ref: a7bbd897fc6be13b8699a206dd422ad6e09928d3
dir: /pegs.c/
/* * pegs.c: the classic Peg Solitaire game. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <limits.h> #include <math.h> #include "puzzles.h" #include "tree234.h" #define GRID_HOLE 0 #define GRID_PEG 1 #define GRID_OBST 2 #define GRID_CURSOR 10 #define GRID_JUMPING 20 enum { COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT, COL_PEG, COL_CURSOR, NCOLOURS }; /* * Grid shapes. I do some macro ickery here to ensure that my enum * and the various forms of my name list always match up. */ #define TYPELIST(A) \ A(CROSS,Cross,cross) \ A(OCTAGON,Octagon,octagon) \ A(RANDOM,Random,random) #define ENUM(upper,title,lower) TYPE_ ## upper, #define TITLE(upper,title,lower) #title, #define LOWER(upper,title,lower) #lower, #define CONFIG(upper,title,lower) ":" #title enum { TYPELIST(ENUM) TYPECOUNT }; static char const *const pegs_titletypes[] = { TYPELIST(TITLE) }; static char const *const pegs_lowertypes[] = { TYPELIST(LOWER) }; #define TYPECONFIG TYPELIST(CONFIG) #define FLASH_FRAME 0.13F struct game_params { int w, h; int type; }; struct game_state { int w, h; bool completed; unsigned char *grid; }; static game_params *default_params(void) { game_params *ret = snew(game_params); ret->w = ret->h = 7; ret->type = TYPE_CROSS; return ret; } static const struct game_params pegs_presets[] = { {7, 7, TYPE_CROSS}, {7, 7, TYPE_OCTAGON}, {5, 5, TYPE_RANDOM}, {7, 7, TYPE_RANDOM}, {9, 9, TYPE_RANDOM}, }; static bool game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; char str[80]; if (i < 0 || i >= lenof(pegs_presets)) return false; ret = snew(game_params); *ret = pegs_presets[i]; strcpy(str, pegs_titletypes[ret->type]); if (ret->type == TYPE_RANDOM) sprintf(str + strlen(str), " %dx%d", ret->w, ret->h); *name = dupstr(str); *params = ret; return true; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(const game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *params, char const *string) { char const *p = string; int i; params->w = atoi(p); while (*p && isdigit((unsigned char)*p)) p++; if (*p == 'x') { p++; params->h = atoi(p); while (*p && isdigit((unsigned char)*p)) p++; } else { params->h = params->w; } for (i = 0; i < lenof(pegs_lowertypes); i++) if (!strcmp(p, pegs_lowertypes[i])) params->type = i; } static char *encode_params(const game_params *params, bool full) { char str[80]; sprintf(str, "%dx%d", params->w, params->h); if (full) { assert(params->type >= 0 && params->type < lenof(pegs_lowertypes)); strcat(str, pegs_lowertypes[params->type]); } return dupstr(str); } static config_item *game_configure(const game_params *params) { config_item *ret = snewn(4, config_item); char buf[80]; ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].u.string.sval = dupstr(buf); ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->h); ret[1].u.string.sval = dupstr(buf); ret[2].name = "Board type"; ret[2].type = C_CHOICES; ret[2].u.choices.choicenames = TYPECONFIG; ret[2].u.choices.selected = params->type; ret[3].name = NULL; ret[3].type = C_END; return ret; } static game_params *custom_params(const config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].u.string.sval); ret->h = atoi(cfg[1].u.string.sval); ret->type = cfg[2].u.choices.selected; return ret; } static const char *validate_params(const game_params *params, bool full) { if (full && (params->w <= 3 || params->h <= 3)) return "Width and height must both be greater than three"; if (params->w < 1 || params->h < 1) return "Width and height must both be at least one"; if (params->w > INT_MAX / params->h) return "Width times height must not be unreasonably large"; /* * It might be possible to implement generalisations of Cross * and Octagon, but only if I can find a proof that they're all * soluble. For the moment, therefore, I'm going to disallow * them at any size other than the standard one. */ if (full && (params->type == TYPE_CROSS || params->type == TYPE_OCTAGON)) { if (params->w != 7 || params->h != 7) return "This board type is only supported at 7x7"; } return NULL; } /* ---------------------------------------------------------------------- * Beginning of code to generate random Peg Solitaire boards. * * This procedure is done with no aesthetic judgment, no effort at * symmetry, no difficulty grading and generally no finesse * whatsoever. We simply begin with an empty board containing a * single peg, and repeatedly make random reverse moves until it's * plausibly full. This typically yields a scrappy haphazard mess * with several holes, an uneven shape, and no redeeming features * except guaranteed solubility. * * My only concessions to sophistication are (a) to repeat the * generation process until I at least get a grid that touches * every edge of the specified board size, and (b) to try when * selecting moves to reuse existing space rather than expanding * into new space (so that non-rectangular board shape becomes a * factor during play). */ struct move { /* * x,y are the start point of the move during generation (hence * its endpoint during normal play). * * dx,dy are the direction of the move during generation. * Absolute value 1. Hence, for example, x=3,y=5,dx=1,dy=0 * means that the move during generation starts at (3,5) and * ends at (5,5), and vice versa during normal play. */ int x, y, dx, dy; /* * cost is 0, 1 or 2, depending on how many GRID_OBSTs we must * turn into GRID_HOLEs to play this move. */ int cost; }; static int movecmp(void *av, void *bv) { struct move *a = (struct move *)av; struct move *b = (struct move *)bv; if (a->y < b->y) return -1; else if (a->y > b->y) return +1; if (a->x < b->x) return -1; else if (a->x > b->x) return +1; if (a->dy < b->dy) return -1; else if (a->dy > b->dy) return +1; if (a->dx < b->dx) return -1; else if (a->dx > b->dx) return +1; return 0; } static int movecmpcost(void *av, void *bv) { struct move *a = (struct move *)av; struct move *b = (struct move *)bv; if (a->cost < b->cost) return -1; else if (a->cost > b->cost) return +1; return movecmp(av, bv); } struct movetrees { tree234 *bymove, *bycost; }; static void update_moves(unsigned char *grid, int w, int h, int x, int y, struct movetrees *trees) { struct move move; int dir, pos; /* * There are twelve moves that can include (x,y): three in each * of four directions. Check each one to see if it's possible. */ for (dir = 0; dir < 4; dir++) { int dx, dy; if (dir & 1) dx = 0, dy = dir - 2; else dy = 0, dx = dir - 1; assert(abs(dx) + abs(dy) == 1); for (pos = 0; pos < 3; pos++) { int v1, v2, v3; move.dx = dx; move.dy = dy; move.x = x - pos*dx; move.y = y - pos*dy; if (move.x < 0 || move.x >= w || move.y < 0 || move.y >= h) continue; /* completely invalid move */ if (move.x+2*move.dx < 0 || move.x+2*move.dx >= w || move.y+2*move.dy < 0 || move.y+2*move.dy >= h) continue; /* completely invalid move */ v1 = grid[move.y * w + move.x]; v2 = grid[(move.y+move.dy) * w + (move.x+move.dx)]; v3 = grid[(move.y+2*move.dy)*w + (move.x+2*move.dx)]; if (v1 == GRID_PEG && v2 != GRID_PEG && v3 != GRID_PEG) { struct move *m; move.cost = (v2 == GRID_OBST) + (v3 == GRID_OBST); /* * This move is possible. See if it's already in * the tree. */ m = find234(trees->bymove, &move, NULL); if (m && m->cost != move.cost) { /* * It's in the tree but listed with the wrong * cost. Remove the old version. */ #ifdef GENERATION_DIAGNOSTICS printf("correcting %d%+d,%d%+d at cost %d\n", m->x, m->dx, m->y, m->dy, m->cost); #endif del234(trees->bymove, m); del234(trees->bycost, m); sfree(m); m = NULL; } if (!m) { struct move *m, *m2; m = snew(struct move); *m = move; m2 = add234(trees->bymove, m); m2 = add234(trees->bycost, m); assert(m2 == m); #ifdef GENERATION_DIAGNOSTICS printf("adding %d%+d,%d%+d at cost %d\n", move.x, move.dx, move.y, move.dy, move.cost); #endif } else { #ifdef GENERATION_DIAGNOSTICS printf("not adding %d%+d,%d%+d at cost %d\n", move.x, move.dx, move.y, move.dy, move.cost); #endif } } else { /* * This move is impossible. If it is already in the * tree, delete it. * * (We make use here of the fact that del234 * doesn't have to be passed a pointer to the * _actual_ element it's deleting: it merely needs * one that compares equal to it, and it will * return the one it deletes.) */ struct move *m = del234(trees->bymove, &move); #ifdef GENERATION_DIAGNOSTICS printf("%sdeleting %d%+d,%d%+d\n", m ? "" : "not ", move.x, move.dx, move.y, move.dy); #endif if (m) { del234(trees->bycost, m); sfree(m); } } } } } static void pegs_genmoves(unsigned char *grid, int w, int h, random_state *rs) { struct movetrees atrees, *trees = &atrees; struct move *m; int x, y, i, nmoves; trees->bymove = newtree234(movecmp); trees->bycost = newtree234(movecmpcost); for (y = 0; y < h; y++) for (x = 0; x < w; x++) if (grid[y*w+x] == GRID_PEG) update_moves(grid, w, h, x, y, trees); nmoves = 0; while (1) { int limit, maxcost, index; struct move mtmp, move, *m; /* * See how many moves we can make at zero cost. Make one, * if possible. Failing that, make a one-cost move, and * then a two-cost one. * * After filling at least half the input grid, we no longer * accept cost-2 moves: if that's our only option, we give * up and finish. */ mtmp.y = h+1; maxcost = (nmoves < w*h/2 ? 2 : 1); m = NULL; /* placate optimiser */ for (mtmp.cost = 0; mtmp.cost <= maxcost; mtmp.cost++) { limit = -1; m = findrelpos234(trees->bycost, &mtmp, NULL, REL234_LT, &limit); #ifdef GENERATION_DIAGNOSTICS printf("%d moves available with cost %d\n", limit+1, mtmp.cost); #endif if (m) break; } if (!m) break; index = random_upto(rs, limit+1); move = *(struct move *)index234(trees->bycost, index); #ifdef GENERATION_DIAGNOSTICS printf("selecting move %d%+d,%d%+d at cost %d\n", move.x, move.dx, move.y, move.dy, move.cost); #endif grid[move.y * w + move.x] = GRID_HOLE; grid[(move.y+move.dy) * w + (move.x+move.dx)] = GRID_PEG; grid[(move.y+2*move.dy)*w + (move.x+2*move.dx)] = GRID_PEG; for (i = 0; i <= 2; i++) { int tx = move.x + i*move.dx; int ty = move.y + i*move.dy; update_moves(grid, w, h, tx, ty, trees); } nmoves++; } while ((m = delpos234(trees->bymove, 0)) != NULL) { del234(trees->bycost, m); sfree(m); } freetree234(trees->bymove); freetree234(trees->bycost); } static void pegs_generate(unsigned char *grid, int w, int h, random_state *rs) { while (1) { int x, y, extremes; memset(grid, GRID_OBST, w*h); grid[(h/2) * w + (w/2)] = GRID_PEG; #ifdef GENERATION_DIAGNOSTICS printf("beginning move selection\n"); #endif pegs_genmoves(grid, w, h, rs); #ifdef GENERATION_DIAGNOSTICS printf("finished move selection\n"); #endif extremes = 0; for (y = 0; y < h; y++) { if (grid[y*w+0] != GRID_OBST) extremes |= 1; if (grid[y*w+w-1] != GRID_OBST) extremes |= 2; } for (x = 0; x < w; x++) { if (grid[0*w+x] != GRID_OBST) extremes |= 4; if (grid[(h-1)*w+x] != GRID_OBST) extremes |= 8; } if (extremes == 15) break; #ifdef GENERATION_DIAGNOSTICS printf("insufficient extent; trying again\n"); #endif } #ifdef GENERATION_DIAGNOSTICS fflush(stdout); #endif } /* ---------------------------------------------------------------------- * End of board generation code. Now for the client code which uses * it as part of the puzzle. */ static char *new_game_desc(const game_params *params, random_state *rs, char **aux, bool interactive) { int w = params->w, h = params->h; unsigned char *grid; char *ret; int i; grid = snewn(w*h, unsigned char); if (params->type == TYPE_RANDOM) { pegs_generate(grid, w, h, rs); } else { int x, y, cx, cy, v; for (y = 0; y < h; y++) for (x = 0; x < w; x++) { v = GRID_OBST; /* placate optimiser */ switch (params->type) { case TYPE_CROSS: cx = abs(x - w/2); cy = abs(y - h/2); if (cx == 0 && cy == 0) v = GRID_HOLE; else if (cx > 1 && cy > 1) v = GRID_OBST; else v = GRID_PEG; break; case TYPE_OCTAGON: cx = abs(x - w/2); cy = abs(y - h/2); if (cx + cy > 1 + max(w,h)/2) v = GRID_OBST; else v = GRID_PEG; break; } grid[y*w+x] = v; } if (params->type == TYPE_OCTAGON) { /* * The octagonal (European) solitaire layout is * actually _insoluble_ with the starting hole at the * centre. Here's a proof: * * Colour the squares of the board diagonally in * stripes of three different colours, which I'll call * A, B and C. So the board looks like this: * * A B C * A B C A B * A B C A B C A * B C A B C A B * C A B C A B C * B C A B C * A B C * * Suppose we keep running track of the number of pegs * occuping each colour of square. This colouring has * the property that any valid move whatsoever changes * all three of those counts by one (two of them go * down and one goes up), which means that the _parity_ * of every count flips on every move. * * If the centre square starts off unoccupied, then * there are twelve pegs on each colour and all three * counts start off even; therefore, after 35 moves all * three counts would have to be odd, which isn't * possible if there's only one peg left. [] * * This proof works just as well if the starting hole * is _any_ of the thirteen positions labelled B. Also, * we can stripe the board in the opposite direction * and rule out any square labelled B in that colouring * as well. This leaves: * * Y n Y * n n Y n n * Y n n Y n n Y * n Y Y n Y Y n * Y n n Y n n Y * n n Y n n * Y n Y * * where the ns are squares we've proved insoluble, and * the Ys are the ones remaining. * * That doesn't prove all those starting positions to * be soluble, of course; they're merely the ones we * _haven't_ proved to be impossible. Nevertheless, it * turns out that they are all soluble, so when the * user requests an Octagon board the simplest thing is * to pick one of these at random. * * Rather than picking equiprobably from those twelve * positions, we'll pick equiprobably from the three * equivalence classes */ switch (random_upto(rs, 3)) { case 0: /* Remove a random corner piece. */ { int dx, dy; dx = random_upto(rs, 2) * 2 - 1; /* +1 or -1 */ dy = random_upto(rs, 2) * 2 - 1; /* +1 or -1 */ if (random_upto(rs, 2)) dy *= 3; else dx *= 3; grid[(3+dy)*w+(3+dx)] = GRID_HOLE; } break; case 1: /* Remove a random piece two from the centre. */ { int dx, dy; dx = 2 * (random_upto(rs, 2) * 2 - 1); if (random_upto(rs, 2)) dy = 0; else dy = dx, dx = 0; grid[(3+dy)*w+(3+dx)] = GRID_HOLE; } break; default /* case 2 */: /* Remove a random piece one from the centre. */ { int dx, dy; dx = random_upto(rs, 2) * 2 - 1; if (random_upto(rs, 2)) dy = 0; else dy = dx, dx = 0; grid[(3+dy)*w+(3+dx)] = GRID_HOLE; } break; } } } /* * Encode a game description which is simply a long list of P * for peg, H for hole or O for obstacle. */ ret = snewn(w*h+1, char); for (i = 0; i < w*h; i++) ret[i] = (grid[i] == GRID_PEG ? 'P' : grid[i] == GRID_HOLE ? 'H' : 'O'); ret[w*h] = '\0'; sfree(grid); return ret; } static const char *validate_desc(const game_params *params, const char *desc) { int len; len = params->w * params->h; if (len != strlen(desc)) return "Game description is wrong length"; if (len != strspn(desc, "PHO")) return "Invalid character in game description"; return NULL; } static game_state *new_game(midend *me, const game_params *params, const char *desc) { int w = params->w, h = params->h; game_state *state = snew(game_state); int i; state->w = w; state->h = h; state->completed = false; state->grid = snewn(w*h, unsigned char); for (i = 0; i < w*h; i++) state->grid[i] = (desc[i] == 'P' ? GRID_PEG : desc[i] == 'H' ? GRID_HOLE : GRID_OBST); return state; } static game_state *dup_game(const game_state *state) { int w = state->w, h = state->h; game_state *ret = snew(game_state); ret->w = state->w; ret->h = state->h; ret->completed = state->completed; ret->grid = snewn(w*h, unsigned char); memcpy(ret->grid, state->grid, w*h); return ret; } static void free_game(game_state *state) { sfree(state->grid); sfree(state); } static char *solve_game(const game_state *state, const game_state *currstate, const char *aux, const char **error) { return NULL; } static bool game_can_format_as_text_now(const game_params *params) { return true; } static char *game_text_format(const game_state *state) { int w = state->w, h = state->h; int x, y; char *ret; ret = snewn((w+1)*h + 1, char); for (y = 0; y < h; y++) { for (x = 0; x < w; x++) ret[y*(w+1)+x] = (state->grid[y*w+x] == GRID_HOLE ? '-' : state->grid[y*w+x] == GRID_PEG ? '*' : ' '); ret[y*(w+1)+w] = '\n'; } ret[h*(w+1)] = '\0'; return ret; } struct game_ui { bool dragging; /* is a drag in progress? */ int sx, sy; /* grid coords of drag start cell */ int dx, dy; /* pixel coords of current drag posn */ int cur_x, cur_y; bool cur_visible, cur_jumping; }; static game_ui *new_ui(const game_state *state) { game_ui *ui = snew(game_ui); int x, y, v; ui->sx = ui->sy = ui->dx = ui->dy = 0; ui->dragging = false; ui->cur_visible = false; ui->cur_jumping = false; /* make sure we start the cursor somewhere on the grid. */ for (x = 0; x < state->w; x++) { for (y = 0; y < state->h; y++) { v = state->grid[y*state->w+x]; if (v == GRID_PEG || v == GRID_HOLE) { ui->cur_x = x; ui->cur_y = y; goto found; } } } assert(!"new_ui found nowhere for cursor"); found: return ui; } static void free_ui(game_ui *ui) { sfree(ui); } static char *encode_ui(const game_ui *ui) { return NULL; } static void decode_ui(game_ui *ui, const char *encoding) { } static void game_changed_state(game_ui *ui, const game_state *oldstate, const game_state *newstate) { /* * Cancel a drag, in case the source square has become * unoccupied. */ ui->dragging = false; /* * Also, cancel a keyboard-driven jump if one is half way to being * input. */ ui->cur_jumping = false; } static const char *current_key_label(const game_ui *ui, const game_state *state, int button) { int w = state->w; if (IS_CURSOR_SELECT(button)) { if (!ui->cur_visible) return ""; if (ui->cur_jumping) return "Cancel"; if (state->grid[ui->cur_y*w+ui->cur_x] == GRID_PEG) return "Select"; } return ""; } #define PREFERRED_TILE_SIZE 33 #define TILESIZE (ds->tilesize) #define BORDER (TILESIZE / 2) #define HIGHLIGHT_WIDTH (TILESIZE / 16) #define COORD(x) ( BORDER + (x) * TILESIZE ) #define FROMCOORD(x) ( ((x) + TILESIZE - BORDER) / TILESIZE - 1 ) struct game_drawstate { int tilesize; blitter *drag_background; bool dragging; int dragx, dragy; int w, h; unsigned char *grid; bool started; int bgcolour; }; static char *interpret_move(const game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { int w = state->w, h = state->h; char buf[80]; if (button == LEFT_BUTTON) { int tx, ty; /* * Left button down: we attempt to start a drag. */ /* * There certainly shouldn't be a current drag in progress, * unless the midend failed to send us button events in * order; it has a responsibility to always get that right, * so we can legitimately punish it by failing an * assertion. */ assert(!ui->dragging); tx = FROMCOORD(x); ty = FROMCOORD(y); if (tx >= 0 && tx < w && ty >= 0 && ty < h && state->grid[ty*w+tx] == GRID_PEG) { ui->dragging = true; ui->sx = tx; ui->sy = ty; ui->dx = x; ui->dy = y; ui->cur_visible = false; ui->cur_jumping = false; return UI_UPDATE; } } else if (button == LEFT_DRAG && ui->dragging) { /* * Mouse moved; just move the peg being dragged. */ ui->dx = x; ui->dy = y; return UI_UPDATE; } else if (button == LEFT_RELEASE && ui->dragging) { int tx, ty, dx, dy; /* * Button released. Identify the target square of the drag, * see if it represents a valid move, and if so make it. */ ui->dragging = false; /* cancel the drag no matter what */ tx = FROMCOORD(x); ty = FROMCOORD(y); if (tx < 0 || tx >= w || ty < 0 || ty >= h) return UI_UPDATE; /* target out of range */ dx = tx - ui->sx; dy = ty - ui->sy; if (max(abs(dx),abs(dy)) != 2 || min(abs(dx),abs(dy)) != 0) return UI_UPDATE; /* move length was wrong */ dx /= 2; dy /= 2; if (state->grid[ty*w+tx] != GRID_HOLE || state->grid[(ty-dy)*w+(tx-dx)] != GRID_PEG || state->grid[ui->sy*w+ui->sx] != GRID_PEG) return UI_UPDATE; /* grid contents were invalid */ /* * We have a valid move. Encode it simply as source and * destination coordinate pairs. */ sprintf(buf, "%d,%d-%d,%d", ui->sx, ui->sy, tx, ty); return dupstr(buf); } else if (IS_CURSOR_MOVE(button)) { if (!ui->cur_jumping) { /* Not jumping; move cursor as usual, making sure we don't * leave the gameboard (which may be an irregular shape) */ int cx = ui->cur_x, cy = ui->cur_y; move_cursor(button, &cx, &cy, w, h, false); ui->cur_visible = true; if (state->grid[cy*w+cx] == GRID_HOLE || state->grid[cy*w+cx] == GRID_PEG) { ui->cur_x = cx; ui->cur_y = cy; } return UI_UPDATE; } else { int dx, dy, mx, my, jx, jy; /* We're jumping; if the requested direction has a hole, and * there's a peg in the way, */ assert(state->grid[ui->cur_y*w+ui->cur_x] == GRID_PEG); dx = (button == CURSOR_RIGHT) ? 1 : (button == CURSOR_LEFT) ? -1 : 0; dy = (button == CURSOR_DOWN) ? 1 : (button == CURSOR_UP) ? -1 : 0; mx = ui->cur_x+dx; my = ui->cur_y+dy; jx = mx+dx; jy = my+dy; ui->cur_jumping = false; /* reset, whatever. */ if (jx >= 0 && jy >= 0 && jx < w && jy < h && state->grid[my*w+mx] == GRID_PEG && state->grid[jy*w+jx] == GRID_HOLE) { /* Move cursor to the jumped-to location (this felt more * natural while playtesting) */ sprintf(buf, "%d,%d-%d,%d", ui->cur_x, ui->cur_y, jx, jy); ui->cur_x = jx; ui->cur_y = jy; return dupstr(buf); } return UI_UPDATE; } } else if (IS_CURSOR_SELECT(button)) { if (!ui->cur_visible) { ui->cur_visible = true; return UI_UPDATE; } if (ui->cur_jumping) { ui->cur_jumping = false; return UI_UPDATE; } if (state->grid[ui->cur_y*w+ui->cur_x] == GRID_PEG) { /* cursor is on peg: next arrow-move wil jump. */ ui->cur_jumping = true; return UI_UPDATE; } return NULL; } return NULL; } static game_state *execute_move(const game_state *state, const char *move) { int w = state->w, h = state->h; int sx, sy, tx, ty; game_state *ret; if (sscanf(move, "%d,%d-%d,%d", &sx, &sy, &tx, &ty) == 4) { int mx, my, dx, dy; if (sx < 0 || sx >= w || sy < 0 || sy >= h) return NULL; /* source out of range */ if (tx < 0 || tx >= w || ty < 0 || ty >= h) return NULL; /* target out of range */ dx = tx - sx; dy = ty - sy; if (max(abs(dx),abs(dy)) != 2 || min(abs(dx),abs(dy)) != 0) return NULL; /* move length was wrong */ mx = sx + dx/2; my = sy + dy/2; if (state->grid[sy*w+sx] != GRID_PEG || state->grid[my*w+mx] != GRID_PEG || state->grid[ty*w+tx] != GRID_HOLE) return NULL; /* grid contents were invalid */ ret = dup_game(state); ret->grid[sy*w+sx] = GRID_HOLE; ret->grid[my*w+mx] = GRID_HOLE; ret->grid[ty*w+tx] = GRID_PEG; /* * Opinion varies on whether getting to a single peg counts as * completing the game, or whether that peg has to be at a * specific location (central in the classic cross game, for * instance). For now we take the former, rather lax position. */ if (!ret->completed) { int count = 0, i; for (i = 0; i < w*h; i++) if (ret->grid[i] == GRID_PEG) count++; if (count == 1) ret->completed = true; } return ret; } return NULL; } /* ---------------------------------------------------------------------- * Drawing routines. */ static void game_compute_size(const game_params *params, int tilesize, int *x, int *y) { /* Ick: fake up `ds->tilesize' for macro expansion purposes */ struct { int tilesize; } ads, *ds = &ads; ads.tilesize = tilesize; *x = TILESIZE * params->w + 2 * BORDER; *y = TILESIZE * params->h + 2 * BORDER; } static void game_set_size(drawing *dr, game_drawstate *ds, const game_params *params, int tilesize) { ds->tilesize = tilesize; assert(TILESIZE > 0); assert(!ds->drag_background); /* set_size is never called twice */ ds->drag_background = blitter_new(dr, TILESIZE, TILESIZE); } static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT); ret[COL_PEG * 3 + 0] = 0.0F; ret[COL_PEG * 3 + 1] = 0.0F; ret[COL_PEG * 3 + 2] = 1.0F; ret[COL_CURSOR * 3 + 0] = 0.5F; ret[COL_CURSOR * 3 + 1] = 0.5F; ret[COL_CURSOR * 3 + 2] = 1.0F; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { int w = state->w, h = state->h; struct game_drawstate *ds = snew(struct game_drawstate); ds->tilesize = 0; /* not decided yet */ /* We can't allocate the blitter rectangle for the drag background * until we know what size to make it. */ ds->drag_background = NULL; ds->dragging = false; ds->w = w; ds->h = h; ds->grid = snewn(w*h, unsigned char); memset(ds->grid, 255, w*h); ds->started = false; ds->bgcolour = -1; return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { if (ds->drag_background) blitter_free(dr, ds->drag_background); sfree(ds->grid); sfree(ds); } static void draw_tile(drawing *dr, game_drawstate *ds, int x, int y, int v, int bgcolour) { bool cursor = false, jumping = false; int bg; if (bgcolour >= 0) { draw_rect(dr, x, y, TILESIZE, TILESIZE, bgcolour); } if (v >= GRID_JUMPING) { jumping = true; v -= GRID_JUMPING; } if (v >= GRID_CURSOR) { cursor = true; v -= GRID_CURSOR; } if (v == GRID_HOLE) { bg = cursor ? COL_HIGHLIGHT : COL_LOWLIGHT; assert(!jumping); /* can't jump from a hole! */ draw_circle(dr, x+TILESIZE/2, y+TILESIZE/2, TILESIZE/4, bg, bg); } else if (v == GRID_PEG) { bg = (cursor || jumping) ? COL_CURSOR : COL_PEG; draw_circle(dr, x+TILESIZE/2, y+TILESIZE/2, TILESIZE/3, bg, bg); bg = (!cursor || jumping) ? COL_PEG : COL_CURSOR; draw_circle(dr, x+TILESIZE/2, y+TILESIZE/2, TILESIZE/4, bg, bg); } draw_update(dr, x, y, TILESIZE, TILESIZE); } static void game_redraw(drawing *dr, game_drawstate *ds, const game_state *oldstate, const game_state *state, int dir, const game_ui *ui, float animtime, float flashtime) { int w = state->w, h = state->h; int x, y; int bgcolour; if (flashtime > 0) { int frame = (int)(flashtime / FLASH_FRAME); bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT); } else bgcolour = COL_BACKGROUND; /* * Erase the sprite currently being dragged, if any. */ if (ds->dragging) { assert(ds->drag_background); blitter_load(dr, ds->drag_background, ds->dragx, ds->dragy); draw_update(dr, ds->dragx, ds->dragy, TILESIZE, TILESIZE); ds->dragging = false; } if (!ds->started) { /* * Draw relief marks around all the squares that aren't * GRID_OBST. */ for (y = 0; y < h; y++) for (x = 0; x < w; x++) if (state->grid[y*w+x] != GRID_OBST) { /* * First pass: draw the full relief square. */ int coords[6]; coords[0] = COORD(x+1) + HIGHLIGHT_WIDTH - 1; coords[1] = COORD(y) - HIGHLIGHT_WIDTH; coords[2] = COORD(x) - HIGHLIGHT_WIDTH; coords[3] = COORD(y+1) + HIGHLIGHT_WIDTH - 1; coords[4] = COORD(x) - HIGHLIGHT_WIDTH; coords[5] = COORD(y) - HIGHLIGHT_WIDTH; draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT); coords[4] = COORD(x+1) + HIGHLIGHT_WIDTH - 1; coords[5] = COORD(y+1) + HIGHLIGHT_WIDTH - 1; draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT); } for (y = 0; y < h; y++) for (x = 0; x < w; x++) if (state->grid[y*w+x] != GRID_OBST) { /* * Second pass: draw everything but the two * diagonal corners. */ draw_rect(dr, COORD(x) - HIGHLIGHT_WIDTH, COORD(y) - HIGHLIGHT_WIDTH, TILESIZE + HIGHLIGHT_WIDTH, TILESIZE + HIGHLIGHT_WIDTH, COL_HIGHLIGHT); draw_rect(dr, COORD(x), COORD(y), TILESIZE + HIGHLIGHT_WIDTH, TILESIZE + HIGHLIGHT_WIDTH, COL_LOWLIGHT); } for (y = 0; y < h; y++) for (x = 0; x < w; x++) if (state->grid[y*w+x] != GRID_OBST) { /* * Third pass: draw a trapezium on each edge. */ int coords[8]; int dx, dy, s, sn, c; for (dx = 0; dx < 2; dx++) { dy = 1 - dx; for (s = 0; s < 2; s++) { sn = 2*s - 1; c = s ? COL_LOWLIGHT : COL_HIGHLIGHT; coords[0] = COORD(x) + (s*dx)*(TILESIZE-1); coords[1] = COORD(y) + (s*dy)*(TILESIZE-1); coords[2] = COORD(x) + (s*dx+dy)*(TILESIZE-1); coords[3] = COORD(y) + (s*dy+dx)*(TILESIZE-1); coords[4] = coords[2] - HIGHLIGHT_WIDTH * (dy-sn*dx); coords[5] = coords[3] - HIGHLIGHT_WIDTH * (dx-sn*dy); coords[6] = coords[0] + HIGHLIGHT_WIDTH * (dy+sn*dx); coords[7] = coords[1] + HIGHLIGHT_WIDTH * (dx+sn*dy); draw_polygon(dr, coords, 4, c, c); } } } for (y = 0; y < h; y++) for (x = 0; x < w; x++) if (state->grid[y*w+x] != GRID_OBST) { /* * Second pass: draw everything but the two * diagonal corners. */ draw_rect(dr, COORD(x), COORD(y), TILESIZE, TILESIZE, COL_BACKGROUND); } ds->started = true; draw_update(dr, 0, 0, TILESIZE * state->w + 2 * BORDER, TILESIZE * state->h + 2 * BORDER); } /* * Loop over the grid redrawing anything that looks as if it * needs it. */ for (y = 0; y < h; y++) for (x = 0; x < w; x++) { int v; v = state->grid[y*w+x]; /* * Blank the source of a drag so it looks as if the * user picked the peg up physically. */ if (ui->dragging && ui->sx == x && ui->sy == y && v == GRID_PEG) v = GRID_HOLE; if (ui->cur_visible && ui->cur_x == x && ui->cur_y == y) v += ui->cur_jumping ? GRID_JUMPING : GRID_CURSOR; if (v != GRID_OBST && (bgcolour != ds->bgcolour || /* always redraw when flashing */ v != ds->grid[y*w+x])) { draw_tile(dr, ds, COORD(x), COORD(y), v, bgcolour); ds->grid[y*w+x] = v; } } /* * Draw the dragging sprite if any. */ if (ui->dragging) { ds->dragging = true; ds->dragx = ui->dx - TILESIZE/2; ds->dragy = ui->dy - TILESIZE/2; blitter_save(dr, ds->drag_background, ds->dragx, ds->dragy); draw_tile(dr, ds, ds->dragx, ds->dragy, GRID_PEG, -1); } ds->bgcolour = bgcolour; } static float game_anim_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { return 0.0F; } static float game_flash_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { if (!oldstate->completed && newstate->completed) return 2 * FLASH_FRAME; else return 0.0F; } static void game_get_cursor_location(const game_ui *ui, const game_drawstate *ds, const game_state *state, const game_params *params, int *x, int *y, int *w, int *h) { if(ui->cur_visible) { *x = COORD(ui->cur_x); *y = COORD(ui->cur_y); *w = *h = TILESIZE; } } static int game_status(const game_state *state) { /* * Dead-end situations are assumed to be rescuable by Undo, so we * don't bother to identify them and return -1. */ return state->completed ? +1 : 0; } static bool game_timing_state(const game_state *state, game_ui *ui) { return true; } static void game_print_size(const game_params *params, float *x, float *y) { } static void game_print(drawing *dr, const game_state *state, int tilesize) { } #ifdef COMBINED #define thegame pegs #endif const struct game thegame = { "Pegs", "games.pegs", "pegs", default_params, game_fetch_preset, NULL, decode_params, encode_params, free_params, dup_params, true, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, false, solve_game, true, game_can_format_as_text_now, game_text_format, new_ui, free_ui, encode_ui, decode_ui, NULL, /* game_request_keys */ game_changed_state, current_key_label, interpret_move, execute_move, PREFERRED_TILE_SIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_get_cursor_location, game_status, false, false, game_print_size, game_print, false, /* wants_statusbar */ false, game_timing_state, 0, /* flags */ }; /* vim: set shiftwidth=4 tabstop=8: */