ref: aa1185f3f584af41770498de7dfe27071374f9bd
dir: /net.c/
/* * net.c: Net game. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <math.h> #include "puzzles.h" #include "tree234.h" #define PI 3.141592653589793238462643383279502884197169399 #define MATMUL(xr,yr,m,x,y) do { \ float rx, ry, xx = (x), yy = (y), *mat = (m); \ rx = mat[0] * xx + mat[2] * yy; \ ry = mat[1] * xx + mat[3] * yy; \ (xr) = rx; (yr) = ry; \ } while (0) /* Direction and other bitfields */ #define R 0x01 #define U 0x02 #define L 0x04 #define D 0x08 #define LOCKED 0x10 #define ACTIVE 0x20 /* Corner flags go in the barriers array */ #define RU 0x10 #define UL 0x20 #define LD 0x40 #define DR 0x80 /* Rotations: Anticlockwise, Clockwise, Flip, general rotate */ #define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) ) #define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) ) #define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) ) #define ROT(x, n) ( ((n)&3) == 0 ? (x) : \ ((n)&3) == 1 ? A(x) : \ ((n)&3) == 2 ? F(x) : C(x) ) /* X and Y displacements */ #define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 ) #define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 ) /* Bit count */ #define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \ (((x) & 0x02) >> 1) + ((x) & 0x01) ) #define TILE_SIZE 32 #define TILE_BORDER 1 #define WINDOW_OFFSET 16 #define ROTATE_TIME 0.13F #define FLASH_FRAME 0.07F enum { COL_BACKGROUND, COL_LOCKED, COL_BORDER, COL_WIRE, COL_ENDPOINT, COL_POWERED, COL_BARRIER, NCOLOURS }; struct game_params { int width; int height; int wrapping; float barrier_probability; }; struct solved_game_state { int width, height; int refcount; unsigned char *tiles; }; struct game_state { int width, height, cx, cy, wrapping, completed, last_rotate_dir; int used_solve, just_used_solve; unsigned char *tiles; unsigned char *barriers; struct solved_game_state *solution; }; #define OFFSET(x2,y2,x1,y1,dir,state) \ ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \ (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height) #define index(state, a, x, y) ( a[(y) * (state)->width + (x)] ) #define tile(state, x, y) index(state, (state)->tiles, x, y) #define barrier(state, x, y) index(state, (state)->barriers, x, y) struct xyd { int x, y, direction; }; static int xyd_cmp(void *av, void *bv) { struct xyd *a = (struct xyd *)av; struct xyd *b = (struct xyd *)bv; if (a->x < b->x) return -1; if (a->x > b->x) return +1; if (a->y < b->y) return -1; if (a->y > b->y) return +1; if (a->direction < b->direction) return -1; if (a->direction > b->direction) return +1; return 0; }; static struct xyd *new_xyd(int x, int y, int direction) { struct xyd *xyd = snew(struct xyd); xyd->x = x; xyd->y = y; xyd->direction = direction; return xyd; } /* ---------------------------------------------------------------------- * Manage game parameters. */ static game_params *default_params(void) { game_params *ret = snew(game_params); ret->width = 5; ret->height = 5; ret->wrapping = FALSE; ret->barrier_probability = 0.0; return ret; } static int game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; char str[80]; static const struct { int x, y, wrap; } values[] = { {5, 5, FALSE}, {7, 7, FALSE}, {9, 9, FALSE}, {11, 11, FALSE}, {13, 11, FALSE}, {5, 5, TRUE}, {7, 7, TRUE}, {9, 9, TRUE}, {11, 11, TRUE}, {13, 11, TRUE}, }; if (i < 0 || i >= lenof(values)) return FALSE; ret = snew(game_params); ret->width = values[i].x; ret->height = values[i].y; ret->wrapping = values[i].wrap; ret->barrier_probability = 0.0; sprintf(str, "%dx%d%s", ret->width, ret->height, ret->wrapping ? " wrapping" : ""); *name = dupstr(str); *params = ret; return TRUE; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static game_params *decode_params(char const *string) { game_params *ret = default_params(); char const *p = string; ret->width = atoi(p); while (*p && isdigit(*p)) p++; if (*p == 'x') { p++; ret->height = atoi(p); while (*p && isdigit(*p)) p++; if ( (ret->wrapping = (*p == 'w')) != 0 ) p++; if (*p == 'b') ret->barrier_probability = atof(p+1); } else { ret->height = ret->width; } return ret; } static char *encode_params(game_params *params) { char ret[400]; int len; len = sprintf(ret, "%dx%d", params->width, params->height); if (params->wrapping) ret[len++] = 'w'; if (params->barrier_probability) len += sprintf(ret+len, "b%g", params->barrier_probability); assert(len < lenof(ret)); ret[len] = '\0'; return dupstr(ret); } static config_item *game_configure(game_params *params) { config_item *ret; char buf[80]; ret = snewn(5, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->width); ret[0].sval = dupstr(buf); ret[0].ival = 0; ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->height); ret[1].sval = dupstr(buf); ret[1].ival = 0; ret[2].name = "Walls wrap around"; ret[2].type = C_BOOLEAN; ret[2].sval = NULL; ret[2].ival = params->wrapping; ret[3].name = "Barrier probability"; ret[3].type = C_STRING; sprintf(buf, "%g", params->barrier_probability); ret[3].sval = dupstr(buf); ret[3].ival = 0; ret[4].name = NULL; ret[4].type = C_END; ret[4].sval = NULL; ret[4].ival = 0; return ret; } static game_params *custom_params(config_item *cfg) { game_params *ret = snew(game_params); ret->width = atoi(cfg[0].sval); ret->height = atoi(cfg[1].sval); ret->wrapping = cfg[2].ival; ret->barrier_probability = (float)atof(cfg[3].sval); return ret; } static char *validate_params(game_params *params) { if (params->width <= 0 && params->height <= 0) return "Width and height must both be greater than zero"; if (params->width <= 0) return "Width must be greater than zero"; if (params->height <= 0) return "Height must be greater than zero"; if (params->width <= 1 && params->height <= 1) return "At least one of width and height must be greater than one"; if (params->barrier_probability < 0) return "Barrier probability may not be negative"; if (params->barrier_probability > 1) return "Barrier probability may not be greater than 1"; return NULL; } /* ---------------------------------------------------------------------- * Randomly select a new game seed. */ static char *new_game_seed(game_params *params, random_state *rs, game_aux_info **aux) { /* * The full description of a Net game is far too large to * encode directly in the seed, so by default we'll have to go * for the simple approach of providing a random-number seed. * * (This does not restrict me from _later on_ inventing a seed * string syntax which can never be generated by this code - * for example, strings beginning with a letter - allowing me * to type in a precise game, and have new_game detect it and * understand it and do something completely different.) */ char buf[40]; sprintf(buf, "%lu", random_bits(rs, 32)); return dupstr(buf); } static void game_free_aux_info(game_aux_info *aux) { assert(!"Shouldn't happen"); } static char *validate_seed(game_params *params, char *seed) { /* * Since any string at all will suffice to seed the RNG, there * is no validation required. */ return NULL; } /* ---------------------------------------------------------------------- * Construct an initial game state, given a seed and parameters. */ static game_state *new_game(game_params *params, char *seed) { random_state *rs; game_state *state; tree234 *possibilities, *barriers; int w, h, x, y, nbarriers; assert(params->width > 0 && params->height > 0); assert(params->width > 1 || params->height > 1); /* * Create a blank game state. */ state = snew(game_state); w = state->width = params->width; h = state->height = params->height; state->cx = state->width / 2; state->cy = state->height / 2; state->wrapping = params->wrapping; state->last_rotate_dir = 0; state->completed = state->used_solve = state->just_used_solve = FALSE; state->tiles = snewn(state->width * state->height, unsigned char); memset(state->tiles, 0, state->width * state->height); state->barriers = snewn(state->width * state->height, unsigned char); memset(state->barriers, 0, state->width * state->height); /* * Set up border barriers if this is a non-wrapping game. */ if (!state->wrapping) { for (x = 0; x < state->width; x++) { barrier(state, x, 0) |= U; barrier(state, x, state->height-1) |= D; } for (y = 0; y < state->height; y++) { barrier(state, 0, y) |= L; barrier(state, state->width-1, y) |= R; } } /* * Seed the internal random number generator. */ rs = random_init(seed, strlen(seed)); /* * Construct the unshuffled grid. * * To do this, we simply start at the centre point, repeatedly * choose a random possibility out of the available ways to * extend a used square into an unused one, and do it. After * extending the third line out of a square, we remove the * fourth from the possibilities list to avoid any full-cross * squares (which would make the game too easy because they * only have one orientation). * * The slightly worrying thing is the avoidance of full-cross * squares. Can this cause our unsophisticated construction * algorithm to paint itself into a corner, by getting into a * situation where there are some unreached squares and the * only way to reach any of them is to extend a T-piece into a * full cross? * * Answer: no it can't, and here's a proof. * * Any contiguous group of such unreachable squares must be * surrounded on _all_ sides by T-pieces pointing away from the * group. (If not, then there is a square which can be extended * into one of the `unreachable' ones, and so it wasn't * unreachable after all.) In particular, this implies that * each contiguous group of unreachable squares must be * rectangular in shape (any deviation from that yields a * non-T-piece next to an `unreachable' square). * * So we have a rectangle of unreachable squares, with T-pieces * forming a solid border around the rectangle. The corners of * that border must be connected (since every tile connects all * the lines arriving in it), and therefore the border must * form a closed loop around the rectangle. * * But this can't have happened in the first place, since we * _know_ we've avoided creating closed loops! Hence, no such * situation can ever arise, and the naive grid construction * algorithm will guaranteeably result in a complete grid * containing no unreached squares, no full crosses _and_ no * closed loops. [] */ possibilities = newtree234(xyd_cmp); if (state->cx+1 < state->width) add234(possibilities, new_xyd(state->cx, state->cy, R)); if (state->cy-1 >= 0) add234(possibilities, new_xyd(state->cx, state->cy, U)); if (state->cx-1 >= 0) add234(possibilities, new_xyd(state->cx, state->cy, L)); if (state->cy+1 < state->height) add234(possibilities, new_xyd(state->cx, state->cy, D)); while (count234(possibilities) > 0) { int i; struct xyd *xyd; int x1, y1, d1, x2, y2, d2, d; /* * Extract a randomly chosen possibility from the list. */ i = random_upto(rs, count234(possibilities)); xyd = delpos234(possibilities, i); x1 = xyd->x; y1 = xyd->y; d1 = xyd->direction; sfree(xyd); OFFSET(x2, y2, x1, y1, d1, state); d2 = F(d1); #ifdef DEBUG printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n", x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]); #endif /* * Make the connection. (We should be moving to an as yet * unused tile.) */ tile(state, x1, y1) |= d1; assert(tile(state, x2, y2) == 0); tile(state, x2, y2) |= d2; /* * If we have created a T-piece, remove its last * possibility. */ if (COUNT(tile(state, x1, y1)) == 3) { struct xyd xyd1, *xydp; xyd1.x = x1; xyd1.y = y1; xyd1.direction = 0x0F ^ tile(state, x1, y1); xydp = find234(possibilities, &xyd1, NULL); if (xydp) { #ifdef DEBUG printf("T-piece; removing (%d,%d,%c)\n", xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]); #endif del234(possibilities, xydp); sfree(xydp); } } /* * Remove all other possibilities that were pointing at the * tile we've just moved into. */ for (d = 1; d < 0x10; d <<= 1) { int x3, y3, d3; struct xyd xyd1, *xydp; OFFSET(x3, y3, x2, y2, d, state); d3 = F(d); xyd1.x = x3; xyd1.y = y3; xyd1.direction = d3; xydp = find234(possibilities, &xyd1, NULL); if (xydp) { #ifdef DEBUG printf("Loop avoidance; removing (%d,%d,%c)\n", xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]); #endif del234(possibilities, xydp); sfree(xydp); } } /* * Add new possibilities to the list for moving _out_ of * the tile we have just moved into. */ for (d = 1; d < 0x10; d <<= 1) { int x3, y3; if (d == d2) continue; /* we've got this one already */ if (!state->wrapping) { if (d == U && y2 == 0) continue; if (d == D && y2 == state->height-1) continue; if (d == L && x2 == 0) continue; if (d == R && x2 == state->width-1) continue; } OFFSET(x3, y3, x2, y2, d, state); if (tile(state, x3, y3)) continue; /* this would create a loop */ #ifdef DEBUG printf("New frontier; adding (%d,%d,%c)\n", x2, y2, "0RU3L567D9abcdef"[d]); #endif add234(possibilities, new_xyd(x2, y2, d)); } } /* Having done that, we should have no possibilities remaining. */ assert(count234(possibilities) == 0); freetree234(possibilities); /* * Now compute a list of the possible barrier locations. */ barriers = newtree234(xyd_cmp); for (y = 0; y < state->height; y++) { for (x = 0; x < state->width; x++) { if (!(tile(state, x, y) & R) && (state->wrapping || x < state->width-1)) add234(barriers, new_xyd(x, y, R)); if (!(tile(state, x, y) & D) && (state->wrapping || y < state->height-1)) add234(barriers, new_xyd(x, y, D)); } } /* * Save the unshuffled grid. We do this using a separate * reference-counted structure since it's a large chunk of * memory which we don't want to have to replicate in every * game state while playing. */ { struct solved_game_state *solution; solution = snew(struct solved_game_state); solution->width = state->width; solution->height = state->height; solution->refcount = 1; solution->tiles = snewn(state->width * state->height, unsigned char); memcpy(solution->tiles, state->tiles, state->width * state->height); state->solution = solution; } /* * Now shuffle the grid. */ for (y = 0; y < state->height; y++) { for (x = 0; x < state->width; x++) { int orig = tile(state, x, y); int rot = random_upto(rs, 4); tile(state, x, y) = ROT(orig, rot); } } /* * And now choose barrier locations. (We carefully do this * _after_ shuffling, so that changing the barrier rate in the * params while keeping the game seed the same will give the * same shuffled grid and _only_ change the barrier locations. * Also the way we choose barrier locations, by repeatedly * choosing one possibility from the list until we have enough, * is designed to ensure that raising the barrier rate while * keeping the seed the same will provide a superset of the * previous barrier set - i.e. if you ask for 10 barriers, and * then decide that's still too hard and ask for 20, you'll get * the original 10 plus 10 more, rather than getting 20 new * ones and the chance of remembering your first 10.) */ nbarriers = (int)(params->barrier_probability * count234(barriers)); assert(nbarriers >= 0 && nbarriers <= count234(barriers)); while (nbarriers > 0) { int i; struct xyd *xyd; int x1, y1, d1, x2, y2, d2; /* * Extract a randomly chosen barrier from the list. */ i = random_upto(rs, count234(barriers)); xyd = delpos234(barriers, i); assert(xyd != NULL); x1 = xyd->x; y1 = xyd->y; d1 = xyd->direction; sfree(xyd); OFFSET(x2, y2, x1, y1, d1, state); d2 = F(d1); barrier(state, x1, y1) |= d1; barrier(state, x2, y2) |= d2; nbarriers--; } /* * Clean up the rest of the barrier list. */ { struct xyd *xyd; while ( (xyd = delpos234(barriers, 0)) != NULL) sfree(xyd); freetree234(barriers); } /* * Set up the barrier corner flags, for drawing barriers * prettily when they meet. */ for (y = 0; y < state->height; y++) { for (x = 0; x < state->width; x++) { int dir; for (dir = 1; dir < 0x10; dir <<= 1) { int dir2 = A(dir); int x1, y1, x2, y2, x3, y3; int corner = FALSE; if (!(barrier(state, x, y) & dir)) continue; if (barrier(state, x, y) & dir2) corner = TRUE; x1 = x + X(dir), y1 = y + Y(dir); if (x1 >= 0 && x1 < state->width && y1 >= 0 && y1 < state->height && (barrier(state, x1, y1) & dir2)) corner = TRUE; x2 = x + X(dir2), y2 = y + Y(dir2); if (x2 >= 0 && x2 < state->width && y2 >= 0 && y2 < state->height && (barrier(state, x2, y2) & dir)) corner = TRUE; if (corner) { barrier(state, x, y) |= (dir << 4); if (x1 >= 0 && x1 < state->width && y1 >= 0 && y1 < state->height) barrier(state, x1, y1) |= (A(dir) << 4); if (x2 >= 0 && x2 < state->width && y2 >= 0 && y2 < state->height) barrier(state, x2, y2) |= (C(dir) << 4); x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2); if (x3 >= 0 && x3 < state->width && y3 >= 0 && y3 < state->height) barrier(state, x3, y3) |= (F(dir) << 4); } } } } random_free(rs); return state; } static game_state *dup_game(game_state *state) { game_state *ret; ret = snew(game_state); ret->width = state->width; ret->height = state->height; ret->cx = state->cx; ret->cy = state->cy; ret->wrapping = state->wrapping; ret->completed = state->completed; ret->used_solve = state->used_solve; ret->just_used_solve = state->just_used_solve; ret->last_rotate_dir = state->last_rotate_dir; ret->tiles = snewn(state->width * state->height, unsigned char); memcpy(ret->tiles, state->tiles, state->width * state->height); ret->barriers = snewn(state->width * state->height, unsigned char); memcpy(ret->barriers, state->barriers, state->width * state->height); ret->solution = state->solution; if (ret->solution) ret->solution->refcount++; return ret; } static void free_game(game_state *state) { if (state->solution && --state->solution->refcount <= 0) { sfree(state->solution->tiles); sfree(state->solution); } sfree(state->tiles); sfree(state->barriers); sfree(state); } static game_state *solve_game(game_state *state, game_aux_info *aux, char **error) { game_state *ret; if (!state->solution) { /* * 2005-05-02: This shouldn't happen, at the time of * writing, because Net is incapable of receiving a puzzle * description from outside. If in future it becomes so, * then we will have puzzles for which we don't know the * solution. */ *error = "Solution not known for this puzzle"; return NULL; } assert(state->solution->width == state->width); assert(state->solution->height == state->height); ret = dup_game(state); memcpy(ret->tiles, state->solution->tiles, ret->width * ret->height); ret->used_solve = ret->just_used_solve = TRUE; ret->completed = TRUE; return ret; } static char *game_text_format(game_state *state) { return NULL; } /* ---------------------------------------------------------------------- * Utility routine. */ /* * Compute which squares are reachable from the centre square, as a * quick visual aid to determining how close the game is to * completion. This is also a simple way to tell if the game _is_ * completed - just call this function and see whether every square * is marked active. */ static unsigned char *compute_active(game_state *state) { unsigned char *active; tree234 *todo; struct xyd *xyd; active = snewn(state->width * state->height, unsigned char); memset(active, 0, state->width * state->height); /* * We only store (x,y) pairs in todo, but it's easier to reuse * xyd_cmp and just store direction 0 every time. */ todo = newtree234(xyd_cmp); index(state, active, state->cx, state->cy) = ACTIVE; add234(todo, new_xyd(state->cx, state->cy, 0)); while ( (xyd = delpos234(todo, 0)) != NULL) { int x1, y1, d1, x2, y2, d2; x1 = xyd->x; y1 = xyd->y; sfree(xyd); for (d1 = 1; d1 < 0x10; d1 <<= 1) { OFFSET(x2, y2, x1, y1, d1, state); d2 = F(d1); /* * If the next tile in this direction is connected to * us, and there isn't a barrier in the way, and it * isn't already marked active, then mark it active and * add it to the to-examine list. */ if ((tile(state, x1, y1) & d1) && (tile(state, x2, y2) & d2) && !(barrier(state, x1, y1) & d1) && !index(state, active, x2, y2)) { index(state, active, x2, y2) = ACTIVE; add234(todo, new_xyd(x2, y2, 0)); } } } /* Now we expect the todo list to have shrunk to zero size. */ assert(count234(todo) == 0); freetree234(todo); return active; } struct game_ui { int cur_x, cur_y; int cur_visible; random_state *rs; /* used for jumbling */ }; static game_ui *new_ui(game_state *state) { void *seed; int seedsize; game_ui *ui = snew(game_ui); ui->cur_x = state->width / 2; ui->cur_y = state->height / 2; ui->cur_visible = FALSE; get_random_seed(&seed, &seedsize); ui->rs = random_init(seed, seedsize); sfree(seed); return ui; } static void free_ui(game_ui *ui) { random_free(ui->rs); sfree(ui); } /* ---------------------------------------------------------------------- * Process a move. */ static game_state *make_move(game_state *state, game_ui *ui, int x, int y, int button) { game_state *ret, *nullret; int tx, ty, orig; nullret = NULL; if (button == LEFT_BUTTON || button == MIDDLE_BUTTON || button == RIGHT_BUTTON) { if (ui->cur_visible) { ui->cur_visible = FALSE; nullret = state; } /* * The button must have been clicked on a valid tile. */ x -= WINDOW_OFFSET + TILE_BORDER; y -= WINDOW_OFFSET + TILE_BORDER; if (x < 0 || y < 0) return nullret; tx = x / TILE_SIZE; ty = y / TILE_SIZE; if (tx >= state->width || ty >= state->height) return nullret; if (x % TILE_SIZE >= TILE_SIZE - TILE_BORDER || y % TILE_SIZE >= TILE_SIZE - TILE_BORDER) return nullret; } else if (button == CURSOR_UP || button == CURSOR_DOWN || button == CURSOR_RIGHT || button == CURSOR_LEFT) { if (button == CURSOR_UP && ui->cur_y > 0) ui->cur_y--; else if (button == CURSOR_DOWN && ui->cur_y < state->height-1) ui->cur_y++; else if (button == CURSOR_LEFT && ui->cur_x > 0) ui->cur_x--; else if (button == CURSOR_RIGHT && ui->cur_x < state->width-1) ui->cur_x++; else return nullret; /* no cursor movement */ ui->cur_visible = TRUE; return state; /* UI activity has occurred */ } else if (button == 'a' || button == 's' || button == 'd' || button == 'A' || button == 'S' || button == 'D') { tx = ui->cur_x; ty = ui->cur_y; if (button == 'a' || button == 'A') button = LEFT_BUTTON; else if (button == 's' || button == 'S') button = MIDDLE_BUTTON; else if (button == 'd' || button == 'D') button = RIGHT_BUTTON; ui->cur_visible = TRUE; } else if (button == 'j' || button == 'J') { /* XXX should we have some mouse control for this? */ button = 'J'; /* canonify */ tx = ty = -1; /* shut gcc up :( */ } else return nullret; /* * The middle button locks or unlocks a tile. (A locked tile * cannot be turned, and is visually marked as being locked. * This is a convenience for the player, so that once they are * sure which way round a tile goes, they can lock it and thus * avoid forgetting later on that they'd already done that one; * and the locking also prevents them turning the tile by * accident. If they change their mind, another middle click * unlocks it.) */ if (button == MIDDLE_BUTTON) { ret = dup_game(state); ret->just_used_solve = FALSE; tile(ret, tx, ty) ^= LOCKED; ret->last_rotate_dir = 0; return ret; } else if (button == LEFT_BUTTON || button == RIGHT_BUTTON) { /* * The left and right buttons have no effect if clicked on a * locked tile. */ if (tile(state, tx, ty) & LOCKED) return nullret; /* * Otherwise, turn the tile one way or the other. Left button * turns anticlockwise; right button turns clockwise. */ ret = dup_game(state); ret->just_used_solve = FALSE; orig = tile(ret, tx, ty); if (button == LEFT_BUTTON) { tile(ret, tx, ty) = A(orig); ret->last_rotate_dir = +1; } else { tile(ret, tx, ty) = C(orig); ret->last_rotate_dir = -1; } } else if (button == 'J') { /* * Jumble all unlocked tiles to random orientations. */ int jx, jy; ret = dup_game(state); ret->just_used_solve = FALSE; for (jy = 0; jy < ret->height; jy++) { for (jx = 0; jx < ret->width; jx++) { if (!(tile(ret, jx, jy) & LOCKED)) { int rot = random_upto(ui->rs, 4); orig = tile(ret, jx, jy); tile(ret, jx, jy) = ROT(orig, rot); } } } ret->last_rotate_dir = 0; /* suppress animation */ } else assert(0); /* * Check whether the game has been completed. */ { unsigned char *active = compute_active(ret); int x1, y1; int complete = TRUE; for (x1 = 0; x1 < ret->width; x1++) for (y1 = 0; y1 < ret->height; y1++) if (!index(ret, active, x1, y1)) { complete = FALSE; goto break_label; /* break out of two loops at once */ } break_label: sfree(active); if (complete) ret->completed = TRUE; } return ret; } /* ---------------------------------------------------------------------- * Routines for drawing the game position on the screen. */ struct game_drawstate { int started; int width, height; unsigned char *visible; }; static game_drawstate *game_new_drawstate(game_state *state) { game_drawstate *ds = snew(game_drawstate); ds->started = FALSE; ds->width = state->width; ds->height = state->height; ds->visible = snewn(state->width * state->height, unsigned char); memset(ds->visible, 0xFF, state->width * state->height); return ds; } static void game_free_drawstate(game_drawstate *ds) { sfree(ds->visible); sfree(ds); } static void game_size(game_params *params, int *x, int *y) { *x = WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER; *y = WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER; } static float *game_colours(frontend *fe, game_state *state, int *ncolours) { float *ret; ret = snewn(NCOLOURS * 3, float); *ncolours = NCOLOURS; /* * Basic background colour is whatever the front end thinks is * a sensible default. */ frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); /* * Wires are black. */ ret[COL_WIRE * 3 + 0] = 0.0F; ret[COL_WIRE * 3 + 1] = 0.0F; ret[COL_WIRE * 3 + 2] = 0.0F; /* * Powered wires and powered endpoints are cyan. */ ret[COL_POWERED * 3 + 0] = 0.0F; ret[COL_POWERED * 3 + 1] = 1.0F; ret[COL_POWERED * 3 + 2] = 1.0F; /* * Barriers are red. */ ret[COL_BARRIER * 3 + 0] = 1.0F; ret[COL_BARRIER * 3 + 1] = 0.0F; ret[COL_BARRIER * 3 + 2] = 0.0F; /* * Unpowered endpoints are blue. */ ret[COL_ENDPOINT * 3 + 0] = 0.0F; ret[COL_ENDPOINT * 3 + 1] = 0.0F; ret[COL_ENDPOINT * 3 + 2] = 1.0F; /* * Tile borders are a darker grey than the background. */ ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0]; ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2]; /* * Locked tiles are a grey in between those two. */ ret[COL_LOCKED * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0]; ret[COL_LOCKED * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_LOCKED * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2]; return ret; } static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2, int colour) { draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE); draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE); draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE); draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE); draw_line(fe, x1, y1, x2, y2, colour); } static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2, int colour) { int mx = (x1 < x2 ? x1 : x2); int my = (y1 < y2 ? y1 : y2); int dx = (x2 + x1 - 2*mx + 1); int dy = (y2 + y1 - 2*my + 1); draw_rect(fe, mx, my, dx, dy, colour); } static void draw_barrier_corner(frontend *fe, int x, int y, int dir, int phase) { int bx = WINDOW_OFFSET + TILE_SIZE * x; int by = WINDOW_OFFSET + TILE_SIZE * y; int x1, y1, dx, dy, dir2; dir >>= 4; dir2 = A(dir); dx = X(dir) + X(dir2); dy = Y(dir) + Y(dir2); x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0); y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0); if (phase == 0) { draw_rect_coords(fe, bx+x1, by+y1, bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy, COL_WIRE); draw_rect_coords(fe, bx+x1, by+y1, bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy, COL_WIRE); } else { draw_rect_coords(fe, bx+x1, by+y1, bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy, COL_BARRIER); } } static void draw_barrier(frontend *fe, int x, int y, int dir, int phase) { int bx = WINDOW_OFFSET + TILE_SIZE * x; int by = WINDOW_OFFSET + TILE_SIZE * y; int x1, y1, w, h; x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0); y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0); w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER); h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER); if (phase == 0) { draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE); } else { draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER); } } static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile, float angle, int cursor) { int bx = WINDOW_OFFSET + TILE_SIZE * x; int by = WINDOW_OFFSET + TILE_SIZE * y; float matrix[4]; float cx, cy, ex, ey, tx, ty; int dir, col, phase; /* * When we draw a single tile, we must draw everything up to * and including the borders around the tile. This means that * if the neighbouring tiles have connections to those borders, * we must draw those connections on the borders themselves. * * This would be terribly fiddly if we ever had to draw a tile * while its neighbour was in mid-rotate, because we'd have to * arrange to _know_ that the neighbour was being rotated and * hence had an anomalous effect on the redraw of this tile. * Fortunately, the drawing algorithm avoids ever calling us in * this circumstance: we're either drawing lots of straight * tiles at game start or after a move is complete, or we're * repeatedly drawing only the rotating tile. So no problem. */ /* * So. First blank the tile out completely: draw a big * rectangle in border colour, and a smaller rectangle in * background colour to fill it in. */ draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER, COL_BORDER); draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER, TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER, tile & LOCKED ? COL_LOCKED : COL_BACKGROUND); /* * Draw an inset outline rectangle as a cursor, in whichever of * COL_LOCKED and COL_BACKGROUND we aren't currently drawing * in. */ if (cursor) { draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE/8, bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8, tile & LOCKED ? COL_BACKGROUND : COL_LOCKED); draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE/8, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8, tile & LOCKED ? COL_BACKGROUND : COL_LOCKED); draw_line(fe, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8, tile & LOCKED ? COL_BACKGROUND : COL_LOCKED); draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8, tile & LOCKED ? COL_BACKGROUND : COL_LOCKED); } /* * Set up the rotation matrix. */ matrix[0] = (float)cos(angle * PI / 180.0); matrix[1] = (float)-sin(angle * PI / 180.0); matrix[2] = (float)sin(angle * PI / 180.0); matrix[3] = (float)cos(angle * PI / 180.0); /* * Draw the wires. */ cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F; col = (tile & ACTIVE ? COL_POWERED : COL_WIRE); for (dir = 1; dir < 0x10; dir <<= 1) { if (tile & dir) { ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir); ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir); MATMUL(tx, ty, matrix, ex, ey); draw_thick_line(fe, bx+(int)cx, by+(int)cy, bx+(int)(cx+tx), by+(int)(cy+ty), COL_WIRE); } } for (dir = 1; dir < 0x10; dir <<= 1) { if (tile & dir) { ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir); ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir); MATMUL(tx, ty, matrix, ex, ey); draw_line(fe, bx+(int)cx, by+(int)cy, bx+(int)(cx+tx), by+(int)(cy+ty), col); } } /* * Draw the box in the middle. We do this in blue if the tile * is an unpowered endpoint, in cyan if the tile is a powered * endpoint, in black if the tile is the centrepiece, and * otherwise not at all. */ col = -1; if (x == state->cx && y == state->cy) col = COL_WIRE; else if (COUNT(tile) == 1) { col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT); } if (col >= 0) { int i, points[8]; points[0] = +1; points[1] = +1; points[2] = +1; points[3] = -1; points[4] = -1; points[5] = -1; points[6] = -1; points[7] = +1; for (i = 0; i < 8; i += 2) { ex = (TILE_SIZE * 0.24F) * points[i]; ey = (TILE_SIZE * 0.24F) * points[i+1]; MATMUL(tx, ty, matrix, ex, ey); points[i] = bx+(int)(cx+tx); points[i+1] = by+(int)(cy+ty); } draw_polygon(fe, points, 4, TRUE, col); draw_polygon(fe, points, 4, FALSE, COL_WIRE); } /* * Draw the points on the border if other tiles are connected * to us. */ for (dir = 1; dir < 0x10; dir <<= 1) { int dx, dy, px, py, lx, ly, vx, vy, ox, oy; dx = X(dir); dy = Y(dir); ox = x + dx; oy = y + dy; if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height) continue; if (!(tile(state, ox, oy) & F(dir))) continue; px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx); py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy); lx = dx * (TILE_BORDER-1); ly = dy * (TILE_BORDER-1); vx = (dy ? 1 : 0); vy = (dx ? 1 : 0); if (angle == 0.0 && (tile & dir)) { /* * If we are fully connected to the other tile, we must * draw right across the tile border. (We can use our * own ACTIVE state to determine what colour to do this * in: if we are fully connected to the other tile then * the two ACTIVE states will be the same.) */ draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE); draw_rect_coords(fe, px, py, px+lx, py+ly, (tile & ACTIVE) ? COL_POWERED : COL_WIRE); } else { /* * The other tile extends into our border, but isn't * actually connected to us. Just draw a single black * dot. */ draw_rect_coords(fe, px, py, px, py, COL_WIRE); } } /* * Draw barrier corners, and then barriers. */ for (phase = 0; phase < 2; phase++) { for (dir = 1; dir < 0x10; dir <<= 1) if (barrier(state, x, y) & (dir << 4)) draw_barrier_corner(fe, x, y, dir << 4, phase); for (dir = 1; dir < 0x10; dir <<= 1) if (barrier(state, x, y) & dir) draw_barrier(fe, x, y, dir, phase); } draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER); } static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate, game_state *state, int dir, game_ui *ui, float t, float ft) { int x, y, tx, ty, frame, last_rotate_dir; unsigned char *active; float angle = 0.0; /* * Clear the screen and draw the exterior barrier lines if this * is our first call. */ if (!ds->started) { int phase; ds->started = TRUE; draw_rect(fe, 0, 0, WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER, WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER, COL_BACKGROUND); draw_update(fe, 0, 0, WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER, WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER); for (phase = 0; phase < 2; phase++) { for (x = 0; x < ds->width; x++) { if (barrier(state, x, 0) & UL) draw_barrier_corner(fe, x, -1, LD, phase); if (barrier(state, x, 0) & RU) draw_barrier_corner(fe, x, -1, DR, phase); if (barrier(state, x, 0) & U) draw_barrier(fe, x, -1, D, phase); if (barrier(state, x, ds->height-1) & DR) draw_barrier_corner(fe, x, ds->height, RU, phase); if (barrier(state, x, ds->height-1) & LD) draw_barrier_corner(fe, x, ds->height, UL, phase); if (barrier(state, x, ds->height-1) & D) draw_barrier(fe, x, ds->height, U, phase); } for (y = 0; y < ds->height; y++) { if (barrier(state, 0, y) & UL) draw_barrier_corner(fe, -1, y, RU, phase); if (barrier(state, 0, y) & LD) draw_barrier_corner(fe, -1, y, DR, phase); if (barrier(state, 0, y) & L) draw_barrier(fe, -1, y, R, phase); if (barrier(state, ds->width-1, y) & RU) draw_barrier_corner(fe, ds->width, y, UL, phase); if (barrier(state, ds->width-1, y) & DR) draw_barrier_corner(fe, ds->width, y, LD, phase); if (barrier(state, ds->width-1, y) & R) draw_barrier(fe, ds->width, y, L, phase); } } } tx = ty = -1; last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir : state->last_rotate_dir; if (oldstate && (t < ROTATE_TIME) && last_rotate_dir) { /* * We're animating a single tile rotation. Find the turning tile, * if any. */ for (x = 0; x < oldstate->width; x++) for (y = 0; y < oldstate->height; y++) if ((tile(oldstate, x, y) ^ tile(state, x, y)) & 0xF) { tx = x, ty = y; goto break_label; /* leave both loops at once */ } break_label: if (tx >= 0) { angle = last_rotate_dir * dir * 90.0F * (t / ROTATE_TIME); state = oldstate; } } frame = -1; if (ft > 0) { /* * We're animating a completion flash. Find which frame * we're at. */ frame = (int)(ft / FLASH_FRAME); } /* * Draw any tile which differs from the way it was last drawn. */ active = compute_active(state); for (x = 0; x < ds->width; x++) for (y = 0; y < ds->height; y++) { unsigned char c = tile(state, x, y) | index(state, active, x, y); /* * In a completion flash, we adjust the LOCKED bit * depending on our distance from the centre point and * the frame number. */ if (frame >= 0) { int xdist, ydist, dist; xdist = (x < state->cx ? state->cx - x : x - state->cx); ydist = (y < state->cy ? state->cy - y : y - state->cy); dist = (xdist > ydist ? xdist : ydist); if (frame >= dist && frame < dist+4) { int lock = (frame - dist) & 1; lock = lock ? LOCKED : 0; c = (c &~ LOCKED) | lock; } } if (index(state, ds->visible, x, y) != c || index(state, ds->visible, x, y) == 0xFF || (x == tx && y == ty) || (ui->cur_visible && x == ui->cur_x && y == ui->cur_y)) { draw_tile(fe, state, x, y, c, (x == tx && y == ty ? angle : 0.0F), (ui->cur_visible && x == ui->cur_x && y == ui->cur_y)); if ((x == tx && y == ty) || (ui->cur_visible && x == ui->cur_x && y == ui->cur_y)) index(state, ds->visible, x, y) = 0xFF; else index(state, ds->visible, x, y) = c; } } /* * Update the status bar. */ { char statusbuf[256]; int i, n, a; n = state->width * state->height; for (i = a = 0; i < n; i++) if (active[i]) a++; sprintf(statusbuf, "%sActive: %d/%d", (state->used_solve ? "Auto-solved. " : state->completed ? "COMPLETED! " : ""), a, n); status_bar(fe, statusbuf); } sfree(active); } static float game_anim_length(game_state *oldstate, game_state *newstate, int dir) { int x, y, last_rotate_dir; /* * Don't animate an auto-solve move. */ if ((dir > 0 && newstate->just_used_solve) || (dir < 0 && oldstate->just_used_solve)) return 0.0F; /* * Don't animate if last_rotate_dir is zero. */ last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir : newstate->last_rotate_dir; if (last_rotate_dir) { /* * If there's a tile which has been rotated, allow time to * animate its rotation. */ for (x = 0; x < oldstate->width; x++) for (y = 0; y < oldstate->height; y++) if ((tile(oldstate, x, y) ^ tile(newstate, x, y)) & 0xF) { return ROTATE_TIME; } } return 0.0F; } static float game_flash_length(game_state *oldstate, game_state *newstate, int dir) { /* * If the game has just been completed, we display a completion * flash. */ if (!oldstate->completed && newstate->completed && !oldstate->used_solve && !newstate->used_solve) { int size; size = 0; if (size < newstate->cx+1) size = newstate->cx+1; if (size < newstate->cy+1) size = newstate->cy+1; if (size < newstate->width - newstate->cx) size = newstate->width - newstate->cx; if (size < newstate->height - newstate->cy) size = newstate->height - newstate->cy; return FLASH_FRAME * (size+4); } return 0.0F; } static int game_wants_statusbar(void) { return TRUE; } #ifdef COMBINED #define thegame net #endif const struct game thegame = { "Net", "games.net", default_params, game_fetch_preset, decode_params, encode_params, free_params, dup_params, TRUE, game_configure, custom_params, validate_params, new_game_seed, game_free_aux_info, validate_seed, new_game, dup_game, free_game, TRUE, solve_game, FALSE, game_text_format, new_ui, free_ui, make_move, game_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_wants_statusbar, };