ref: cb0901306de9b1698323823f0180f98c6bac7789
dir: /maxflow.c/
/* * Edmonds-Karp algorithm for finding a maximum flow and minimum * cut in a network. Almost identical to the Ford-Fulkerson * algorithm, but apparently using breadth-first search to find the * _shortest_ augmenting path is a good way to guarantee * termination and ensure the time complexity is not dependent on * the actual value of the maximum flow. I don't understand why * that should be, but it's claimed on the Internet that it's been * proved, and that's good enough for me. I prefer BFS to DFS * anyway :-) */ #include <assert.h> #include <stdlib.h> #include <stdio.h> #include "maxflow.h" #include "puzzles.h" /* for snewn/sfree */ int maxflow_with_scratch(void *scratch, int nv, int source, int sink, int ne, const int *edges, const int *backedges, const int *capacity, int *flow, int *cut) { int *todo = (int *)scratch; int *prev = todo + nv; int *firstedge = todo + 2*nv; int *firstbackedge = todo + 3*nv; int i, j, head, tail, from, to; int totalflow; /* * Scan the edges array to find the index of the first edge * from each node. */ j = 0; for (i = 0; i < ne; i++) while (j <= edges[2*i]) firstedge[j++] = i; while (j < nv) firstedge[j++] = ne; assert(j == nv); /* * Scan the backedges array to find the index of the first edge * _to_ each node. */ j = 0; for (i = 0; i < ne; i++) while (j <= edges[2*backedges[i]+1]) firstbackedge[j++] = i; while (j < nv) firstbackedge[j++] = ne; assert(j == nv); /* * Start the flow off at zero on every edge. */ for (i = 0; i < ne; i++) flow[i] = 0; totalflow = 0; /* * Repeatedly look for an augmenting path, and follow it. */ while (1) { /* * Set up the prev array. */ for (i = 0; i < nv; i++) prev[i] = -1; /* * Initialise the to-do list for BFS. */ head = tail = 0; todo[tail++] = source; /* * Now do the BFS loop. */ while (head < tail && prev[sink] <= 0) { from = todo[head++]; /* * Try all the forward edges out of node `from'. For a * forward edge to be valid, it must have flow * currently less than its capacity. */ for (i = firstedge[from]; i < ne && edges[2*i] == from; i++) { to = edges[2*i+1]; if (to == source || prev[to] >= 0) continue; if (capacity[i] >= 0 && flow[i] >= capacity[i]) continue; /* * This is a valid augmenting edge. Visit node `to'. */ prev[to] = 2*i; todo[tail++] = to; } /* * Try all the backward edges into node `from'. For a * backward edge to be valid, it must have flow * currently greater than zero. */ for (i = firstbackedge[from]; j = backedges[i], i < ne && edges[2*j+1]==from; i++) { to = edges[2*j]; if (to == source || prev[to] >= 0) continue; if (flow[j] <= 0) continue; /* * This is a valid augmenting edge. Visit node `to'. */ prev[to] = 2*j+1; todo[tail++] = to; } } /* * If prev[sink] is non-null, we have found an augmenting * path. */ if (prev[sink] >= 0) { int max; /* * Work backwards along the path figuring out the * maximum flow we can add. */ to = sink; max = -1; while (to != source) { int spare; /* * Find the edge we're currently moving along. */ i = prev[to]; from = edges[i]; assert(from != to); /* * Determine the spare capacity of this edge. */ if (i & 1) spare = flow[i / 2]; /* backward edge */ else if (capacity[i / 2] >= 0) spare = capacity[i / 2] - flow[i / 2]; /* forward edge */ else spare = -1; /* unlimited forward edge */ assert(spare != 0); if (max < 0 || (spare >= 0 && spare < max)) max = spare; to = from; } /* * Fail an assertion if max is still < 0, i.e. there is * an entirely unlimited path from source to sink. Also * max should not _be_ zero, because by construction * this _should_ be an augmenting path. */ assert(max > 0); /* * Now work backwards along the path again, this time * actually adjusting the flow. */ to = sink; while (to != source) { /* * Find the edge we're currently moving along. */ i = prev[to]; from = edges[i]; assert(from != to); /* * Adjust the edge. */ if (i & 1) flow[i / 2] -= max; /* backward edge */ else flow[i / 2] += max; /* forward edge */ to = from; } /* * And adjust the overall flow counter. */ totalflow += max; continue; } /* * If we reach here, we have failed to find an augmenting * path, which means we're done. Output the `cut' array if * required, and leave. */ if (cut) { for (i = 0; i < nv; i++) { if (i == source || prev[i] >= 0) cut[i] = 0; else cut[i] = 1; } } return totalflow; } } int maxflow_scratch_size(int nv) { return (nv * 4) * sizeof(int); } void maxflow_setup_backedges(int ne, const int *edges, int *backedges) { int i, n; for (i = 0; i < ne; i++) backedges[i] = i; /* * We actually can't use the C qsort() function, because we'd * need to pass `edges' as a context parameter to its * comparator function. So instead I'm forced to implement my * own sorting algorithm internally, which is a pest. I'll use * heapsort, because I like it. */ #define LESS(i,j) ( (edges[2*(i)+1] < edges[2*(j)+1]) || \ (edges[2*(i)+1] == edges[2*(j)+1] && \ edges[2*(i)] < edges[2*(j)]) ) #define PARENT(n) ( ((n)-1)/2 ) #define LCHILD(n) ( 2*(n)+1 ) #define RCHILD(n) ( 2*(n)+2 ) #define SWAP(i,j) do { int swaptmp = (i); (i) = (j); (j) = swaptmp; } while (0) /* * Phase 1: build the heap. We want the _largest_ element at * the top. */ n = 0; while (n < ne) { n++; /* * Swap element n with its parent repeatedly to preserve * the heap property. */ i = n-1; while (i > 0) { int p = PARENT(i); if (LESS(backedges[p], backedges[i])) { SWAP(backedges[p], backedges[i]); i = p; } else break; } } /* * Phase 2: repeatedly remove the largest element and stick it * at the top of the array. */ while (n > 0) { /* * The largest element is at position 0. Put it at the top, * and swap the arbitrary element from that position into * position 0. */ n--; SWAP(backedges[0], backedges[n]); /* * Now repeatedly move that arbitrary element down the heap * by swapping it with the more suitable of its children. */ i = 0; while (1) { int lc, rc; lc = LCHILD(i); rc = RCHILD(i); if (lc >= n) break; /* we've hit bottom */ if (rc >= n) { /* * Special case: there is only one child to check. */ if (LESS(backedges[i], backedges[lc])) SWAP(backedges[i], backedges[lc]); /* _Now_ we've hit bottom. */ break; } else { /* * The common case: there are two children and we * must check them both. */ if (LESS(backedges[i], backedges[lc]) || LESS(backedges[i], backedges[rc])) { /* * Pick the more appropriate child to swap with * (i.e. the one which would want to be the * parent if one were above the other - as one * is about to be). */ if (LESS(backedges[lc], backedges[rc])) { SWAP(backedges[i], backedges[rc]); i = rc; } else { SWAP(backedges[i], backedges[lc]); i = lc; } } else { /* This element is in the right place; we're done. */ break; } } } } #undef LESS #undef PARENT #undef LCHILD #undef RCHILD #undef SWAP } int maxflow(int nv, int source, int sink, int ne, const int *edges, const int *capacity, int *flow, int *cut) { void *scratch; int *backedges; int size; int ret; /* * Allocate the space. */ size = ne * sizeof(int) + maxflow_scratch_size(nv); backedges = smalloc(size); if (!backedges) return -1; scratch = backedges + ne; /* * Set up the backedges array. */ maxflow_setup_backedges(ne, edges, backedges); /* * Call the main function. */ ret = maxflow_with_scratch(scratch, nv, source, sink, ne, edges, backedges, capacity, flow, cut); /* * Free the scratch space. */ sfree(backedges); /* * And we're done. */ return ret; } #ifdef TESTMODE #define MAXEDGES 256 #define MAXVERTICES 128 #define ADDEDGE(i,j) do{edges[ne*2] = (i); edges[ne*2+1] = (j); ne++;}while(0) int compare_edge(const void *av, const void *bv) { const int *a = (const int *)av; const int *b = (const int *)bv; if (a[0] < b[0]) return -1; else if (a[0] > b[0]) return +1; else if (a[1] < b[1]) return -1; else if (a[1] > b[1]) return +1; else return 0; } int main(void) { int edges[MAXEDGES*2], ne, nv; int capacity[MAXEDGES], flow[MAXEDGES], cut[MAXVERTICES]; int source, sink, p, q, i, j, ret; /* * Use this algorithm to find a maximal complete matching in a * bipartite graph. */ ne = 0; nv = 0; source = nv++; p = nv; nv += 5; q = nv; nv += 5; sink = nv++; for (i = 0; i < 5; i++) { capacity[ne] = 1; ADDEDGE(source, p+i); } for (i = 0; i < 5; i++) { capacity[ne] = 1; ADDEDGE(q+i, sink); } j = ne; capacity[ne] = 1; ADDEDGE(p+0,q+0); capacity[ne] = 1; ADDEDGE(p+1,q+0); capacity[ne] = 1; ADDEDGE(p+1,q+1); capacity[ne] = 1; ADDEDGE(p+2,q+1); capacity[ne] = 1; ADDEDGE(p+2,q+2); capacity[ne] = 1; ADDEDGE(p+3,q+2); capacity[ne] = 1; ADDEDGE(p+3,q+3); capacity[ne] = 1; ADDEDGE(p+4,q+3); /* capacity[ne] = 1; ADDEDGE(p+2,q+4); */ qsort(edges, ne, 2*sizeof(int), compare_edge); ret = maxflow(nv, source, sink, ne, edges, capacity, flow, cut); printf("ret = %d\n", ret); for (i = 0; i < ne; i++) printf("flow %d: %d -> %d\n", flow[i], edges[2*i], edges[2*i+1]); for (i = 0; i < nv; i++) if (cut[i] == 0) printf("difficult set includes %d\n", i); return 0; } #endif