ref: ac72b6e1480822433bafd1659ceeeefdaf91f78b
dir: /flip.c/
/* * flip.c: Puzzle involving lighting up all the squares on a grid, * where each click toggles an overlapping set of lights. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <math.h> #include "puzzles.h" #include "tree234.h" enum { COL_BACKGROUND, COL_WRONG, COL_RIGHT, COL_GRID, COL_DIAG, COL_HINT, COL_CURSOR, NCOLOURS }; #define PREFERRED_TILE_SIZE 48 #define TILE_SIZE (ds->tilesize) #define BORDER (TILE_SIZE / 2) #define COORD(x) ( (x) * TILE_SIZE + BORDER ) #define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 ) #define ANIM_TIME 0.25F #define FLASH_FRAME 0.07F /* * Possible ways to decide which lights are toggled by each click. * Essentially, each of these describes a means of inventing a * matrix over GF(2). */ enum { CROSSES, RANDOM }; struct game_params { int w, h; int matrix_type; }; /* * This structure is shared between all the game_states describing * a particular game, so it's reference-counted. */ struct matrix { int refcount; unsigned char *matrix; /* array of (w*h) by (w*h) */ }; struct game_state { int w, h; int moves, completed, cheated, hints_active; unsigned char *grid; /* array of w*h */ struct matrix *matrix; }; static game_params *default_params(void) { game_params *ret = snew(game_params); ret->w = ret->h = 5; ret->matrix_type = CROSSES; return ret; } static const struct game_params flip_presets[] = { {3, 3, CROSSES}, {4, 4, CROSSES}, {5, 5, CROSSES}, {3, 3, RANDOM}, {4, 4, RANDOM}, {5, 5, RANDOM}, }; static int game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; char str[80]; if (i < 0 || i >= lenof(flip_presets)) return FALSE; ret = snew(game_params); *ret = flip_presets[i]; sprintf(str, "%dx%d %s", ret->w, ret->h, ret->matrix_type == CROSSES ? "Crosses" : "Random"); *name = dupstr(str); *params = ret; return TRUE; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *ret, char const *string) { ret->w = ret->h = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; if (*string == 'x') { string++; ret->h = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; } if (*string == 'r') { string++; ret->matrix_type = RANDOM; } else if (*string == 'c') { string++; ret->matrix_type = CROSSES; } } static char *encode_params(game_params *params, int full) { char data[256]; sprintf(data, "%dx%d%s", params->w, params->h, !full ? "" : params->matrix_type == CROSSES ? "c" : "r"); return dupstr(data); } static config_item *game_configure(game_params *params) { config_item *ret = snewn(4, config_item); char buf[80]; ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].sval = dupstr(buf); ret[0].ival = 0; ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->h); ret[1].sval = dupstr(buf); ret[1].ival = 0; ret[2].name = "Shape type"; ret[2].type = C_CHOICES; ret[2].sval = ":Crosses:Random"; ret[2].ival = params->matrix_type; ret[3].name = NULL; ret[3].type = C_END; ret[3].sval = NULL; ret[3].ival = 0; return ret; } static game_params *custom_params(config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].sval); ret->h = atoi(cfg[1].sval); ret->matrix_type = cfg[2].ival; return ret; } static char *validate_params(game_params *params, int full) { if (params->w <= 0 || params->h <= 0) return "Width and height must both be greater than zero"; return NULL; } static char *encode_bitmap(unsigned char *bmp, int len) { int slen = (len + 3) / 4; char *ret; int i; ret = snewn(slen + 1, char); for (i = 0; i < slen; i++) { int j, v; v = 0; for (j = 0; j < 4; j++) if (i*4+j < len && bmp[i*4+j]) v |= 8 >> j; ret[i] = "0123456789abcdef"[v]; } ret[slen] = '\0'; return ret; } static void decode_bitmap(unsigned char *bmp, int len, char *hex) { int slen = (len + 3) / 4; int i; for (i = 0; i < slen; i++) { int j, v, c = hex[i]; if (c >= '0' && c <= '9') v = c - '0'; else if (c >= 'A' && c <= 'F') v = c - 'A' + 10; else if (c >= 'a' && c <= 'f') v = c - 'a' + 10; else v = 0; /* shouldn't happen */ for (j = 0; j < 4; j++) { if (i*4+j < len) { if (v & (8 >> j)) bmp[i*4+j] = 1; else bmp[i*4+j] = 0; } } } } /* * Structure used during random matrix generation, and a compare * function to permit storage in a tree234. */ struct sq { int cx, cy; /* coords of click square */ int x, y; /* coords of output square */ /* * Number of click squares which currently affect this output * square. */ int coverage; /* * Number of output squares currently affected by this click * square. */ int ominosize; }; #define SORT(field) do { \ if (a->field < b->field) \ return -1; \ else if (a->field > b->field) \ return +1; \ } while (0) /* * Compare function for choosing the next square to add. We must * sort by coverage, then by omino size, then everything else. */ static int sqcmp_pick(void *av, void *bv) { struct sq *a = (struct sq *)av; struct sq *b = (struct sq *)bv; SORT(coverage); SORT(ominosize); SORT(cy); SORT(cx); SORT(y); SORT(x); return 0; } /* * Compare function for adjusting the coverage figures after a * change. We sort first by coverage and output square, then by * everything else. */ static int sqcmp_cov(void *av, void *bv) { struct sq *a = (struct sq *)av; struct sq *b = (struct sq *)bv; SORT(coverage); SORT(y); SORT(x); SORT(ominosize); SORT(cy); SORT(cx); return 0; } /* * Compare function for adjusting the omino sizes after a change. * We sort first by omino size and input square, then by everything * else. */ static int sqcmp_osize(void *av, void *bv) { struct sq *a = (struct sq *)av; struct sq *b = (struct sq *)bv; SORT(ominosize); SORT(cy); SORT(cx); SORT(coverage); SORT(y); SORT(x); return 0; } static void addsq(tree234 *t, int w, int h, int cx, int cy, int x, int y, unsigned char *matrix) { int wh = w * h; struct sq *sq; int i; if (x < 0 || x >= w || y < 0 || y >= h) return; if (abs(x-cx) > 1 || abs(y-cy) > 1) return; if (matrix[(cy*w+cx) * wh + y*w+x]) return; sq = snew(struct sq); sq->cx = cx; sq->cy = cy; sq->x = x; sq->y = y; sq->coverage = sq->ominosize = 0; for (i = 0; i < wh; i++) { if (matrix[i * wh + y*w+x]) sq->coverage++; if (matrix[(cy*w+cx) * wh + i]) sq->ominosize++; } if (add234(t, sq) != sq) sfree(sq); /* already there */ } static void addneighbours(tree234 *t, int w, int h, int cx, int cy, int x, int y, unsigned char *matrix) { addsq(t, w, h, cx, cy, x-1, y, matrix); addsq(t, w, h, cx, cy, x+1, y, matrix); addsq(t, w, h, cx, cy, x, y-1, matrix); addsq(t, w, h, cx, cy, x, y+1, matrix); } static char *new_game_desc(game_params *params, random_state *rs, char **aux, int interactive) { int w = params->w, h = params->h, wh = w * h; int i, j; unsigned char *matrix, *grid; char *mbmp, *gbmp, *ret; matrix = snewn(wh * wh, unsigned char); grid = snewn(wh, unsigned char); /* * First set up the matrix. */ switch (params->matrix_type) { case CROSSES: for (i = 0; i < wh; i++) { int ix = i % w, iy = i / w; for (j = 0; j < wh; j++) { int jx = j % w, jy = j / w; if (abs(jx - ix) + abs(jy - iy) <= 1) matrix[i*wh+j] = 1; else matrix[i*wh+j] = 0; } } break; case RANDOM: while (1) { tree234 *pick, *cov, *osize; int limit; pick = newtree234(sqcmp_pick); cov = newtree234(sqcmp_cov); osize = newtree234(sqcmp_osize); memset(matrix, 0, wh * wh); for (i = 0; i < wh; i++) { matrix[i*wh+i] = 1; } for (i = 0; i < wh; i++) { int ix = i % w, iy = i / w; addneighbours(pick, w, h, ix, iy, ix, iy, matrix); addneighbours(cov, w, h, ix, iy, ix, iy, matrix); addneighbours(osize, w, h, ix, iy, ix, iy, matrix); } /* * Repeatedly choose a square to add to the matrix, * until we have enough. I'll arbitrarily choose our * limit to be the same as the total number of set bits * in the crosses matrix. */ limit = 4*wh - 2*(w+h); /* centre squares already present */ while (limit-- > 0) { struct sq *sq, *sq2, sqlocal; int k; /* * Find the lowest element in the pick tree. */ sq = index234(pick, 0); /* * Find the highest element with the same coverage * and omino size, by setting all other elements to * lots. */ sqlocal = *sq; sqlocal.cx = sqlocal.cy = sqlocal.x = sqlocal.y = wh; sq = findrelpos234(pick, &sqlocal, NULL, REL234_LT, &k); assert(sq != 0); /* * Pick at random from all elements up to k of the * pick tree. */ k = random_upto(rs, k+1); sq = delpos234(pick, k); del234(cov, sq); del234(osize, sq); /* * Add this square to the matrix. */ matrix[(sq->cy * w + sq->cx) * wh + (sq->y * w + sq->x)] = 1; /* * Correct the matrix coverage field of any sq * which points at this output square. */ sqlocal = *sq; sqlocal.cx = sqlocal.cy = sqlocal.ominosize = -1; while ((sq2 = findrel234(cov, &sqlocal, NULL, REL234_GT)) != NULL && sq2->coverage == sq->coverage && sq2->x == sq->x && sq2->y == sq->y) { del234(pick, sq2); del234(cov, sq2); del234(osize, sq2); sq2->coverage++; add234(pick, sq2); add234(cov, sq2); add234(osize, sq2); } /* * Correct the omino size field of any sq which * points at this input square. */ sqlocal = *sq; sqlocal.x = sqlocal.y = sqlocal.coverage = -1; while ((sq2 = findrel234(osize, &sqlocal, NULL, REL234_GT)) != NULL && sq2->ominosize == sq->ominosize && sq2->cx == sq->cx && sq2->cy == sq->cy) { del234(pick, sq2); del234(cov, sq2); del234(osize, sq2); sq2->ominosize++; add234(pick, sq2); add234(cov, sq2); add234(osize, sq2); } /* * The sq we actually picked out of the tree is * finished with; but its neighbours now need to * appear. */ addneighbours(pick, w,h, sq->cx,sq->cy, sq->x,sq->y, matrix); addneighbours(cov, w,h, sq->cx,sq->cy, sq->x,sq->y, matrix); addneighbours(osize, w,h, sq->cx,sq->cy, sq->x,sq->y, matrix); sfree(sq); } /* * Free all remaining sq structures. */ { struct sq *sq; while ((sq = delpos234(pick, 0)) != NULL) sfree(sq); } freetree234(pick); freetree234(cov); freetree234(osize); /* * Finally, check to see if any two matrix rows are * exactly identical. If so, this is not an acceptable * matrix, and we give up and go round again. * * I haven't been immediately able to think of a * plausible means of algorithmically avoiding this * situation (by, say, making a small perturbation to * an offending matrix), so for the moment I'm just * going to deal with it by throwing the whole thing * away. I suspect this will lead to scalability * problems (since most of the things happening in * these matrices are local, the chance of _some_ * neighbourhood having two identical regions will * increase with the grid area), but so far this puzzle * seems to be really hard at large sizes so I'm not * massively worried yet. Anyone needs this done * better, they're welcome to submit a patch. */ for (i = 0; i < wh; i++) { for (j = 0; j < wh; j++) if (i != j && !memcmp(matrix + i * wh, matrix + j * wh, wh)) break; if (j < wh) break; } if (i == wh) break; /* no matches found */ } break; } /* * Now invent a random initial set of lights. * * At first glance it looks as if it might be quite difficult * to choose equiprobably from all soluble light sets. After * all, soluble light sets are those in the image space of the * transformation matrix; so first we'd have to identify that * space and its dimension, then pick a random coordinate for * each basis vector and recombine. Lot of fiddly matrix * algebra there. * * However, vector spaces are nicely orthogonal and relieve us * of all that difficulty. For every point in the image space, * there are precisely as many points in the input space that * map to it as there are elements in the kernel of the * transformation matrix (because adding any kernel element to * the input does not change the output, and because any two * inputs mapping to the same output must differ by an element * of the kernel because that's what the kernel _is_); and * these cosets are all disjoint (obviously, since no input * point can map to more than one output point) and cover the * whole space (equally obviously, because no input point can * map to fewer than one output point!). * * So the input space contains the same number of points for * each point in the output space; thus, we can simply choose * equiprobably from elements of the _input_ space, and filter * the result through the transformation matrix in the obvious * way, and we thereby guarantee to choose equiprobably from * all the output points. Phew! */ while (1) { memset(grid, 0, wh); for (i = 0; i < wh; i++) { int v = random_upto(rs, 2); if (v) { for (j = 0; j < wh; j++) grid[j] ^= matrix[i*wh+j]; } } /* * Ensure we don't have the starting state already! */ for (i = 0; i < wh; i++) if (grid[i]) break; if (i < wh) break; } /* * Now encode the matrix and the starting grid as a game * description. We'll do this by concatenating two great big * hex bitmaps. */ mbmp = encode_bitmap(matrix, wh*wh); gbmp = encode_bitmap(grid, wh); ret = snewn(strlen(mbmp) + strlen(gbmp) + 2, char); sprintf(ret, "%s,%s", mbmp, gbmp); sfree(mbmp); sfree(gbmp); sfree(matrix); sfree(grid); return ret; } static char *validate_desc(game_params *params, char *desc) { int w = params->w, h = params->h, wh = w * h; int mlen = (wh*wh+3)/4, glen = (wh+3)/4; if (strspn(desc, "0123456789abcdefABCDEF") != mlen) return "Matrix description is wrong length"; if (desc[mlen] != ',') return "Expected comma after matrix description"; if (strspn(desc+mlen+1, "0123456789abcdefABCDEF") != glen) return "Grid description is wrong length"; if (desc[mlen+1+glen]) return "Unexpected data after grid description"; return NULL; } static game_state *new_game(midend *me, game_params *params, char *desc) { int w = params->w, h = params->h, wh = w * h; int mlen = (wh*wh+3)/4; game_state *state = snew(game_state); state->w = w; state->h = h; state->completed = FALSE; state->cheated = FALSE; state->hints_active = FALSE; state->moves = 0; state->matrix = snew(struct matrix); state->matrix->refcount = 1; state->matrix->matrix = snewn(wh*wh, unsigned char); decode_bitmap(state->matrix->matrix, wh*wh, desc); state->grid = snewn(wh, unsigned char); decode_bitmap(state->grid, wh, desc + mlen + 1); return state; } static game_state *dup_game(game_state *state) { game_state *ret = snew(game_state); ret->w = state->w; ret->h = state->h; ret->completed = state->completed; ret->cheated = state->cheated; ret->hints_active = state->hints_active; ret->moves = state->moves; ret->matrix = state->matrix; state->matrix->refcount++; ret->grid = snewn(ret->w * ret->h, unsigned char); memcpy(ret->grid, state->grid, ret->w * ret->h); return ret; } static void free_game(game_state *state) { sfree(state->grid); if (--state->matrix->refcount <= 0) { sfree(state->matrix->matrix); sfree(state->matrix); } sfree(state); } static void rowxor(unsigned char *row1, unsigned char *row2, int len) { int i; for (i = 0; i < len; i++) row1[i] ^= row2[i]; } static char *solve_game(game_state *state, game_state *currstate, char *aux, char **error) { int w = state->w, h = state->h, wh = w * h; unsigned char *equations, *solution, *shortest; int *und, nund; int rowsdone, colsdone; int i, j, k, len, bestlen; char *ret; /* * Set up a list of simultaneous equations. Each one is of * length (wh+1) and has wh coefficients followed by a value. */ equations = snewn((wh + 1) * wh, unsigned char); for (i = 0; i < wh; i++) { for (j = 0; j < wh; j++) equations[i * (wh+1) + j] = currstate->matrix->matrix[j*wh+i]; equations[i * (wh+1) + wh] = currstate->grid[i] & 1; } /* * Perform Gaussian elimination over GF(2). */ rowsdone = colsdone = 0; nund = 0; und = snewn(wh, int); do { /* * Find the leftmost column which has a 1 in it somewhere * outside the first `rowsdone' rows. */ j = -1; for (i = colsdone; i < wh; i++) { for (j = rowsdone; j < wh; j++) if (equations[j * (wh+1) + i]) break; if (j < wh) break; /* found one */ /* * This is a column which will not have an equation * controlling it. Mark it as undetermined. */ und[nund++] = i; } /* * If there wasn't one, then we've finished: all remaining * equations are of the form 0 = constant. Check to see if * any of them wants 0 to be equal to 1; this is the * condition which indicates an insoluble problem * (therefore _hopefully_ one typed in by a user!). */ if (i == wh) { for (j = rowsdone; j < wh; j++) if (equations[j * (wh+1) + wh]) { *error = "No solution exists for this position"; sfree(equations); sfree(und); return NULL; } break; } /* * We've found a 1. It's in column i, and the topmost 1 in * that column is in row j. Do a row-XOR to move it up to * the topmost row if it isn't already there. */ assert(j != -1); if (j > rowsdone) rowxor(equations + rowsdone*(wh+1), equations + j*(wh+1), wh+1); /* * Do row-XORs to eliminate that 1 from all rows below the * topmost row. */ for (j = rowsdone + 1; j < wh; j++) if (equations[j*(wh+1) + i]) rowxor(equations + j*(wh+1), equations + rowsdone*(wh+1), wh+1); /* * Mark this row and column as done. */ rowsdone++; colsdone = i+1; /* * If we've done all the rows, terminate. */ } while (rowsdone < wh); /* * If we reach here, we have the ability to produce a solution. * So we go through _all_ possible solutions (each * corresponding to a set of arbitrary choices of those * components not directly determined by an equation), and pick * one requiring the smallest number of flips. */ solution = snewn(wh, unsigned char); shortest = snewn(wh, unsigned char); memset(solution, 0, wh); bestlen = wh + 1; while (1) { /* * Find a solution based on the current values of the * undetermined variables. */ for (j = rowsdone; j-- ;) { int v; /* * Find the leftmost set bit in this equation. */ for (i = 0; i < wh; i++) if (equations[j * (wh+1) + i]) break; assert(i < wh); /* there must have been one! */ /* * Compute this variable using the rest. */ v = equations[j * (wh+1) + wh]; for (k = i+1; k < wh; k++) if (equations[j * (wh+1) + k]) v ^= solution[k]; solution[i] = v; } /* * Compare this solution to the current best one, and * replace the best one if this one is shorter. */ len = 0; for (i = 0; i < wh; i++) if (solution[i]) len++; if (len < bestlen) { bestlen = len; memcpy(shortest, solution, wh); } /* * Now increment the binary number given by the * undetermined variables: turn all 1s into 0s until we see * a 0, at which point we turn it into a 1. */ for (i = 0; i < nund; i++) { solution[und[i]] = !solution[und[i]]; if (solution[und[i]]) break; } /* * If we didn't find a 0 at any point, we have wrapped * round and are back at the start, i.e. we have enumerated * all solutions. */ if (i == nund) break; } /* * We have a solution. Produce a move string encoding the * solution. */ ret = snewn(wh + 2, char); ret[0] = 'S'; for (i = 0; i < wh; i++) ret[i+1] = shortest[i] ? '1' : '0'; ret[wh+1] = '\0'; sfree(shortest); sfree(solution); sfree(equations); sfree(und); return ret; } static char *game_text_format(game_state *state) { return NULL; } struct game_ui { int cx, cy, cdraw; }; static game_ui *new_ui(game_state *state) { game_ui *ui = snew(game_ui); ui->cx = ui->cy = ui->cdraw = 0; return ui; } static void free_ui(game_ui *ui) { sfree(ui); } static char *encode_ui(game_ui *ui) { return NULL; } static void decode_ui(game_ui *ui, char *encoding) { } static void game_changed_state(game_ui *ui, game_state *oldstate, game_state *newstate) { } struct game_drawstate { int w, h, started; unsigned char *tiles; int tilesize; }; static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds, int x, int y, int button) { int w = state->w, h = state->h, wh = w * h; char buf[80], *nullret = NULL; if (button == LEFT_BUTTON || button == CURSOR_SELECT || button == ' ' || button == '\r' || button == '\n') { int tx, ty; if (button == LEFT_BUTTON) { tx = FROMCOORD(x), ty = FROMCOORD(y); ui->cdraw = 0; } else { tx = ui->cx; ty = ui->cy; ui->cdraw = 1; } nullret = ""; if (tx >= 0 && tx < w && ty >= 0 && ty < h) { /* * It's just possible that a manually entered game ID * will have at least one square do nothing whatsoever. * If so, we avoid encoding a move at all. */ int i = ty*w+tx, j, makemove = FALSE; for (j = 0; j < wh; j++) { if (state->matrix->matrix[i*wh+j]) makemove = TRUE; } if (makemove) { sprintf(buf, "M%d,%d", tx, ty); return dupstr(buf); } else { return NULL; } } } else if (button == CURSOR_UP || button == CURSOR_DOWN || button == CURSOR_RIGHT || button == CURSOR_LEFT) { int dx = 0, dy = 0; switch (button) { case CURSOR_UP: dy = -1; break; case CURSOR_DOWN: dy = 1; break; case CURSOR_RIGHT: dx = 1; break; case CURSOR_LEFT: dx = -1; break; default: assert(!"shouldn't get here"); } ui->cx += dx; ui->cy += dy; ui->cx = min(max(ui->cx, 0), state->w - 1); ui->cy = min(max(ui->cy, 0), state->h - 1); ui->cdraw = 1; nullret = ""; } return nullret; } static game_state *execute_move(game_state *from, char *move) { int w = from->w, h = from->h, wh = w * h; game_state *ret; int x, y; if (move[0] == 'S' && strlen(move) == wh+1) { int i; ret = dup_game(from); ret->hints_active = TRUE; ret->cheated = TRUE; for (i = 0; i < wh; i++) { ret->grid[i] &= ~2; if (move[i+1] != '0') ret->grid[i] |= 2; } return ret; } else if (move[0] == 'M' && sscanf(move+1, "%d,%d", &x, &y) == 2 && x >= 0 && x < w && y >= 0 && y < h) { int i, j, done; ret = dup_game(from); if (!ret->completed) ret->moves++; i = y * w + x; done = TRUE; for (j = 0; j < wh; j++) { ret->grid[j] ^= ret->matrix->matrix[i*wh+j]; if (ret->grid[j] & 1) done = FALSE; } ret->grid[i] ^= 2; /* toggle hint */ if (done) { ret->completed = TRUE; ret->hints_active = FALSE; } return ret; } else return NULL; /* can't parse move string */ } /* ---------------------------------------------------------------------- * Drawing routines. */ static void game_compute_size(game_params *params, int tilesize, int *x, int *y) { /* Ick: fake up `ds->tilesize' for macro expansion purposes */ struct { int tilesize; } ads, *ds = &ads; ads.tilesize = tilesize; *x = TILE_SIZE * params->w + 2 * BORDER; *y = TILE_SIZE * params->h + 2 * BORDER; } static void game_set_size(drawing *dr, game_drawstate *ds, game_params *params, int tilesize) { ds->tilesize = tilesize; } static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); ret[COL_WRONG * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] / 3; ret[COL_WRONG * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] / 3; ret[COL_WRONG * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] / 3; ret[COL_RIGHT * 3 + 0] = 1.0F; ret[COL_RIGHT * 3 + 1] = 1.0F; ret[COL_RIGHT * 3 + 2] = 1.0F; ret[COL_GRID * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] / 1.5F; ret[COL_GRID * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] / 1.5F; ret[COL_GRID * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] / 1.5F; ret[COL_DIAG * 3 + 0] = ret[COL_GRID * 3 + 0]; ret[COL_DIAG * 3 + 1] = ret[COL_GRID * 3 + 1]; ret[COL_DIAG * 3 + 2] = ret[COL_GRID * 3 + 2]; ret[COL_HINT * 3 + 0] = 1.0F; ret[COL_HINT * 3 + 1] = 0.0F; ret[COL_HINT * 3 + 2] = 0.0F; ret[COL_CURSOR * 3 + 0] = 0.8F; ret[COL_CURSOR * 3 + 1] = 0.0F; ret[COL_CURSOR * 3 + 2] = 0.0F; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(drawing *dr, game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); int i; ds->started = FALSE; ds->w = state->w; ds->h = state->h; ds->tiles = snewn(ds->w*ds->h, unsigned char); ds->tilesize = 0; /* haven't decided yet */ for (i = 0; i < ds->w*ds->h; i++) ds->tiles[i] = -1; return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->tiles); sfree(ds); } static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state, int x, int y, int tile, int anim, float animtime) { int w = ds->w, h = ds->h, wh = w * h; int bx = x * TILE_SIZE + BORDER, by = y * TILE_SIZE + BORDER; int i, j, dcol = (tile & 4) ? COL_CURSOR : COL_DIAG; clip(dr, bx+1, by+1, TILE_SIZE-1, TILE_SIZE-1); draw_rect(dr, bx+1, by+1, TILE_SIZE-1, TILE_SIZE-1, anim ? COL_BACKGROUND : tile & 1 ? COL_WRONG : COL_RIGHT); if (anim) { /* * Draw a polygon indicating that the square is diagonally * flipping over. */ int coords[8], colour; coords[0] = bx + TILE_SIZE; coords[1] = by; coords[2] = bx + TILE_SIZE * animtime; coords[3] = by + TILE_SIZE * animtime; coords[4] = bx; coords[5] = by + TILE_SIZE; coords[6] = bx + TILE_SIZE - TILE_SIZE * animtime; coords[7] = by + TILE_SIZE - TILE_SIZE * animtime; colour = (tile & 1 ? COL_WRONG : COL_RIGHT); if (animtime < 0.5) colour = COL_WRONG + COL_RIGHT - colour; draw_polygon(dr, coords, 4, colour, COL_GRID); } /* * Draw a little diagram in the tile which indicates which * surrounding tiles flip when this one is clicked. */ for (i = 0; i < h; i++) for (j = 0; j < w; j++) if (state->matrix->matrix[(y*w+x)*wh + i*w+j]) { int ox = j - x, oy = i - y; int td = TILE_SIZE / 16; int cx = (bx + TILE_SIZE/2) + (2 * ox - 1) * td; int cy = (by + TILE_SIZE/2) + (2 * oy - 1) * td; if (ox == 0 && oy == 0) draw_rect(dr, cx, cy, 2*td+1, 2*td+1, dcol); else { draw_line(dr, cx, cy, cx+2*td, cy, dcol); draw_line(dr, cx, cy+2*td, cx+2*td, cy+2*td, dcol); draw_line(dr, cx, cy, cx, cy+2*td, dcol); draw_line(dr, cx+2*td, cy, cx+2*td, cy+2*td, dcol); } } /* * Draw a hint rectangle if required. */ if (tile & 2) { int x1 = bx + TILE_SIZE / 20, x2 = bx + TILE_SIZE - TILE_SIZE / 20; int y1 = by + TILE_SIZE / 20, y2 = by + TILE_SIZE - TILE_SIZE / 20; int i = 3; while (i--) { draw_line(dr, x1, y1, x2, y1, COL_HINT); draw_line(dr, x1, y2, x2, y2, COL_HINT); draw_line(dr, x1, y1, x1, y2, COL_HINT); draw_line(dr, x2, y1, x2, y2, COL_HINT); x1++, y1++, x2--, y2--; } } unclip(dr); draw_update(dr, bx+1, by+1, TILE_SIZE-1, TILE_SIZE-1); } static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate, game_state *state, int dir, game_ui *ui, float animtime, float flashtime) { int w = ds->w, h = ds->h, wh = w * h; int i, flashframe; if (!ds->started) { draw_rect(dr, 0, 0, TILE_SIZE * w + 2 * BORDER, TILE_SIZE * h + 2 * BORDER, COL_BACKGROUND); /* * Draw the grid lines. */ for (i = 0; i <= w; i++) draw_line(dr, i * TILE_SIZE + BORDER, BORDER, i * TILE_SIZE + BORDER, h * TILE_SIZE + BORDER, COL_GRID); for (i = 0; i <= h; i++) draw_line(dr, BORDER, i * TILE_SIZE + BORDER, w * TILE_SIZE + BORDER, i * TILE_SIZE + BORDER, COL_GRID); draw_update(dr, 0, 0, TILE_SIZE * w + 2 * BORDER, TILE_SIZE * h + 2 * BORDER); ds->started = TRUE; } if (flashtime) flashframe = flashtime / FLASH_FRAME; else flashframe = -1; animtime /= ANIM_TIME; /* scale it so it goes from 0 to 1 */ for (i = 0; i < wh; i++) { int x = i % w, y = i / w; int fx, fy, fd; int v = state->grid[i]; int vv; if (flashframe >= 0) { fx = (w+1)/2 - min(x+1, w-x); fy = (h+1)/2 - min(y+1, h-y); fd = max(fx, fy); if (fd == flashframe) v |= 1; else if (fd == flashframe - 1) v &= ~1; } if (!state->hints_active) v &= ~2; if (ui->cdraw && ui->cx == x && ui->cy == y) v |= 4; if (oldstate && ((state->grid[i] ^ oldstate->grid[i]) &~ 2)) vv = 255; /* means `animated' */ else vv = v; if (ds->tiles[i] == 255 || vv == 255 || ds->tiles[i] != vv) { draw_tile(dr, ds, state, x, y, v, vv == 255, animtime); ds->tiles[i] = vv; } } { char buf[256]; sprintf(buf, "%sMoves: %d", (state->completed ? (state->cheated ? "Auto-solved. " : "COMPLETED! ") : (state->cheated ? "Auto-solver used. " : "")), state->moves); status_bar(dr, buf); } } static float game_anim_length(game_state *oldstate, game_state *newstate, int dir, game_ui *ui) { return ANIM_TIME; } static float game_flash_length(game_state *oldstate, game_state *newstate, int dir, game_ui *ui) { if (!oldstate->completed && newstate->completed) return FLASH_FRAME * (max((newstate->w+1)/2, (newstate->h+1)/2)+1); return 0.0F; } static int game_timing_state(game_state *state, game_ui *ui) { return TRUE; } static void game_print_size(game_params *params, float *x, float *y) { } static void game_print(drawing *dr, game_state *state, int tilesize) { } #ifdef COMBINED #define thegame flip #endif const struct game thegame = { "Flip", "games.flip", "flip", default_params, game_fetch_preset, decode_params, encode_params, free_params, dup_params, TRUE, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, TRUE, solve_game, FALSE, game_text_format, new_ui, free_ui, encode_ui, decode_ui, game_changed_state, interpret_move, execute_move, PREFERRED_TILE_SIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, FALSE, FALSE, game_print_size, game_print, TRUE, /* wants_statusbar */ FALSE, game_timing_state, 0, /* flags */ };