ref: a7bbd897fc6be13b8699a206dd422ad6e09928d3
dir: /midend.c/
/* * midend.c: general middle fragment sitting between the * platform-specific front end and game-specific back end. * Maintains a move list, takes care of Undo and Redo commands, and * processes standard keystrokes for undo/redo/new/quit. */ #include <stdio.h> #include <string.h> #include <assert.h> #include <stdlib.h> #include <ctype.h> #include "puzzles.h" enum { DEF_PARAMS, DEF_SEED, DEF_DESC }; /* for midend_game_id_int */ enum { NEWGAME, MOVE, SOLVE, RESTART };/* for midend_state_entry.movetype */ #define special(type) ( (type) != MOVE ) struct midend_state_entry { game_state *state; char *movestr; int movetype; }; struct midend_serialise_buf { char *buf; int len, size; }; struct midend { frontend *frontend; random_state *random; const game *ourgame; struct preset_menu *preset_menu; char **encoded_presets; /* for midend_which_preset to check against */ int n_encoded_presets; /* * `desc' and `privdesc' deserve a comment. * * `desc' is the game description as presented to the user when * they ask for Game -> Specific. `privdesc', if non-NULL, is a * different game description used to reconstruct the initial * game_state when de-serialising. If privdesc is NULL, `desc' * is used for both. * * For almost all games, `privdesc' is NULL and never used. The * exception (as usual) is Mines: the initial game state has no * squares open at all, but after the first click `desc' is * rewritten to describe a game state with an initial click and * thus a bunch of squares open. If we used that desc to * serialise and deserialise, then the initial game state after * deserialisation would look unlike the initial game state * beforehand, and worse still execute_move() might fail on the * attempted first click. So `privdesc' is also used in this * case, to provide a game description describing the same * fixed mine layout _but_ no initial click. (These game IDs * may also be typed directly into Mines if you like.) */ char *desc, *privdesc, *seedstr; char *aux_info; enum { GOT_SEED, GOT_DESC, GOT_NOTHING } genmode; int nstates, statesize, statepos; struct midend_state_entry *states; struct midend_serialise_buf newgame_undo, newgame_redo; bool newgame_can_store_undo; game_params *params, *curparams; game_drawstate *drawstate; bool first_draw; game_ui *ui; game_state *oldstate; float anim_time, anim_pos; float flash_time, flash_pos; int dir; bool timing; float elapsed; char *laststatus; drawing *drawing; int pressed_mouse_button; int preferred_tilesize, preferred_tilesize_dpr, tilesize; int winwidth, winheight; void (*game_id_change_notify_function)(void *); void *game_id_change_notify_ctx; }; #define ensure(me) do { \ if ((me)->nstates >= (me)->statesize) { \ (me)->statesize = (me)->nstates + 128; \ (me)->states = sresize((me)->states, (me)->statesize, \ struct midend_state_entry); \ } \ } while (0) /* * Structure storing all the decoded data from reading a serialised * game. We keep it in one of these while we check its sanity, and * only once we're completely satisfied do we install it all in the * midend structure proper. */ struct deserialise_data { char *seed, *parstr, *desc, *privdesc; char *auxinfo, *uistr, *cparstr; float elapsed; game_params *params, *cparams; game_ui *ui; struct midend_state_entry *states; int nstates, statepos; }; /* * Forward reference. */ static const char *midend_deserialise_internal( midend *me, bool (*read)(void *ctx, void *buf, int len), void *rctx, const char *(*check)(void *ctx, midend *, const struct deserialise_data *), void *cctx); void midend_reset_tilesize(midend *me) { me->preferred_tilesize = me->ourgame->preferred_tilesize; me->preferred_tilesize_dpr = 1.0; { /* * Allow an environment-based override for the default tile * size by defining a variable along the lines of * `NET_TILESIZE=15'. * * XXX How should this interact with DPR? */ char buf[80], *e; int j, k, ts; sprintf(buf, "%s_TILESIZE", me->ourgame->name); for (j = k = 0; buf[j]; j++) if (!isspace((unsigned char)buf[j])) buf[k++] = toupper((unsigned char)buf[j]); buf[k] = '\0'; if ((e = getenv(buf)) != NULL && sscanf(e, "%d", &ts) == 1 && ts > 0) me->preferred_tilesize = ts; } } midend *midend_new(frontend *fe, const game *ourgame, const drawing_api *drapi, void *drhandle) { midend *me = snew(midend); void *randseed; int randseedsize; get_random_seed(&randseed, &randseedsize); me->frontend = fe; me->ourgame = ourgame; me->random = random_new(randseed, randseedsize); me->nstates = me->statesize = me->statepos = 0; me->states = NULL; me->newgame_undo.buf = NULL; me->newgame_undo.size = me->newgame_undo.len = 0; me->newgame_redo.buf = NULL; me->newgame_redo.size = me->newgame_redo.len = 0; me->newgame_can_store_undo = false; me->params = ourgame->default_params(); me->game_id_change_notify_function = NULL; me->game_id_change_notify_ctx = NULL; me->encoded_presets = NULL; me->n_encoded_presets = 0; /* * Allow environment-based changing of the default settings by * defining a variable along the lines of `NET_DEFAULT=25x25w' * in which the value is an encoded parameter string. */ { char buf[80], *e; int j, k; sprintf(buf, "%s_DEFAULT", me->ourgame->name); for (j = k = 0; buf[j]; j++) if (!isspace((unsigned char)buf[j])) buf[k++] = toupper((unsigned char)buf[j]); buf[k] = '\0'; if ((e = getenv(buf)) != NULL) me->ourgame->decode_params(me->params, e); } me->curparams = NULL; me->desc = me->privdesc = NULL; me->seedstr = NULL; me->aux_info = NULL; me->genmode = GOT_NOTHING; me->drawstate = NULL; me->first_draw = true; me->oldstate = NULL; me->preset_menu = NULL; me->anim_time = me->anim_pos = 0.0F; me->flash_time = me->flash_pos = 0.0F; me->dir = 0; me->ui = NULL; me->pressed_mouse_button = 0; me->laststatus = NULL; me->timing = false; me->elapsed = 0.0F; me->tilesize = me->winwidth = me->winheight = 0; if (drapi) me->drawing = drawing_new(drapi, me, drhandle); else me->drawing = NULL; midend_reset_tilesize(me); sfree(randseed); return me; } const game *midend_which_game(midend *me) { return me->ourgame; } static void midend_purge_states(midend *me) { while (me->nstates > me->statepos) { me->ourgame->free_game(me->states[--me->nstates].state); if (me->states[me->nstates].movestr) sfree(me->states[me->nstates].movestr); } me->newgame_redo.len = 0; } static void midend_free_game(midend *me) { while (me->nstates > 0) { me->nstates--; me->ourgame->free_game(me->states[me->nstates].state); sfree(me->states[me->nstates].movestr); } if (me->drawstate) me->ourgame->free_drawstate(me->drawing, me->drawstate); } static void midend_free_preset_menu(midend *me, struct preset_menu *menu) { if (menu) { int i; for (i = 0; i < menu->n_entries; i++) { sfree(menu->entries[i].title); if (menu->entries[i].params) me->ourgame->free_params(menu->entries[i].params); midend_free_preset_menu(me, menu->entries[i].submenu); } sfree(menu->entries); sfree(menu); } } void midend_free(midend *me) { int i; midend_free_game(me); for (i = 0; i < me->n_encoded_presets; i++) sfree(me->encoded_presets[i]); sfree(me->encoded_presets); if (me->drawing) drawing_free(me->drawing); random_free(me->random); sfree(me->newgame_undo.buf); sfree(me->newgame_redo.buf); sfree(me->states); sfree(me->desc); sfree(me->privdesc); sfree(me->seedstr); sfree(me->aux_info); me->ourgame->free_params(me->params); midend_free_preset_menu(me, me->preset_menu); if (me->ui) me->ourgame->free_ui(me->ui); if (me->curparams) me->ourgame->free_params(me->curparams); sfree(me->laststatus); sfree(me); } static void midend_size_new_drawstate(midend *me) { /* * Don't even bother, if we haven't worked out our tile size * anyway yet. */ if (me->tilesize > 0) { me->ourgame->compute_size(me->params, me->tilesize, &me->winwidth, &me->winheight); me->ourgame->set_size(me->drawing, me->drawstate, me->params, me->tilesize); } } /* * There is no one correct way to convert tilesizes between device * pixel ratios, because there's only a loosely-defined relationship * between tilesize and the actual size of a puzzle. We define this * function as the canonical conversion function so everything in the * midend will be consistent. */ static int convert_tilesize(midend *me, int old_tilesize, double old_dpr, double new_dpr) { int x, y, rx, ry, min, max; game_params *defaults; if (new_dpr == old_dpr) return old_tilesize; defaults = me->ourgame->default_params(); me->ourgame->compute_size(defaults, old_tilesize, &x, &y); x *= new_dpr / old_dpr; y *= new_dpr / old_dpr; min = max = 1; do { max *= 2; me->ourgame->compute_size(defaults, max, &rx, &ry); } while (rx <= x && ry <= y); while (max - min > 1) { int mid = (max + min) / 2; me->ourgame->compute_size(defaults, mid, &rx, &ry); if (rx <= x && ry <= y) min = mid; else max = mid; } me->ourgame->free_params(defaults); return min; } void midend_size(midend *me, int *x, int *y, bool user_size, double device_pixel_ratio) { int min, max; int rx, ry; /* * We can't set the size on the same drawstate twice. So if * we've already sized one drawstate, we must throw it away and * create a new one. */ if (me->drawstate && me->tilesize > 0) { me->ourgame->free_drawstate(me->drawing, me->drawstate); me->drawstate = me->ourgame->new_drawstate(me->drawing, me->states[0].state); me->first_draw = true; } /* * Find the tile size that best fits within the given space. If * `user_size' is true, we must actually find the _largest_ such * tile size, in order to get as close to the user's explicit * request as possible; otherwise, we bound above at the game's * preferred tile size, so that the game gets what it wants * provided that this doesn't break the constraint from the * front-end (which is likely to be a screen size or similar). */ if (user_size) { max = 1; do { max *= 2; me->ourgame->compute_size(me->params, max, &rx, &ry); } while (rx <= *x && ry <= *y); } else max = convert_tilesize(me, me->preferred_tilesize, me->preferred_tilesize_dpr, device_pixel_ratio) + 1; min = 1; /* * Now binary-search between min and max. We're looking for a * boundary rather than a value: the point at which tile sizes * stop fitting within the given dimensions. Thus, we stop when * max and min differ by exactly 1. */ while (max - min > 1) { int mid = (max + min) / 2; me->ourgame->compute_size(me->params, mid, &rx, &ry); if (rx <= *x && ry <= *y) min = mid; else max = mid; } /* * Now `min' is a valid size, and `max' isn't. So use `min'. */ me->tilesize = min; if (user_size) { /* If the user requested a change in size, make it permanent. */ me->preferred_tilesize = me->tilesize; me->preferred_tilesize_dpr = device_pixel_ratio; } midend_size_new_drawstate(me); *x = me->winwidth; *y = me->winheight; } int midend_tilesize(midend *me) { return me->tilesize; } void midend_set_params(midend *me, game_params *params) { me->ourgame->free_params(me->params); me->params = me->ourgame->dup_params(params); } game_params *midend_get_params(midend *me) { return me->ourgame->dup_params(me->params); } static char *encode_params(midend *me, const game_params *params, bool full) { char *encoded = me->ourgame->encode_params(params, full); int i; /* Assert that the params consist of printable ASCII containing * neither '#' nor ':'. */ for (i = 0; encoded[i]; i++) assert(encoded[i] >= 32 && encoded[i] < 127 && encoded[i] != '#' && encoded[i] != ':'); return encoded; } static void assert_printable_ascii(char const *s) { /* Assert that s is entirely printable ASCII, and hence safe for * writing in a save file. */ int i; for (i = 0; s[i]; i++) assert(s[i] >= 32 && s[i] < 127); } static void midend_set_timer(midend *me) { me->timing = (me->ourgame->is_timed && me->ourgame->timing_state(me->states[me->statepos-1].state, me->ui)); if (me->timing || me->flash_time || me->anim_time) activate_timer(me->frontend); else deactivate_timer(me->frontend); } void midend_force_redraw(midend *me) { if (me->drawstate) me->ourgame->free_drawstate(me->drawing, me->drawstate); me->drawstate = me->ourgame->new_drawstate(me->drawing, me->states[0].state); me->first_draw = true; midend_size_new_drawstate(me); midend_redraw(me); } static void newgame_serialise_write(void *ctx, const void *buf, int len) { struct midend_serialise_buf *ser = (struct midend_serialise_buf *)ctx; int new_len; assert(len < INT_MAX - ser->len); new_len = ser->len + len; if (new_len > ser->size) { ser->size = new_len + new_len / 4 + 1024; ser->buf = sresize(ser->buf, ser->size, char); } memcpy(ser->buf + ser->len, buf, len); ser->len = new_len; } void midend_new_game(midend *me) { me->newgame_undo.len = 0; if (me->newgame_can_store_undo) { /* * Serialise the whole of the game that we're about to * supersede, so that the 'New Game' action can be undone * later. * * We omit this in various situations, such as if there * _isn't_ a current game (not even a starting position) * because this is the initial call to midend_new_game when * the midend is first set up, or if the midend state has * already begun to be overwritten by midend_set_config. In * those situations, we want to avoid writing out any * serialisation, because they will be either invalid, or * worse, valid but wrong. */ midend_purge_states(me); midend_serialise(me, newgame_serialise_write, &me->newgame_undo); } midend_stop_anim(me); midend_free_game(me); assert(me->nstates == 0); if (me->genmode == GOT_DESC) { me->genmode = GOT_NOTHING; } else { random_state *rs; if (me->genmode == GOT_SEED) { me->genmode = GOT_NOTHING; } else { /* * Generate a new random seed. 15 digits comes to about * 48 bits, which should be more than enough. * * I'll avoid putting a leading zero on the number, * just in case it confuses anybody who thinks it's * processed as an integer rather than a string. */ char newseed[16]; int i; newseed[15] = '\0'; newseed[0] = '1' + (char)random_upto(me->random, 9); for (i = 1; i < 15; i++) newseed[i] = '0' + (char)random_upto(me->random, 10); sfree(me->seedstr); me->seedstr = dupstr(newseed); if (me->curparams) me->ourgame->free_params(me->curparams); me->curparams = me->ourgame->dup_params(me->params); } sfree(me->desc); sfree(me->privdesc); sfree(me->aux_info); me->aux_info = NULL; rs = random_new(me->seedstr, strlen(me->seedstr)); /* * If this midend has been instantiated without providing a * drawing API, it is non-interactive. This means that it's * being used for bulk game generation, and hence we should * pass the non-interactive flag to new_desc. */ me->desc = me->ourgame->new_desc(me->curparams, rs, &me->aux_info, (me->drawing != NULL)); assert_printable_ascii(me->desc); me->privdesc = NULL; random_free(rs); } ensure(me); /* * It might seem a bit odd that we're using me->params to * create the initial game state, rather than me->curparams * which is better tailored to this specific game and which we * always know. * * It's supposed to be an invariant in the midend that * me->params and me->curparams differ in no aspect that is * important after generation (i.e. after new_desc()). By * deliberately passing the _less_ specific of these two * parameter sets, we provoke play-time misbehaviour in the * case where a game has failed to encode a play-time parameter * in the non-full version of encode_params(). */ me->states[me->nstates].state = me->ourgame->new_game(me, me->params, me->desc); /* * As part of our commitment to self-testing, test the aux * string to make sure nothing ghastly went wrong. */ if (me->ourgame->can_solve && me->aux_info) { game_state *s; const char *msg; char *movestr; msg = NULL; movestr = me->ourgame->solve(me->states[0].state, me->states[0].state, me->aux_info, &msg); assert(movestr && !msg); s = me->ourgame->execute_move(me->states[0].state, movestr); assert(s); me->ourgame->free_game(s); sfree(movestr); } me->states[me->nstates].movestr = NULL; me->states[me->nstates].movetype = NEWGAME; me->nstates++; me->statepos = 1; me->drawstate = me->ourgame->new_drawstate(me->drawing, me->states[0].state); me->first_draw = true; midend_size_new_drawstate(me); me->elapsed = 0.0F; me->flash_pos = me->flash_time = 0.0F; me->anim_pos = me->anim_time = 0.0F; if (me->ui) me->ourgame->free_ui(me->ui); me->ui = me->ourgame->new_ui(me->states[0].state); midend_set_timer(me); me->pressed_mouse_button = 0; if (me->game_id_change_notify_function) me->game_id_change_notify_function(me->game_id_change_notify_ctx); me->newgame_can_store_undo = true; } bool midend_can_undo(midend *me) { return (me->statepos > 1 || me->newgame_undo.len); } bool midend_can_redo(midend *me) { return (me->statepos < me->nstates || me->newgame_redo.len); } struct newgame_undo_deserialise_read_ctx { struct midend_serialise_buf *ser; int len, pos; }; static bool newgame_undo_deserialise_read(void *ctx, void *buf, int len) { struct newgame_undo_deserialise_read_ctx *const rctx = ctx; if (len > rctx->len - rctx->pos) return false; memcpy(buf, rctx->ser->buf + rctx->pos, len); rctx->pos += len; return true; } struct newgame_undo_deserialise_check_ctx { bool refused; }; static const char *newgame_undo_deserialise_check( void *vctx, midend *me, const struct deserialise_data *data) { struct newgame_undo_deserialise_check_ctx *ctx = (struct newgame_undo_deserialise_check_ctx *)vctx; char *old, *new; /* * Undoing a New Game operation is only permitted if it doesn't * change the game parameters. The point of having the ability at * all is to recover from the momentary finger error of having hit * the 'n' key (perhaps in place of some other nearby key), or hit * the New Game menu item by mistake when aiming for the adjacent * Restart; in both those situations, the game params are the same * before and after the new-game operation. * * In principle, we could generalise this so that _any_ call to * midend_new_game could be undone, but that would need all front * ends to be alert to the possibility that any keystroke passed * to midend_process_key might (if it turns out to have been one * of the synonyms for undo, which the frontend doesn't * necessarily check for) have various knock-on effects like * needing to select a different preset in the game type menu, or * even resizing the window. At least for the moment, it's easier * not to do that, and to simply disallow any newgame-undo that is * disruptive in either of those ways. * * We check both params and cparams, to be as safe as possible. */ old = encode_params(me, me->params, true); new = encode_params(me, data->params, true); if (strcmp(old, new)) { /* Set a flag to distinguish this deserialise failure * from one due to faulty decoding */ ctx->refused = true; return "Undoing this new-game operation would change params"; } old = encode_params(me, me->curparams, true); new = encode_params(me, data->cparams, true); if (strcmp(old, new)) { ctx->refused = true; return "Undoing this new-game operation would change params"; } /* * Otherwise, fine, go ahead. */ return NULL; } static bool midend_undo(midend *me) { const char *deserialise_error; if (me->statepos > 1) { if (me->ui) me->ourgame->changed_state(me->ui, me->states[me->statepos-1].state, me->states[me->statepos-2].state); me->statepos--; me->dir = -1; return true; } else if (me->newgame_undo.len) { struct newgame_undo_deserialise_read_ctx rctx; struct newgame_undo_deserialise_check_ctx cctx; struct midend_serialise_buf serbuf; /* * Serialise the current game so that you can later redo past * this undo. Once we're committed to the undo actually * happening, we'll copy this data into place. */ serbuf.buf = NULL; serbuf.len = serbuf.size = 0; midend_serialise(me, newgame_serialise_write, &serbuf); rctx.ser = &me->newgame_undo; rctx.len = me->newgame_undo.len; /* copy for reentrancy safety */ rctx.pos = 0; cctx.refused = false; deserialise_error = midend_deserialise_internal( me, newgame_undo_deserialise_read, &rctx, newgame_undo_deserialise_check, &cctx); if (cctx.refused) { /* * Our post-deserialisation check shows that we can't use * this saved game after all. (deserialise_error will * contain the dummy error message generated by our check * function, which we ignore.) */ sfree(serbuf.buf); return false; } else { /* * There should never be any _other_ deserialisation * error, because this serialised data has been held in * our memory since it was created, and hasn't had any * opportunity to be corrupted on disk, accidentally * replaced by the wrong file, etc., by user error. */ assert(!deserialise_error); /* * Clear the old newgame_undo serialisation, so that we * don't try to undo past the beginning of the game we've * just gone back to and end up at the front of it again. */ me->newgame_undo.len = 0; /* * Copy the serialisation of the game we've just left into * the midend so that we can redo back into it later. */ me->newgame_redo.len = 0; newgame_serialise_write(&me->newgame_redo, serbuf.buf, serbuf.len); sfree(serbuf.buf); return true; } } else return false; } static bool midend_redo(midend *me) { const char *deserialise_error; if (me->statepos < me->nstates) { if (me->ui) me->ourgame->changed_state(me->ui, me->states[me->statepos-1].state, me->states[me->statepos].state); me->statepos++; me->dir = +1; return true; } else if (me->newgame_redo.len) { struct newgame_undo_deserialise_read_ctx rctx; struct newgame_undo_deserialise_check_ctx cctx; struct midend_serialise_buf serbuf; /* * Serialise the current game so that you can later undo past * this redo. Once we're committed to the undo actually * happening, we'll copy this data into place. */ serbuf.buf = NULL; serbuf.len = serbuf.size = 0; midend_serialise(me, newgame_serialise_write, &serbuf); rctx.ser = &me->newgame_redo; rctx.len = me->newgame_redo.len; /* copy for reentrancy safety */ rctx.pos = 0; cctx.refused = false; deserialise_error = midend_deserialise_internal( me, newgame_undo_deserialise_read, &rctx, newgame_undo_deserialise_check, &cctx); if (cctx.refused) { /* * Our post-deserialisation check shows that we can't use * this saved game after all. (deserialise_error will * contain the dummy error message generated by our check * function, which we ignore.) */ sfree(serbuf.buf); return false; } else { /* * There should never be any _other_ deserialisation * error, because this serialised data has been held in * our memory since it was created, and hasn't had any * opportunity to be corrupted on disk, accidentally * replaced by the wrong file, etc., by user error. */ assert(!deserialise_error); /* * Clear the old newgame_redo serialisation, so that we * don't try to redo past the end of the game we've just * come into and end up at the back of it again. */ me->newgame_redo.len = 0; /* * Copy the serialisation of the game we've just left into * the midend so that we can undo back into it later. */ me->newgame_undo.len = 0; newgame_serialise_write(&me->newgame_undo, serbuf.buf, serbuf.len); sfree(serbuf.buf); return true; } } else return false; } static void midend_finish_move(midend *me) { float flashtime; /* * We do not flash if the later of the two states is special. * This covers both forward Solve moves and backward (undone) * Restart moves. */ if ((me->oldstate || me->statepos > 1) && ((me->dir > 0 && !special(me->states[me->statepos-1].movetype)) || (me->dir < 0 && me->statepos < me->nstates && !special(me->states[me->statepos].movetype)))) { flashtime = me->ourgame->flash_length(me->oldstate ? me->oldstate : me->states[me->statepos-2].state, me->states[me->statepos-1].state, me->oldstate ? me->dir : +1, me->ui); if (flashtime > 0) { me->flash_pos = 0.0F; me->flash_time = flashtime; } } if (me->oldstate) me->ourgame->free_game(me->oldstate); me->oldstate = NULL; me->anim_pos = me->anim_time = 0; me->dir = 0; midend_set_timer(me); } void midend_stop_anim(midend *me) { if (me->oldstate || me->anim_time != 0) { midend_finish_move(me); midend_redraw(me); } } void midend_restart_game(midend *me) { game_state *s; assert(me->statepos >= 1); if (me->statepos == 1) return; /* no point doing anything at all! */ /* * During restart, we reconstruct the game from the (public) * game description rather than from states[0], because that * way Mines gets slightly more sensible behaviour (restart * goes to _after_ the first click so you don't have to * remember where you clicked). */ s = me->ourgame->new_game(me, me->params, me->desc); /* * Now enter the restarted state as the next move. */ midend_stop_anim(me); midend_purge_states(me); ensure(me); me->states[me->nstates].state = s; me->states[me->nstates].movestr = dupstr(me->desc); me->states[me->nstates].movetype = RESTART; me->statepos = ++me->nstates; if (me->ui) me->ourgame->changed_state(me->ui, me->states[me->statepos-2].state, me->states[me->statepos-1].state); me->flash_pos = me->flash_time = 0.0F; midend_finish_move(me); midend_redraw(me); midend_set_timer(me); } static bool midend_really_process_key(midend *me, int x, int y, int button, bool *handled) { game_state *oldstate = me->ourgame->dup_game(me->states[me->statepos - 1].state); int type = MOVE; bool gottype = false, ret = true; float anim_time; game_state *s; char *movestr = NULL; if (!IS_UI_FAKE_KEY(button)) { movestr = me->ourgame->interpret_move( me->states[me->statepos-1].state, me->ui, me->drawstate, x, y, button); } if (!movestr) { if (button == 'n' || button == 'N' || button == '\x0E' || button == UI_NEWGAME) { midend_new_game(me); midend_redraw(me); *handled = true; goto done; /* never animate */ } else if (button == 'u' || button == 'U' || button == '*' || button == '\x1A' || button == '\x1F' || button == UI_UNDO) { midend_stop_anim(me); type = me->states[me->statepos-1].movetype; gottype = true; if (!midend_undo(me)) goto done; *handled = true; } else if (button == 'r' || button == 'R' || button == '#' || button == '\x12' || button == '\x19' || button == UI_REDO) { midend_stop_anim(me); if (!midend_redo(me)) goto done; *handled = true; } else if ((button == '\x13' || button == UI_SOLVE) && me->ourgame->can_solve) { *handled = true; if (midend_solve(me)) goto done; } else if (button == 'q' || button == 'Q' || button == '\x11' || button == UI_QUIT) { ret = false; *handled = true; goto done; } else goto done; } else { *handled = true; if (movestr == UI_UPDATE) s = me->states[me->statepos-1].state; else { assert_printable_ascii(movestr); s = me->ourgame->execute_move(me->states[me->statepos-1].state, movestr); assert(s != NULL); } if (s == me->states[me->statepos-1].state) { /* * make_move() is allowed to return its input state to * indicate that although no move has been made, the UI * state has been updated and a redraw is called for. */ midend_redraw(me); midend_set_timer(me); goto done; } else if (s) { midend_stop_anim(me); midend_purge_states(me); ensure(me); assert(movestr != NULL); me->states[me->nstates].state = s; me->states[me->nstates].movestr = movestr; me->states[me->nstates].movetype = MOVE; me->statepos = ++me->nstates; me->dir = +1; if (me->ui) me->ourgame->changed_state(me->ui, me->states[me->statepos-2].state, me->states[me->statepos-1].state); } else { goto done; } } if (!gottype) type = me->states[me->statepos-1].movetype; /* * See if this move requires an animation. */ if (special(type) && !(type == SOLVE && (me->ourgame->flags & SOLVE_ANIMATES))) { anim_time = 0; } else { anim_time = me->ourgame->anim_length(oldstate, me->states[me->statepos-1].state, me->dir, me->ui); } me->oldstate = oldstate; oldstate = NULL; if (anim_time > 0) { me->anim_time = anim_time; } else { me->anim_time = 0.0; midend_finish_move(me); } me->anim_pos = 0.0; midend_redraw(me); midend_set_timer(me); done: if (oldstate) me->ourgame->free_game(oldstate); return ret; } bool midend_process_key(midend *me, int x, int y, int button, bool *handled) { bool ret = true, dummy_handled; if (handled == NULL) handled = &dummy_handled; *handled = false; /* * Harmonise mouse drag and release messages. * * Some front ends might accidentally switch from sending, say, * RIGHT_DRAG messages to sending LEFT_DRAG, half way through a * drag. (This can happen on the Mac, for example, since * RIGHT_DRAG is usually done using Command+drag, and if the * user accidentally releases Command half way through the drag * then there will be trouble.) * * It would be an O(number of front ends) annoyance to fix this * in the front ends, but an O(number of back ends) annoyance * to have each game capable of dealing with it. Therefore, we * fix it _here_ in the common midend code so that it only has * to be done once. * * The possible ways in which things can go screwy in the front * end are: * * - in a system containing multiple physical buttons button * presses can inadvertently overlap. We can see ABab (caps * meaning button-down and lowercase meaning button-up) when * the user had semantically intended AaBb. * * - in a system where one button is simulated by means of a * modifier key and another button, buttons can mutate * between press and release (possibly during drag). So we * can see Ab instead of Aa. * * Definite requirements are: * * - button _presses_ must never be invented or destroyed. If * the user presses two buttons in succession, the button * presses must be transferred to the backend unchanged. So * if we see AaBb , that's fine; if we see ABab (the button * presses inadvertently overlapped) we must somehow * `correct' it to AaBb. * * - every mouse action must end up looking like a press, zero * or more drags, then a release. This allows back ends to * make the _assumption_ that incoming mouse data will be * sane in this regard, and not worry about the details. * * So my policy will be: * * - treat any button-up as a button-up for the currently * pressed button, or ignore it if there is no currently * pressed button. * * - treat any drag as a drag for the currently pressed * button, or ignore it if there is no currently pressed * button. * * - if we see a button-down while another button is currently * pressed, invent a button-up for the first one and then * pass the button-down through as before. * * 2005-05-31: An addendum to the above. Some games might want * a `priority order' among buttons, such that if one button is * pressed while another is down then a fixed one of the * buttons takes priority no matter what order they're pressed * in. Mines, in particular, wants to treat a left+right click * like a left click for the benefit of users of other * implementations. So the last of the above points is modified * in the presence of an (optional) button priority order. * * A further addition: we translate certain keyboard presses to * cursor key 'select' buttons, so that a) frontends don't have * to translate these themselves (like they do for CURSOR_UP etc), * and b) individual games don't have to hard-code button presses * of '\n' etc for keyboard-based cursors. The choice of buttons * here could eventually be controlled by a runtime configuration * option. */ if (IS_MOUSE_DRAG(button) || IS_MOUSE_RELEASE(button)) { if (me->pressed_mouse_button) { if (IS_MOUSE_DRAG(button)) { button = me->pressed_mouse_button + (LEFT_DRAG - LEFT_BUTTON); } else { button = me->pressed_mouse_button + (LEFT_RELEASE - LEFT_BUTTON); } } else return ret; /* ignore it */ } else if (IS_MOUSE_DOWN(button) && me->pressed_mouse_button) { /* * If the new button has lower priority than the old one, * don't bother doing this. */ if (me->ourgame->flags & BUTTON_BEATS(me->pressed_mouse_button, button)) return ret; /* just ignore it */ /* * Fabricate a button-up for the previously pressed button. */ ret = ret && midend_really_process_key (me, x, y, (me->pressed_mouse_button + (LEFT_RELEASE - LEFT_BUTTON)), handled); } /* * Translate keyboard presses to cursor selection. */ if (button == '\n' || button == '\r') button = CURSOR_SELECT; if (button == ' ') button = CURSOR_SELECT2; /* * Normalise both backspace characters (8 and 127) to \b. Easier * to do this once, here, than to require all front ends to * carefully generate the same one - now each front end can * generate whichever is easiest. */ if (button == '\177') button = '\b'; /* * Now send on the event we originally received. */ ret = ret && midend_really_process_key(me, x, y, button, handled); /* * And update the currently pressed button. */ if (IS_MOUSE_RELEASE(button)) me->pressed_mouse_button = 0; else if (IS_MOUSE_DOWN(button)) me->pressed_mouse_button = button; return ret; } key_label *midend_request_keys(midend *me, int *n) { key_label *keys = NULL; int nkeys = 0, i; if(me->ourgame->request_keys) { keys = me->ourgame->request_keys(midend_get_params(me), &nkeys); for(i = 0; i < nkeys; ++i) { if(!keys[i].label) keys[i].label = button2label(keys[i].button); } } if(n) *n = nkeys; return keys; } /* Return a good label to show next to a key right now. */ const char *midend_current_key_label(midend *me, int button) { assert(IS_CURSOR_SELECT(button)); if (!me->ourgame->current_key_label) return ""; return me->ourgame->current_key_label( me->ui, me->states[me->statepos-1].state, button); } void midend_redraw(midend *me) { assert(me->drawing); if (me->statepos > 0 && me->drawstate) { bool first_draw = me->first_draw; me->first_draw = false; start_draw(me->drawing); if (first_draw) { /* * The initial contents of the window are not guaranteed * by the front end. But we also don't want to require * every single game to go to the effort of clearing the * window on setup. So we centralise here the operation of * covering the whole window with colour 0 (assumed to be * the puzzle's background colour) the first time we do a * redraw operation with a new drawstate. */ draw_rect(me->drawing, 0, 0, me->winwidth, me->winheight, 0); } if (me->oldstate && me->anim_time > 0 && me->anim_pos < me->anim_time) { assert(me->dir != 0); me->ourgame->redraw(me->drawing, me->drawstate, me->oldstate, me->states[me->statepos-1].state, me->dir, me->ui, me->anim_pos, me->flash_pos); } else { me->ourgame->redraw(me->drawing, me->drawstate, NULL, me->states[me->statepos-1].state, +1 /*shrug*/, me->ui, 0.0, me->flash_pos); } if (first_draw) { /* * Call a big draw_update on the whole window, in case the * game backend didn't. */ draw_update(me->drawing, 0, 0, me->winwidth, me->winheight); } end_draw(me->drawing); } } /* * Nasty hacky function used to implement the --redo option in * gtk.c. Only used for generating the puzzles' icons. */ void midend_freeze_timer(midend *me, float tprop) { me->anim_pos = me->anim_time * tprop; midend_redraw(me); deactivate_timer(me->frontend); } void midend_timer(midend *me, float tplus) { bool need_redraw = (me->anim_time > 0 || me->flash_time > 0); me->anim_pos += tplus; if (me->anim_pos >= me->anim_time || me->anim_time == 0 || !me->oldstate) { if (me->anim_time > 0) midend_finish_move(me); } me->flash_pos += tplus; if (me->flash_pos >= me->flash_time || me->flash_time == 0) { me->flash_pos = me->flash_time = 0; } if (need_redraw) midend_redraw(me); if (me->timing) { float oldelapsed = me->elapsed; me->elapsed += tplus; if ((int)oldelapsed != (int)me->elapsed) status_bar(me->drawing, me->laststatus ? me->laststatus : ""); } midend_set_timer(me); } float *midend_colours(midend *me, int *ncolours) { float *ret; ret = me->ourgame->colours(me->frontend, ncolours); assert(*ncolours >= 1); { int i; /* * Allow environment-based overrides for the standard * colours by defining variables along the lines of * `NET_COLOUR_4=6000c0'. */ for (i = 0; i < *ncolours; i++) { char buf[80], *e; unsigned int r, g, b; int j, k; sprintf(buf, "%s_COLOUR_%d", me->ourgame->name, i); for (j = k = 0; buf[j]; j++) if (!isspace((unsigned char)buf[j])) buf[k++] = toupper((unsigned char)buf[j]); buf[k] = '\0'; if ((e = getenv(buf)) != NULL && sscanf(e, "%2x%2x%2x", &r, &g, &b) == 3) { ret[i*3 + 0] = r / 255.0F; ret[i*3 + 1] = g / 255.0F; ret[i*3 + 2] = b / 255.0F; } assert(0.0F <= ret[i*3 + 0] && ret[i*3 + 0] <= 1.0F); assert(0.0F <= ret[i*3 + 1] && ret[i*3 + 1] <= 1.0F); assert(0.0F <= ret[i*3 + 2] && ret[i*3 + 2] <= 1.0F); } } return ret; } struct preset_menu *preset_menu_new(void) { struct preset_menu *menu = snew(struct preset_menu); menu->n_entries = 0; menu->entries_size = 0; menu->entries = NULL; return menu; } static struct preset_menu_entry *preset_menu_add(struct preset_menu *menu, char *title) { struct preset_menu_entry *toret; if (menu->n_entries >= menu->entries_size) { menu->entries_size = menu->n_entries * 5 / 4 + 10; menu->entries = sresize(menu->entries, menu->entries_size, struct preset_menu_entry); } toret = &menu->entries[menu->n_entries++]; toret->title = title; toret->params = NULL; toret->submenu = NULL; return toret; } struct preset_menu *preset_menu_add_submenu(struct preset_menu *parent, char *title) { struct preset_menu_entry *entry = preset_menu_add(parent, title); entry->submenu = preset_menu_new(); return entry->submenu; } void preset_menu_add_preset(struct preset_menu *parent, char *title, game_params *params) { struct preset_menu_entry *entry = preset_menu_add(parent, title); entry->params = params; } game_params *preset_menu_lookup_by_id(struct preset_menu *menu, int id) { int i; game_params *retd; for (i = 0; i < menu->n_entries; i++) { if (id == menu->entries[i].id) return menu->entries[i].params; if (menu->entries[i].submenu && (retd = preset_menu_lookup_by_id( menu->entries[i].submenu, id)) != NULL) return retd; } return NULL; } static char *preset_menu_add_from_user_env( midend *me, struct preset_menu *menu, char *p, bool top_level) { while (*p) { char *name, *val; game_params *preset; name = p; while (*p && *p != ':') p++; if (*p) *p++ = '\0'; val = p; while (*p && *p != ':') p++; if (*p) *p++ = '\0'; if (!strcmp(val, "#")) { /* * Special case: either open a new submenu with the given * title, or terminate the current submenu. */ if (*name) { struct preset_menu *submenu = preset_menu_add_submenu(menu, dupstr(name)); p = preset_menu_add_from_user_env(me, submenu, p, false); } else { /* * If we get a 'close submenu' indication at the top * level, there's not much we can do but quietly * ignore it. */ if (!top_level) return p; } continue; } preset = me->ourgame->default_params(); me->ourgame->decode_params(preset, val); if (me->ourgame->validate_params(preset, true)) { /* Drop this one from the list. */ me->ourgame->free_params(preset); continue; } preset_menu_add_preset(menu, dupstr(name), preset); } return p; } static void preset_menu_alloc_ids(midend *me, struct preset_menu *menu) { int i; for (i = 0; i < menu->n_entries; i++) menu->entries[i].id = me->n_encoded_presets++; for (i = 0; i < menu->n_entries; i++) if (menu->entries[i].submenu) preset_menu_alloc_ids(me, menu->entries[i].submenu); } static void preset_menu_encode_params(midend *me, struct preset_menu *menu) { int i; for (i = 0; i < menu->n_entries; i++) { if (menu->entries[i].params) { me->encoded_presets[menu->entries[i].id] = encode_params(me, menu->entries[i].params, true); } else { preset_menu_encode_params(me, menu->entries[i].submenu); } } } struct preset_menu *midend_get_presets(midend *me, int *id_limit) { int i; if (me->preset_menu) return me->preset_menu; #if 0 /* Expect the game to implement exactly one of the two preset APIs */ assert(me->ourgame->fetch_preset || me->ourgame->preset_menu); assert(!(me->ourgame->fetch_preset && me->ourgame->preset_menu)); #endif if (me->ourgame->fetch_preset) { char *name; game_params *preset; /* Simple one-level menu */ assert(!me->ourgame->preset_menu); me->preset_menu = preset_menu_new(); for (i = 0; me->ourgame->fetch_preset(i, &name, &preset); i++) preset_menu_add_preset(me->preset_menu, name, preset); } else { /* Hierarchical menu provided by the game backend */ me->preset_menu = me->ourgame->preset_menu(); } { /* * Allow user extensions to the preset list by defining an * environment variable <gamename>_PRESETS whose value is a * colon-separated list of items, alternating between textual * titles in the menu and encoded parameter strings. For * example, "SOLO_PRESETS=2x3 Advanced:2x3da" would define * just one additional preset for Solo. */ char buf[80], *e; int j, k; sprintf(buf, "%s_PRESETS", me->ourgame->name); for (j = k = 0; buf[j]; j++) if (!isspace((unsigned char)buf[j])) buf[k++] = toupper((unsigned char)buf[j]); buf[k] = '\0'; if ((e = getenv(buf)) != NULL) { e = dupstr(e); preset_menu_add_from_user_env(me, me->preset_menu, e, true); sfree(e); } } /* * Finalise the menu: allocate an integer id to each entry, and * store string encodings of the presets' parameters in * me->encoded_presets. */ me->n_encoded_presets = 0; preset_menu_alloc_ids(me, me->preset_menu); me->encoded_presets = snewn(me->n_encoded_presets, char *); for (i = 0; i < me->n_encoded_presets; i++) me->encoded_presets[i] = NULL; preset_menu_encode_params(me, me->preset_menu); if (id_limit) *id_limit = me->n_encoded_presets; return me->preset_menu; } int midend_which_preset(midend *me) { char *encoding = encode_params(me, me->params, true); int i, ret; ret = -1; for (i = 0; i < me->n_encoded_presets; i++) if (me->encoded_presets[i] && !strcmp(encoding, me->encoded_presets[i])) { ret = i; break; } sfree(encoding); return ret; } bool midend_wants_statusbar(midend *me) { return me->ourgame->wants_statusbar; } void midend_request_id_changes(midend *me, void (*notify)(void *), void *ctx) { me->game_id_change_notify_function = notify; me->game_id_change_notify_ctx = ctx; } bool midend_get_cursor_location(midend *me, int *x_out, int *y_out, int *w_out, int *h_out) { int x, y, w, h; x = y = -1; w = h = 1; if(me->ourgame->get_cursor_location) me->ourgame->get_cursor_location(me->ui, me->drawstate, me->states[me->statepos-1].state, me->params, &x, &y, &w, &h); if(x == -1 && y == -1) return false; if(x_out) *x_out = x; if(y_out) *y_out = y; if(w_out) *w_out = w; if(h_out) *h_out = h; return true; } void midend_supersede_game_desc(midend *me, const char *desc, const char *privdesc) { /* Assert that the descriptions consists only of printable ASCII. */ assert_printable_ascii(desc); if (privdesc) assert_printable_ascii(privdesc); sfree(me->desc); sfree(me->privdesc); me->desc = dupstr(desc); me->privdesc = privdesc ? dupstr(privdesc) : NULL; if (me->game_id_change_notify_function) me->game_id_change_notify_function(me->game_id_change_notify_ctx); } config_item *midend_get_config(midend *me, int which, char **wintitle) { char *titlebuf, *parstr; const char *rest; config_item *ret; char sep; assert(wintitle); titlebuf = snewn(40 + strlen(me->ourgame->name), char); switch (which) { case CFG_SETTINGS: sprintf(titlebuf, "%s configuration", me->ourgame->name); *wintitle = titlebuf; return me->ourgame->configure(me->params); case CFG_SEED: case CFG_DESC: if (!me->curparams) { sfree(titlebuf); return NULL; } sprintf(titlebuf, "%s %s selection", me->ourgame->name, which == CFG_SEED ? "random" : "game"); *wintitle = titlebuf; ret = snewn(2, config_item); ret[0].type = C_STRING; if (which == CFG_SEED) ret[0].name = "Game random seed"; else ret[0].name = "Game ID"; /* * For CFG_DESC the text going in here will be a string * encoding of the restricted parameters, plus a colon, * plus the game description. For CFG_SEED it will be the * full parameters, plus a hash, plus the random seed data. * Either of these is a valid full game ID (although only * the former is likely to persist across many code * changes). */ parstr = encode_params(me, me->curparams, which == CFG_SEED); assert(parstr); if (which == CFG_DESC) { rest = me->desc ? me->desc : ""; sep = ':'; } else { rest = me->seedstr ? me->seedstr : ""; sep = '#'; } ret[0].u.string.sval = snewn(strlen(parstr) + strlen(rest) + 2, char); sprintf(ret[0].u.string.sval, "%s%c%s", parstr, sep, rest); sfree(parstr); ret[1].type = C_END; ret[1].name = NULL; return ret; } assert(!"We shouldn't be here"); return NULL; } static const char *midend_game_id_int(midend *me, const char *id, int defmode) { const char *error; char *par = NULL; const char *desc, *seed; game_params *newcurparams, *newparams, *oldparams1, *oldparams2; bool free_params; seed = strchr(id, '#'); desc = strchr(id, ':'); if (desc && (!seed || desc < seed)) { /* * We have a colon separating parameters from game * description. So `par' now points to the parameters * string, and `desc' to the description string. */ par = snewn(desc-id + 1, char); strncpy(par, id, desc-id); par[desc-id] = '\0'; desc++; seed = NULL; } else if (seed && (!desc || seed < desc)) { /* * We have a hash separating parameters from random seed. * So `par' now points to the parameters string, and `seed' * to the seed string. */ par = snewn(seed-id + 1, char); strncpy(par, id, seed-id); par[seed-id] = '\0'; seed++; desc = NULL; } else { /* * We only have one string. Depending on `defmode', we take * it to be either parameters, seed or description. */ if (defmode == DEF_SEED) { seed = id; par = NULL; desc = NULL; } else if (defmode == DEF_DESC) { desc = id; par = NULL; seed = NULL; } else { par = dupstr(id); seed = desc = NULL; } } /* * We must be reasonably careful here not to modify anything in * `me' until we have finished validating things. This function * must either return an error and do nothing to the midend, or * return success and do everything; nothing in between is * acceptable. */ newcurparams = newparams = oldparams1 = oldparams2 = NULL; if (par) { /* * The params string may underspecify the game parameters, so * we must first initialise newcurparams with a full set of * params from somewhere else before we decode_params the * input string over the top. * * But which set? It depends on what other data we have. * * If we've been given a _descriptive_ game id, then that may * well underspecify by design, e.g. Solo game descriptions * often start just '3x3:' without specifying one of Solo's * difficulty settings, because it isn't necessary once a game * has been generated (and you might not even know it, if * you're manually transcribing a game description). In that * situation, I've always felt that the best thing to set the * difficulty to (for use if the user hits 'New Game' after * pasting in that game id) is whatever it was previously set * to. That is, we use whatever is already in me->params as * the basis for our decoding of this input string. * * A random-seed based game id, however, should use the real, * built-in default params, and not even check the * <game>_DEFAULT environment setting, because when people * paste each other random seeds - whether it's two users * arranging to generate the same game at the same time to * race solving them, or a user sending a bug report upstream * - the whole point is for the random game id to always be * interpreted the same way, even if it does underspecify. * * A parameter string typed in on its own, with no seed _or_ * description, gets treated the same way as a random seed, * because again I think the most likely reason for doing that * is to have a portable representation of a set of params. */ if (desc) { newcurparams = me->ourgame->dup_params(me->params); } else { newcurparams = me->ourgame->default_params(); } me->ourgame->decode_params(newcurparams, par); error = me->ourgame->validate_params(newcurparams, desc == NULL); if (error) { me->ourgame->free_params(newcurparams); return error; } oldparams1 = me->curparams; /* * Now filter only the persistent parts of this state into * the long-term params structure, unless we've _only_ * received a params string in which case the whole lot is * persistent. */ oldparams2 = me->params; if (seed || desc) { char *tmpstr; newparams = me->ourgame->dup_params(me->params); tmpstr = encode_params(me, newcurparams, false); me->ourgame->decode_params(newparams, tmpstr); sfree(tmpstr); } else { newparams = me->ourgame->dup_params(newcurparams); } free_params = true; } else { newcurparams = me->curparams; newparams = me->params; free_params = false; } if (desc) { error = me->ourgame->validate_desc(newparams, desc); if (error) { if (free_params) { if (newcurparams) me->ourgame->free_params(newcurparams); if (newparams) me->ourgame->free_params(newparams); } return error; } } /* * Now we've got past all possible error points. Update the * midend itself. */ me->params = newparams; me->curparams = newcurparams; if (oldparams1) me->ourgame->free_params(oldparams1); if (oldparams2) me->ourgame->free_params(oldparams2); sfree(me->desc); sfree(me->privdesc); me->desc = me->privdesc = NULL; sfree(me->seedstr); me->seedstr = NULL; if (desc) { me->desc = dupstr(desc); me->genmode = GOT_DESC; sfree(me->aux_info); me->aux_info = NULL; } if (seed) { me->seedstr = dupstr(seed); me->genmode = GOT_SEED; } sfree(par); me->newgame_can_store_undo = false; return NULL; } const char *midend_game_id(midend *me, const char *id) { return midend_game_id_int(me, id, DEF_PARAMS); } char *midend_get_game_id(midend *me) { char *parstr, *ret; parstr = encode_params(me, me->curparams, false); assert(parstr); assert(me->desc); ret = snewn(strlen(parstr) + strlen(me->desc) + 2, char); sprintf(ret, "%s:%s", parstr, me->desc); sfree(parstr); return ret; } char *midend_get_random_seed(midend *me) { char *parstr, *ret; if (!me->seedstr) return NULL; parstr = encode_params(me, me->curparams, true); assert(parstr); ret = snewn(strlen(parstr) + strlen(me->seedstr) + 2, char); sprintf(ret, "%s#%s", parstr, me->seedstr); sfree(parstr); return ret; } const char *midend_set_config(midend *me, int which, config_item *cfg) { const char *error; game_params *params; switch (which) { case CFG_SETTINGS: params = me->ourgame->custom_params(cfg); error = me->ourgame->validate_params(params, true); if (error) { me->ourgame->free_params(params); return error; } me->ourgame->free_params(me->params); me->params = params; break; case CFG_SEED: case CFG_DESC: error = midend_game_id_int(me, cfg[0].u.string.sval, (which == CFG_SEED ? DEF_SEED : DEF_DESC)); if (error) return error; break; } return NULL; } bool midend_can_format_as_text_now(midend *me) { if (me->ourgame->can_format_as_text_ever) return me->ourgame->can_format_as_text_now(me->params); else return false; } char *midend_text_format(midend *me) { if (me->ourgame->can_format_as_text_ever && me->statepos > 0 && me->ourgame->can_format_as_text_now(me->params)) return me->ourgame->text_format(me->states[me->statepos-1].state); else return NULL; } const char *midend_solve(midend *me) { game_state *s; const char *msg; char *movestr; if (!me->ourgame->can_solve) return "This game does not support the Solve operation"; if (me->statepos < 1) return "No game set up to solve"; /* _shouldn't_ happen! */ msg = NULL; movestr = me->ourgame->solve(me->states[0].state, me->states[me->statepos-1].state, me->aux_info, &msg); assert(movestr != UI_UPDATE); if (!movestr) { if (!msg) msg = "Solve operation failed"; /* _shouldn't_ happen, but can */ return msg; } assert_printable_ascii(movestr); s = me->ourgame->execute_move(me->states[me->statepos-1].state, movestr); assert(s); /* * Now enter the solved state as the next move. */ midend_stop_anim(me); midend_purge_states(me); ensure(me); me->states[me->nstates].state = s; me->states[me->nstates].movestr = movestr; me->states[me->nstates].movetype = SOLVE; me->statepos = ++me->nstates; if (me->ui) me->ourgame->changed_state(me->ui, me->states[me->statepos-2].state, me->states[me->statepos-1].state); me->dir = +1; if (me->ourgame->flags & SOLVE_ANIMATES) { me->oldstate = me->ourgame->dup_game(me->states[me->statepos-2].state); me->anim_time = me->ourgame->anim_length(me->states[me->statepos-2].state, me->states[me->statepos-1].state, +1, me->ui); me->anim_pos = 0.0; } else { me->anim_time = 0.0; midend_finish_move(me); } if (me->drawing) midend_redraw(me); midend_set_timer(me); return NULL; } int midend_status(midend *me) { /* * We should probably never be called when the state stack has no * states on it at all - ideally, midends should never be left in * that state for long enough to get put down and forgotten about. * But if we are, I think we return _true_ - pedantically speaking * a midend in that state is 'vacuously solved', and more * practically, a user whose midend has been left in that state * probably _does_ want the 'new game' option to be prominent. */ if (me->statepos == 0) return +1; return me->ourgame->status(me->states[me->statepos-1].state); } char *midend_rewrite_statusbar(midend *me, const char *text) { /* * An important special case is that we are occasionally called * with our own laststatus, to update the timer. */ if (me->laststatus != text) { sfree(me->laststatus); me->laststatus = dupstr(text); } if (me->ourgame->is_timed) { char timebuf[100], *ret; int min, sec; sec = (int)me->elapsed; min = sec / 60; sec %= 60; sprintf(timebuf, "[%d:%02d] ", min, sec); ret = snewn(strlen(timebuf) + strlen(text) + 1, char); strcpy(ret, timebuf); strcat(ret, text); return ret; } else { return dupstr(text); } } #define SERIALISE_MAGIC "Simon Tatham's Portable Puzzle Collection" #define SERIALISE_VERSION "1" void midend_serialise(midend *me, void (*write)(void *ctx, const void *buf, int len), void *wctx) { int i; /* * Each line of the save file contains three components. First * exactly 8 characters of header word indicating what type of * data is contained on the line; then a colon followed by a * decimal integer giving the length of the main string on the * line; then a colon followed by the string itself (exactly as * many bytes as previously specified, no matter what they * contain). Then a newline (of reasonably flexible form). */ #define wr(h,s) do { \ char hbuf[80]; \ const char *str = (s); \ char lbuf[9]; \ copy_left_justified(lbuf, sizeof(lbuf), h); \ sprintf(hbuf, "%s:%d:", lbuf, (int)strlen(str)); \ assert_printable_ascii(hbuf); \ write(wctx, hbuf, strlen(hbuf)); \ assert_printable_ascii(str); \ write(wctx, str, strlen(str)); \ write(wctx, "\n", 1); \ } while (0) /* * Magic string identifying the file, and version number of the * file format. */ wr("SAVEFILE", SERIALISE_MAGIC); wr("VERSION", SERIALISE_VERSION); /* * The game name. (Copied locally to avoid const annoyance.) */ { char *s = dupstr(me->ourgame->name); wr("GAME", s); sfree(s); } /* * The current long-term parameters structure, in full. */ if (me->params) { char *s = encode_params(me, me->params, true); wr("PARAMS", s); sfree(s); } /* * The current short-term parameters structure, in full. */ if (me->curparams) { char *s = encode_params(me, me->curparams, true); wr("CPARAMS", s); sfree(s); } /* * The current game description, the privdesc, and the random seed. */ if (me->seedstr) { /* * Random seeds are not necessarily printable ASCII. * Hex-encode the seed if necessary. Printable ASCII seeds * are emitted unencoded for compatibility with older * versions. */ int i; for (i = 0; me->seedstr[i]; i++) if (me->seedstr[i] < 32 || me->seedstr[i] >= 127) break; if (me->seedstr[i]) { char *hexseed = bin2hex((unsigned char *)me->seedstr, strlen(me->seedstr)); wr("HEXSEED", hexseed); sfree(hexseed); } else wr("SEED", me->seedstr); } if (me->desc) wr("DESC", me->desc); if (me->privdesc) wr("PRIVDESC", me->privdesc); /* * The game's aux_info. We obfuscate this to prevent spoilers * (people are likely to run `head' or similar on a saved game * file simply to find out what it is, and don't necessarily * want to be told the answer to the puzzle!) */ if (me->aux_info) { unsigned char *s1; char *s2; int len; len = strlen(me->aux_info); s1 = snewn(len, unsigned char); memcpy(s1, me->aux_info, len); obfuscate_bitmap(s1, len*8, false); s2 = bin2hex(s1, len); wr("AUXINFO", s2); sfree(s2); sfree(s1); } /* * Any required serialisation of the game_ui. */ if (me->ui) { char *s = me->ourgame->encode_ui(me->ui); if (s) { wr("UI", s); sfree(s); } } /* * The game time, if it's a timed game. */ if (me->ourgame->is_timed) { char buf[80]; sprintf(buf, "%g", me->elapsed); wr("TIME", buf); } /* * The length of, and position in, the states list. */ { char buf[80]; sprintf(buf, "%d", me->nstates); wr("NSTATES", buf); assert(me->statepos >= 1 && me->statepos <= me->nstates); sprintf(buf, "%d", me->statepos); wr("STATEPOS", buf); } /* * For each state after the initial one (which we know is * constructed from either privdesc or desc), enough * information for execute_move() to reconstruct it from the * previous one. */ for (i = 1; i < me->nstates; i++) { assert(me->states[i].movetype != NEWGAME); /* only state 0 */ switch (me->states[i].movetype) { case MOVE: wr("MOVE", me->states[i].movestr); break; case SOLVE: wr("SOLVE", me->states[i].movestr); break; case RESTART: wr("RESTART", me->states[i].movestr); break; } } #undef wr } /* * Internal version of midend_deserialise, taking an extra check * function to be called just before beginning to install things in * the midend. * * Like midend_deserialise proper, this function returns NULL on * success, or an error message. */ static const char *midend_deserialise_internal( midend *me, bool (*read)(void *ctx, void *buf, int len), void *rctx, const char *(*check)(void *ctx, midend *, const struct deserialise_data *), void *cctx) { struct deserialise_data data; int gotstates = 0; bool started = false; int i; char *val = NULL; /* Initially all errors give the same report */ const char *ret = "Data does not appear to be a saved game file"; data.seed = data.parstr = data.desc = data.privdesc = NULL; data.auxinfo = data.uistr = data.cparstr = NULL; data.elapsed = 0.0F; data.params = data.cparams = NULL; data.ui = NULL; data.states = NULL; data.nstates = 0; data.statepos = -1; /* * Loop round and round reading one key/value pair at a time * from the serialised stream, until we have enough game states * to finish. */ while (data.nstates <= 0 || data.statepos < 0 || gotstates < data.nstates-1) { char key[9], c; int len; do { if (!read(rctx, key, 1)) { /* unexpected EOF */ goto cleanup; } } while (key[0] == '\r' || key[0] == '\n'); if (!read(rctx, key+1, 8)) { /* unexpected EOF */ goto cleanup; } if (key[8] != ':') { if (started) ret = "Data was incorrectly formatted for a saved game file"; goto cleanup; } len = strcspn(key, ": "); assert(len <= 8); key[len] = '\0'; len = 0; while (1) { if (!read(rctx, &c, 1)) { /* unexpected EOF */ goto cleanup; } if (c == ':') { break; } else if (c >= '0' && c <= '9' && len < (INT_MAX - 10) / 10) { len = (len * 10) + (c - '0'); } else { if (started) ret = "Data was incorrectly formatted for a" " saved game file"; goto cleanup; } } val = snewn(len+1, char); if (!read(rctx, val, len)) { if (started) goto cleanup; } val[len] = '\0'; if (!started) { if (strcmp(key, "SAVEFILE") || strcmp(val, SERIALISE_MAGIC)) { /* ret already has the right message in it */ goto cleanup; } /* Now most errors are this one, unless otherwise specified */ ret = "Saved data ended unexpectedly"; started = true; } else { if (!strcmp(key, "VERSION")) { if (strcmp(val, SERIALISE_VERSION)) { ret = "Cannot handle this version of the saved game" " file format"; goto cleanup; } } else if (!strcmp(key, "GAME")) { if (strcmp(val, me->ourgame->name)) { ret = "Save file is from a different game"; goto cleanup; } } else if (!strcmp(key, "PARAMS")) { sfree(data.parstr); data.parstr = val; val = NULL; } else if (!strcmp(key, "CPARAMS")) { sfree(data.cparstr); data.cparstr = val; val = NULL; } else if (!strcmp(key, "HEXSEED")) { unsigned char *tmp; int len = strlen(val) / 2; /* length in bytes */ tmp = hex2bin(val, len); sfree(data.seed); data.seed = snewn(len + 1, char); memcpy(data.seed, tmp, len); data.seed[len] = '\0'; sfree(tmp); } else if (!strcmp(key, "SEED")) { sfree(data.seed); data.seed = val; val = NULL; } else if (!strcmp(key, "DESC")) { sfree(data.desc); data.desc = val; val = NULL; } else if (!strcmp(key, "PRIVDESC")) { sfree(data.privdesc); data.privdesc = val; val = NULL; } else if (!strcmp(key, "AUXINFO")) { unsigned char *tmp; int len = strlen(val) / 2; /* length in bytes */ tmp = hex2bin(val, len); obfuscate_bitmap(tmp, len*8, true); sfree(data.auxinfo); data.auxinfo = snewn(len + 1, char); memcpy(data.auxinfo, tmp, len); data.auxinfo[len] = '\0'; sfree(tmp); } else if (!strcmp(key, "UI")) { sfree(data.uistr); data.uistr = val; val = NULL; } else if (!strcmp(key, "TIME")) { data.elapsed = (float)atof(val); } else if (!strcmp(key, "NSTATES")) { if (data.states) { ret = "Two state counts provided in save file"; goto cleanup; } data.nstates = atoi(val); if (data.nstates <= 0) { ret = "Number of states in save file was negative"; goto cleanup; } data.states = snewn(data.nstates, struct midend_state_entry); for (i = 0; i < data.nstates; i++) { data.states[i].state = NULL; data.states[i].movestr = NULL; data.states[i].movetype = NEWGAME; } } else if (!strcmp(key, "STATEPOS")) { data.statepos = atoi(val); } else if (!strcmp(key, "MOVE") || !strcmp(key, "SOLVE") || !strcmp(key, "RESTART")) { if (!data.states) { ret = "No state count provided in save file"; goto cleanup; } if (data.statepos < 0) { ret = "No game position provided in save file"; goto cleanup; } gotstates++; assert(gotstates < data.nstates); if (!strcmp(key, "MOVE")) data.states[gotstates].movetype = MOVE; else if (!strcmp(key, "SOLVE")) data.states[gotstates].movetype = SOLVE; else data.states[gotstates].movetype = RESTART; data.states[gotstates].movestr = val; val = NULL; } } sfree(val); val = NULL; } data.params = me->ourgame->default_params(); if (!data.parstr) { ret = "Long-term parameters in save file are missing"; goto cleanup; } me->ourgame->decode_params(data.params, data.parstr); if (me->ourgame->validate_params(data.params, true)) { ret = "Long-term parameters in save file are invalid"; goto cleanup; } data.cparams = me->ourgame->default_params(); if (!data.cparstr) { ret = "Short-term parameters in save file are missing"; goto cleanup; } me->ourgame->decode_params(data.cparams, data.cparstr); if (me->ourgame->validate_params(data.cparams, false)) { ret = "Short-term parameters in save file are invalid"; goto cleanup; } if (data.seed && me->ourgame->validate_params(data.cparams, true)) { /* * The seed's no use with this version, but we can perfectly * well use the rest of the data. */ sfree(data.seed); data.seed = NULL; } if (!data.desc) { ret = "Game description in save file is missing"; goto cleanup; } else if (me->ourgame->validate_desc(data.cparams, data.desc)) { ret = "Game description in save file is invalid"; goto cleanup; } if (data.privdesc && me->ourgame->validate_desc(data.cparams, data.privdesc)) { ret = "Game private description in save file is invalid"; goto cleanup; } if (data.statepos < 1 || data.statepos > data.nstates) { ret = "Game position in save file is out of range"; goto cleanup; } if (!data.states) { ret = "No state count provided in save file"; goto cleanup; } data.states[0].state = me->ourgame->new_game( me, data.cparams, data.privdesc ? data.privdesc : data.desc); for (i = 1; i < data.nstates; i++) { assert(data.states[i].movetype != NEWGAME); switch (data.states[i].movetype) { case MOVE: case SOLVE: data.states[i].state = me->ourgame->execute_move( data.states[i-1].state, data.states[i].movestr); if (data.states[i].state == NULL) { ret = "Save file contained an invalid move"; goto cleanup; } break; case RESTART: if (me->ourgame->validate_desc( data.cparams, data.states[i].movestr)) { ret = "Save file contained an invalid restart move"; goto cleanup; } data.states[i].state = me->ourgame->new_game( me, data.cparams, data.states[i].movestr); break; } } data.ui = me->ourgame->new_ui(data.states[0].state); if (data.uistr) me->ourgame->decode_ui(data.ui, data.uistr); /* * Run the externally provided check function, and abort if it * returns an error message. */ if (check && (ret = check(cctx, me, &data)) != NULL) goto cleanup; /* error message is already in ret */ /* * Now we've run out of possible error conditions, so we're * ready to start overwriting the real data in the current * midend. We'll do this by swapping things with the local * variables, so that the same cleanup code will free the old * stuff. */ { char *tmp; tmp = me->desc; me->desc = data.desc; data.desc = tmp; tmp = me->privdesc; me->privdesc = data.privdesc; data.privdesc = tmp; tmp = me->seedstr; me->seedstr = data.seed; data.seed = tmp; tmp = me->aux_info; me->aux_info = data.auxinfo; data.auxinfo = tmp; } me->genmode = GOT_NOTHING; me->statesize = data.nstates; data.nstates = me->nstates; me->nstates = me->statesize; { struct midend_state_entry *tmp; tmp = me->states; me->states = data.states; data.states = tmp; } me->statepos = data.statepos; /* * Don't save the "new game undo/redo" state. So "new game" twice or * (in some environments) switching away and back, will make a * "new game" irreversible. Maybe in the future we will have a * more sophisticated way to decide when to discard the previous * game state. */ me->newgame_undo.len = 0; me->newgame_redo.len = 0; { game_params *tmp; tmp = me->params; me->params = data.params; data.params = tmp; tmp = me->curparams; me->curparams = data.cparams; data.cparams = tmp; } me->oldstate = NULL; me->anim_time = me->anim_pos = me->flash_time = me->flash_pos = 0.0F; me->dir = 0; { game_ui *tmp; tmp = me->ui; me->ui = data.ui; data.ui = tmp; } me->elapsed = data.elapsed; me->pressed_mouse_button = 0; midend_set_timer(me); if (me->drawstate) me->ourgame->free_drawstate(me->drawing, me->drawstate); me->drawstate = me->ourgame->new_drawstate(me->drawing, me->states[me->statepos-1].state); me->first_draw = true; midend_size_new_drawstate(me); if (me->game_id_change_notify_function) me->game_id_change_notify_function(me->game_id_change_notify_ctx); ret = NULL; /* success! */ cleanup: sfree(val); sfree(data.seed); sfree(data.parstr); sfree(data.cparstr); sfree(data.desc); sfree(data.privdesc); sfree(data.auxinfo); sfree(data.uistr); if (data.params) me->ourgame->free_params(data.params); if (data.cparams) me->ourgame->free_params(data.cparams); if (data.ui) me->ourgame->free_ui(data.ui); if (data.states) { int i; for (i = 0; i < data.nstates; i++) { if (data.states[i].state) me->ourgame->free_game(data.states[i].state); sfree(data.states[i].movestr); } sfree(data.states); } return ret; } const char *midend_deserialise( midend *me, bool (*read)(void *ctx, void *buf, int len), void *rctx) { return midend_deserialise_internal(me, read, rctx, NULL, NULL); } /* * This function examines a saved game file just far enough to * determine which game type it contains. It returns NULL on success * and the game name string in 'name' (which will be dynamically * allocated and should be caller-freed), or an error message on * failure. */ const char *identify_game(char **name, bool (*read)(void *ctx, void *buf, int len), void *rctx) { int nstates = 0, statepos = -1, gotstates = 0; bool started = false; char *val = NULL; /* Initially all errors give the same report */ const char *ret = "Data does not appear to be a saved game file"; *name = NULL; /* * Loop round and round reading one key/value pair at a time from * the serialised stream, until we've found the game name. */ while (nstates <= 0 || statepos < 0 || gotstates < nstates-1) { char key[9], c; int len; do { if (!read(rctx, key, 1)) { /* unexpected EOF */ goto cleanup; } } while (key[0] == '\r' || key[0] == '\n'); if (!read(rctx, key+1, 8)) { /* unexpected EOF */ goto cleanup; } if (key[8] != ':') { if (started) ret = "Data was incorrectly formatted for a saved game file"; goto cleanup; } len = strcspn(key, ": "); assert(len <= 8); key[len] = '\0'; len = 0; while (1) { if (!read(rctx, &c, 1)) { /* unexpected EOF */ goto cleanup; } if (c == ':') { break; } else if (c >= '0' && c <= '9' && len < (INT_MAX - 10) / 10) { len = (len * 10) + (c - '0'); } else { if (started) ret = "Data was incorrectly formatted for a" " saved game file"; goto cleanup; } } val = snewn(len+1, char); if (!read(rctx, val, len)) { if (started) goto cleanup; } val[len] = '\0'; if (!started) { if (strcmp(key, "SAVEFILE") || strcmp(val, SERIALISE_MAGIC)) { /* ret already has the right message in it */ goto cleanup; } /* Now most errors are this one, unless otherwise specified */ ret = "Saved data ended unexpectedly"; started = true; } else { if (!strcmp(key, "VERSION")) { if (strcmp(val, SERIALISE_VERSION)) { ret = "Cannot handle this version of the saved game" " file format"; goto cleanup; } } else if (!strcmp(key, "GAME")) { *name = dupstr(val); ret = NULL; goto cleanup; } } sfree(val); val = NULL; } cleanup: sfree(val); return ret; } const char *midend_print_puzzle(midend *me, document *doc, bool with_soln) { game_state *soln = NULL; if (me->statepos < 1) return "No game set up to print";/* _shouldn't_ happen! */ if (with_soln) { const char *msg; char *movestr; if (!me->ourgame->can_solve) return "This game does not support the Solve operation"; msg = "Solve operation failed";/* game _should_ overwrite on error */ movestr = me->ourgame->solve(me->states[0].state, me->states[me->statepos-1].state, me->aux_info, &msg); if (!movestr) return msg; soln = me->ourgame->execute_move(me->states[me->statepos-1].state, movestr); assert(soln); sfree(movestr); } else soln = NULL; /* * This call passes over ownership of the two game_states and * the game_params. Hence we duplicate the ones we want to * keep, and we don't have to bother freeing soln if it was * non-NULL. */ document_add_puzzle(doc, me->ourgame, me->ourgame->dup_params(me->curparams), me->ourgame->dup_game(me->states[0].state), soln); return NULL; }