark it ambiguous. */ #define DO_RECURSIVE_CALL(dir_dot) \ if (dir_dot(sstate->state, i, j) == LINE_UNKNOWN) { \ debug(("Trying " #dir_dot " at [%d,%d]\n", i, j)); \ LV_##dir_dot(sstate->state, i, j) = LINE_YES; \ sstate_tmp = solve_game_rec(sstate, diff); \ switch (sstate_tmp->solver_status) { \ case SOLVER_AMBIGUOUS: \ debug(("Solver ambiguous, returning\n")); \ sstate_rec_solved = sstate_tmp; \ goto finished_recursion; \ case SOLVER_SOLVED: \ switch (++recursive_soln_count) { \ case 1: \ debug(("One solution found\n")); \ sstate_rec_solved = sstate_tmp; \ break; \ case 2: \ debug(("Ambiguous solutions found\n")); \ free_solver_state(sstate_tmp); \ sstate_rec_solved->solver_status = SOLVER_AMBIGUOUS; \ goto finished_recursion; \ default: \ assert(!"recursive_soln_count out of range"); \ break; \ } \ break; \ case SOLVER_MISTAKE: \ debug(("Non-solution found\n")); \ free_solver_state(sstate_tmp); \ free_solver_state(sstate_saved); \ LV_##dir_dot(sstate->state, i, j) = LINE_NO; \ goto nonrecursive_solver; \ case SOLVER_INCOMPLETE: \ debug(("Recursive step inconclusive\n")); \ free_solver_state(sstate_tmp); \ break; \ } \ free_solver_state(sstate); \ sstate = dup_solver_state(sstate_saved); \ } FORALL_DOTS(state, i, j) { /* Only perform recursive calls on 'loose ends' */ if (DOT_YES_COUNT(sstate, i, j) == 1) { DO_RECURSIVE_CALL(LEFTOF_DOT); DO_RECURSIVE_CALL(RIGHTOF_DOT); DO_RECURSIVE_CALL(ABOVE_DOT); DO_RECURSIVE_CALL(BELOW_DOT); } } finished_recursion: if (sstate_rec_solved) { free_solver_state(sstate); sstate = sstate_rec_solved; } } return sstate; } #if 0 #define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \ if (sstate->normal->dot_atmostone[i+a + (sstate->state->w + 1) * (j+b)] & \ 1<<dline) { \ if (square_order(sstate->state, i, j, LINE_UNKNOWN) - 1 == \ CLUE_AT(sstate->state, i, j) - '0') { \ square_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_YES); \ /* XXX the following may overwrite known data! */ \ dir1_sq(sstate->state, i, j) = LINE_UNKNOWN; \ dir2_sq(sstate->state, i, j) = LINE_UNKNOWN; \ } \ } SQUARE_DLINES; #undef HANDLE_DLINE #endif static char *solve_game(game_state *state, game_state *currstate, char *aux, char **error) { char *soln = NULL; solver_state *sstate, *new_sstate; sstate = new_solver_state(state, DIFF_MAX); new_sstate = solve_game_rec(sstate, DIFF_MAX); if (new_sstate->solver_status == SOLVER_SOLVED) { soln = encode_solve_move(new_sstate->state); } else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) { soln = encode_solve_move(new_sstate->state); /**error = "Solver found ambiguous solutions"; */ } else { soln = encode_solve_move(new_sstate->state); /**error = "Solver failed"; */ } free_solver_state(new_sstate); free_solver_state(sstate); return soln; } /* ---------------------------------------------------------------------- * Drawing and mouse-handling */ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, int x, int y, int button) { int hl_selected; int i, j, p, q; char *ret, buf[80]; char button_char = ' '; enum line_state old_state; button &= ~MOD_MASK; /* Around each line is a diamond-shaped region where points within that * region are closer to this line than any other. We assume any click * within a line's diamond was meant for that line. It would all be a lot * simpler if the / and % operators respected modulo arithmetic properly * for negative numbers. */ x -= BORDER; y -= BORDER; /* Get the coordinates of the square the click was in */ i = (x + TILE_SIZE) / TILE_SIZE - 1; j = (y + TILE_SIZE) / TILE_SIZE - 1; /* Get the precise position inside square [i,j] */ p = (x + TILE_SIZE) % TILE_SIZE; q = (y + TILE_SIZE) % TILE_SIZE; /* After this bit of magic [i,j] will correspond to the point either above * or to the left of the line selected */ if (p > q) { if (TILE_SIZE - p > q) { hl_selected = TRUE; } else { hl_selected = FALSE; ++i; } } else { if (TILE_SIZE - q > p) { hl_selected = FALSE; } else { hl_selected = TRUE; ++j; } } if (i < 0 || j < 0) return NULL; if (hl_selected) { if (i >= state->w || j >= state->h + 1) return NULL; } else { if (i >= state->w + 1 || j >= state->h) return NULL; } /* I think it's only possible to play this game with mouse clicks, sorry */ /* Maybe will add mouse drag support some time */ if (hl_selected) old_state = RIGHTOF_DOT(state, i, j); else old_state = BELOW_DOT(state, i, j); switch (button) { case LEFT_BUTTON: switch (old_state) { case LINE_UNKNOWN: button_char = 'y'; break; case LINE_YES: case LINE_NO: button_char = 'u'; break; } break; case MIDDLE_BUTTON: button_char = 'u'; break; case RIGHT_BUTTON: switch (old_state) { case LINE_UNKNOWN: button_char = 'n'; break; case LINE_NO: case LINE_YES: button_char = 'u'; break; } break; default: return NULL; } sprintf(buf, "%d,%d%c%c", i, j, (int)(hl_selected ? 'h' : 'v'), (int)button_char); ret = dupstr(buf); return ret; } static game_state *execute_move(game_state *state, char *move) { int i, j; game_state *newstate = dup_game(state); if (move[0] == 'S') { move++; newstate->cheated = TRUE; } while (*move) { i = atoi(move); move = strchr(move, ','); if (!move) goto fail; j = atoi(++move); move += strspn(move, "1234567890"); switch (*(move++)) { case 'h': if (i >= newstate->w || j > newstate->h) goto fail; switch (*(move++)) { case 'y': LV_RIGHTOF_DOT(newstate, i, j) = LINE_YES; break; case 'n': LV_RIGHTOF_DOT(newstate, i, j) = LINE_NO; break; case 'u': LV_RIGHTOF_DOT(newstate, i, j) = LINE_UNKNOWN; break; default: goto fail; } break; case 'v': if (i > newstate->w || j >= newstate->h) goto fail; switch (*(move++)) { case 'y': LV_BELOW_DOT(newstate, i, j) = LINE_YES; break; case 'n': LV_BELOW_DOT(newstate, i, j) = LINE_NO; break; case 'u': LV_BELOW_DOT(newstate, i, j) = LINE_UNKNOWN; break; default: goto fail; } break; default: goto fail; } } /* * Check for completion. */ i = 0; /* placate optimiser */ for (j = 0; j <= newstate->h; j++) { for (i = 0; i < newstate->w; i++) if (LV_RIGHTOF_DOT(newstate, i, j) == LINE_YES) break; if (i < newstate->w) break; } if (j <= newstate->h) { int prevdir = 'R'; int x = i, y = j; int looplen, count; /* * We've found a horizontal edge at (i,j). Follow it round * to see if it's part of a loop. */ looplen = 0; while (1) { int order = dot_order(newstate, x, y, LINE_YES); if (order != 2) goto completion_check_done; if (LEFTOF_DOT(newstate, x, y) == LINE_YES && prevdir != 'L') { x--; prevdir = 'R'; } else if (RIGHTOF_DOT(newstate, x, y) == LINE_YES && prevdir != 'R') { x++; prevdir = 'L'; } else if (ABOVE_DOT(newstate, x, y) == LINE_YES && prevdir != 'U') { y--; prevdir = 'D'; } else if (BELOW_DOT(newstate, x, y) == LINE_YES && prevdir != 'D') { y++; prevdir = 'U'; } else { assert(!"Can't happen"); /* dot_order guarantees success */ } looplen++; if (x == i && y == j) break; } if (x != i || y != j || looplen == 0) goto completion_check_done; /* * We've traced our way round a loop, and we know how many * line segments were involved. Count _all_ the line * segments in the grid, to see if the loop includes them * all. */ count = 0; FORALL_DOTS(newstate, i, j) { count += ((RIGHTOF_DOT(newstate, i, j) == LINE_YES) + (BELOW_DOT(newstate, i, j) == LINE_YES)); } assert(count >= looplen); if (count != looplen) goto completion_check_done; /* * The grid contains one closed loop and nothing else. * Check that all the clues are satisfied. */ FORALL_SQUARES(newstate, i, j) { if (CLUE_AT(newstate, i, j) >= 0) { if (square_order(newstate, i, j, LINE_YES) != CLUE_AT(newstate, i, j)) { goto completion_check_done; } } } /* * Completed! */ newstate->solved = TRUE; } completion_check_done: return newstate; fail: free_game(newstate); return NULL; } /* ---------------------------------------------------------------------- * Drawing routines. */ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, game_state *state, int dir, game_ui *ui, float animtime, float flashtime) { int i, j, n; char c[2]; int line_colour, flash_changed; int clue_mistake; if (!ds->started) { /* * The initial contents of the window are not guaranteed and * can vary with front ends. To be on the safe side, all games * should start by drawing a big background-colour rectangle * covering the whole window. */ draw_rect(dr, 0, 0, SIZE(state->w), SIZE(state->h), COL_BACKGROUND); /* Draw dots */ FORALL_DOTS(state, i, j) { draw_rect(dr, BORDER + i * TILE_SIZE - LINEWIDTH/2, BORDER + j * TILE_SIZE - LINEWIDTH/2, LINEWIDTH, LINEWIDTH, COL_FOREGROUND); } /* Draw clues */ FORALL_SQUARES(state, i, j) { c[0] = CLUE2CHAR(CLUE_AT(state, i, j)); c[1] = '\0'; draw_text(dr, BORDER + i * TILE_SIZE + TILE_SIZE/2, BORDER + j * TILE_SIZE + TILE_SIZE/2, FONT_VARIABLE, TILE_SIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE, COL_FOREGROUND, c); } draw_update(dr, 0, 0, state->w * TILE_SIZE + 2*BORDER + 1, state->h * TILE_SIZE + 2*BORDER + 1); ds->started = TRUE; } if (flashtime > 0 && (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3)) { flash_changed = !ds->flashing; ds->flashing = TRUE; line_colour = COL_HIGHLIGHT; } else { flash_changed = ds->flashing; ds->flashing = FALSE; line_colour = COL_FOREGROUND; } #define CROSS_SIZE (3 * LINEWIDTH / 2) /* Redraw clue colours if necessary */ FORALL_SQUARES(state, i, j) { n = CLUE_AT(state, i, j); if (n < 0) continue; assert(n >= 0 && n <= 4); c[0] = CLUE2CHAR(CLUE_AT(state, i, j)); c[1] = '\0'; clue_mistake = (square_order(state, i, j, LINE_YES) > n || square_order(state, i, j, LINE_NO ) > (4-n)); if (clue_mistake != ds->clue_error[SQUARE_INDEX(state, i, j)]) { draw_rect(dr, BORDER + i * TILE_SIZE + CROSS_SIZE, BORDER + j * TILE_SIZE + CROSS_SIZE, TILE_SIZE - CROSS_SIZE * 2, TILE_SIZE - CROSS_SIZE * 2, COL_BACKGROUND); draw_text(dr, BORDER + i * TILE_SIZE + TILE_SIZE/2, BORDER + j * TILE_SIZE + TILE_SIZE/2, FONT_VARIABLE, TILE_SIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE, clue_mistake ? COL_MISTAKE : COL_FOREGROUND, c); draw_update(dr, i * TILE_SIZE + BORDER, j * TILE_SIZE + BORDER, TILE_SIZE, TILE_SIZE); ds->clue_error[SQUARE_INDEX(state, i, j)] = clue_mistake; } } /* I've also had a request to colour lines red if they make a non-solution * loop, or if more than two lines go into any point. I think that would * be good some time. */ #define CLEAR_VL(i, j) \ do { \ draw_rect(dr, \ BORDER + i * TILE_SIZE - CROSS_SIZE, \ BORDER + j * TILE_SIZE + LINEWIDTH - LINEWIDTH/2, \ CROSS_SIZE * 2, \ TILE_SIZE - LINEWIDTH, \ COL_BACKGROUND); \ draw_update(dr, \ BORDER + i * TILE_SIZE - CROSS_SIZE, \ BORDER + j * TILE_SIZE - CROSS_SIZE, \ CROSS_SIZE*2, \ TILE_SIZE + CROSS_SIZE*2); \ } while (0) #define CLEAR_HL(i, j) \ do { \ draw_rect(dr, \ BORDER + i * TILE_SIZE + LINEWIDTH - LINEWIDTH/2, \ BORDER + j * TILE_SIZE - CROSS_SIZE, \ TILE_SIZE - LINEWIDTH, \ CROSS_SIZE * 2, \ COL_BACKGROUND); \ draw_update(dr, \ BORDER + i * TILE_SIZE - CROSS_SIZE, \ BORDER + j * TILE_SIZE - CROSS_SIZE, \ TILE_SIZE + CROSS_SIZE*2, \ CROSS_SIZE*2); \ } while (0) /* Vertical lines */ FORALL_VL(state, i, j) { switch (BELOW_DOT(state, i, j)) { case LINE_UNKNOWN: if (ds->vl[VL_INDEX(state, i, j)] != BELOW_DOT(state, i, j)) { CLEAR_VL(i, j); } break; case LINE_YES: if (ds->vl[VL_INDEX(state, i, j)] != BELOW_DOT(state, i, j) || flash_changed) { CLEAR_VL(i, j); draw_rect(dr, BORDER + i * TILE_SIZE - LINEWIDTH/2, BORDER + j * TILE_SIZE + LINEWIDTH - LINEWIDTH/2, LINEWIDTH, TILE_SIZE - LINEWIDTH, line_colour); } break; case LINE_NO: if (ds->vl[VL_INDEX(state, i, j)] != BELOW_DOT(state, i, j)) { CLEAR_VL(i, j); draw_line(dr, BORDER + i * TILE_SIZE - CROSS_SIZE, BORDER + j * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE, BORDER + i * TILE_SIZE + CROSS_SIZE - 1, BORDER + j * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1, COL_FOREGROUND); draw_line(dr, BORDER + i * TILE_SIZE + CROSS_SIZE - 1, BORDER + j * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE, BORDER + i * TILE_SIZE - CROSS_SIZE, BORDER + j * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1, COL_FOREGROUND); } break; } ds->vl[VL_INDEX(state, i, j)] = BELOW_DOT(state, i, j); } /* Horizontal lines */ FORALL_HL(state, i, j) { switch (RIGHTOF_DOT(state, i, j)) { case LINE_UNKNOWN: if (ds->hl[HL_INDEX(state, i, j)] != RIGHTOF_DOT(state, i, j)) { CLEAR_HL(i, j); } break; case LINE_YES: if (ds->hl[HL_INDEX(state, i, j)] != RIGHTOF_DOT(state, i, j) || flash_changed) { CLEAR_HL(i, j); draw_rect(dr, BORDER + i * TILE_SIZE + LINEWIDTH - LINEWIDTH/2, BORDER + j * TILE_SIZE - LINEWIDTH/2, TILE_SIZE - LINEWIDTH, LINEWIDTH, line_colour); } break; case LINE_NO: if (ds->hl[HL_INDEX(state, i, j)] != RIGHTOF_DOT(state, i, j)) { CLEAR_HL(i, j); draw_line(dr, BORDER + i * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE, BORDER + j * TILE_SIZE + CROSS_SIZE - 1, BORDER + i * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1, BORDER + j * TILE_SIZE - CROSS_SIZE, COL_FOREGROUND); draw_line(dr, BORDER + i * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE, BORDER + j * TILE_SIZE - CROSS_SIZE, BORDER + i * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1, BORDER + j * TILE_SIZE + CROSS_SIZE - 1, COL_FOREGROUND); break; } } ds->hl[HL_INDEX(state, i, j)] = RIGHTOF_DOT(state, i, j); } } static float game_flash_length(game_state *oldstate, game_state *newstate, int dir, game_ui *ui) { if (!oldstate->solved && newstate->solved && !oldstate->cheated && !newstate->cheated) { return FLASH_TIME; } return 0.0F; } static void game_print_size(game_params *params, float *x, float *y) { int pw, ph; /* * I'll use 7mm squares by default. */ game_compute_size(params, 700, &pw, &ph); *x = pw / 100.0F; *y = ph / 100.0F; } static void game_print(drawing *dr, game_state *state, int tilesize) { int ink = print_mono_colour(dr, 0); int x, y; game_drawstate ads, *ds = &ads; game_set_size(dr, ds, NULL, tilesize); /* * Dots. I'll deliberately make the dots a bit wider than the * lines, so you can still see them. (And also because it's * annoyingly tricky to make them _exactly_ the same size...) */ FORALL_DOTS(state, x, y) { draw_circle(dr, BORDER + x * TILE_SIZE, BORDER + y * TILE_SIZE, LINEWIDTH, ink, ink); } /* * Clues. */ FORALL_SQUARES(state, x, y) { if (CLUE_AT(state, x, y) >= 0) { char c[2]; c[0] = CLUE2CHAR(CLUE_AT(state, x, y)); c[1] = '\0'; draw_text(dr, BORDER + x * TILE_SIZE + TILE_SIZE/2, BORDER + y * TILE_SIZE + TILE_SIZE/2, FONT_VARIABLE, TILE_SIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c); } } /* * Lines. (At the moment, I'm not bothering with crosses.) */ FORALL_HL(state, x, y) { if (RIGHTOF_DOT(state, x, y) == LINE_YES) draw_rect(dr, BORDER + x * TILE_SIZE, BORDER + y * TILE_SIZE - LINEWIDTH/2, TILE_SIZE, (LINEWIDTH/2) * 2 + 1, ink); } FORALL_VL(state, x, y) { if (BELOW_DOT(state, x, y) == LINE_YES) draw_rect(dr, BORDER + x * TILE_SIZE - LINEWIDTH/2, BORDER + y * TILE_SIZE, (LINEWIDTH/2) * 2 + 1, TILE_SIZE, ink); } } #ifdef COMBINED #define thegame loopy #endif const struct game thegame = { "Loopy", "games.loopy", "loopy", default_params, game_fetch_preset, decode_params, encode_params, free_params, dup_params, TRUE, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, 1, solve_game, TRUE, game_text_format, new_ui, free_ui, encode_ui, decode_ui, game_changed_state, interpret_move, execute_move, PREFERRED_TILE_SIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, TRUE, FALSE, game_print_size, game_print, FALSE /* wants_statusbar */, FALSE, game_timing_state, 0, /* mouse_priorities */ };