ref: 5cc9bfb811854b66c4a570e8100b8a1aad037f0e
dir: /unfinished/numgame.c/
/* * This program implements a breadth-first search which * exhaustively solves the Countdown numbers game, and related * games with slightly different rule sets such as `Flippo'. * * Currently it is simply a standalone command-line utility to * which you provide a set of numbers and it tells you everything * it can make together with how many different ways it can be * made. I would like ultimately to turn it into the generator for * a Puzzles puzzle, but I haven't even started on writing a * Puzzles user interface yet. */ /* * TODO: * * - start thinking about difficulty ratings * + anything involving associative operations will be flagged * as many-paths because of the associative options (e.g. * 2*3*4 can be (2*3)*4 or 2*(3*4), or indeed (2*4)*3). This * is probably a _good_ thing, since those are unusually * easy. * + tree-structured calculations ((a*b)/(c+d)) have multiple * paths because the independent branches of the tree can be * evaluated in either order, whereas straight-line * calculations with no branches will be considered easier. * Can we do anything about this? It's certainly not clear to * me that tree-structure calculations are _easier_, although * I'm also not convinced they're harder. * + I think for a realistic difficulty assessment we must also * consider the `obviousness' of the arithmetic operations in * some heuristic sense, and also (in Countdown) how many * numbers ended up being used. * - actually try some generations * - at this point we're probably ready to start on the Puzzles * integration. */ #include <stdio.h> #include <string.h> #include <limits.h> #include <assert.h> #include <math.h> #include "puzzles.h" #include "tree234.h" /* * To search for numbers we can make, we employ a breadth-first * search across the space of sets of input numbers. That is, for * example, we start with the set (3,6,25,50,75,100); we apply * moves which involve combining two numbers (e.g. adding the 50 * and the 75 takes us to the set (3,6,25,100,125); and then we see * if we ever end up with a set containing (say) 952. * * If the rules are changed so that all the numbers must be used, * this is easy to adjust to: we simply see if we end up with a set * containing _only_ (say) 952. * * Obviously, we can vary the rules about permitted arithmetic * operations simply by altering the set of valid moves in the bfs. * However, there's one common rule in this sort of puzzle which * takes a little more thought, and that's _concatenation_. For * example, if you are given (say) four 4s and required to make 10, * you are permitted to combine two of the 4s into a 44 to begin * with, making (44-4)/4 = 10. However, you are generally not * allowed to concatenate two numbers that _weren't_ both in the * original input set (you couldn't multiply two 4s to get 16 and * then concatenate a 4 on to it to make 164), so concatenation is * not an operation which is valid in all situations. * * We could enforce this restriction by storing a flag alongside * each number indicating whether or not it's an original number; * the rules being that concatenation of two numbers is only valid * if they both have the original flag, and that its output _also_ * has the original flag (so that you can concatenate three 4s into * a 444), but that applying any other arithmetic operation clears * the original flag on the output. However, we can get marginally * simpler than that by observing that since concatenation has to * happen to a number before any other operation, we can simply * place all the concatenations at the start of the search. In * other words, we have a global flag on an entire number _set_ * which indicates whether we are still permitted to perform * concatenations; if so, we can concatenate any of the numbers in * that set. Performing any other operation clears the flag. */ #define SETFLAG_CONCAT 1 /* we can do concatenation */ struct sets; struct ancestor { struct set *prev; /* index of ancestor set in set list */ unsigned char pa, pb, po, pr; /* operation that got here from prev */ }; struct set { int *numbers; /* rationals stored as n,d pairs */ short nnumbers; /* # of rationals, so half # of ints */ short flags; /* SETFLAG_CONCAT only, at present */ int npaths; /* number of ways to reach this set */ struct ancestor a; /* primary ancestor */ struct ancestor *as; /* further ancestors, if we care */ int nas, assize; }; struct output { int number; struct set *set; int index; /* which number in the set is it? */ int npaths; /* number of ways to reach this */ }; #define SETLISTLEN 1024 #define NUMBERLISTLEN 32768 #define OUTPUTLISTLEN 1024 struct operation; struct sets { struct set **setlists; int nsets, nsetlists, setlistsize; tree234 *settree; int **numberlists; int nnumbers, nnumberlists, numberlistsize; struct output **outputlists; int noutputs, noutputlists, outputlistsize; tree234 *outputtree; const struct operation *const *ops; }; #define OPFLAG_NEEDS_CONCAT 1 #define OPFLAG_KEEPS_CONCAT 2 #define OPFLAG_UNARY 4 #define OPFLAG_UNARYPREFIX 8 #define OPFLAG_FN 16 struct operation { /* * Most operations should be shown in the output working, but * concatenation should not; we just take the result of the * concatenation and assume that it's obvious how it was * derived. */ int display; /* * Text display of the operator, in expressions and for * debugging respectively. */ const char *text, *dbgtext; /* * Flags dictating when the operator can be applied. */ int flags; /* * Priority of the operator (for avoiding unnecessary * parentheses when formatting it into a string). */ int priority; /* * Associativity of the operator. Bit 0 means we need parens * when the left operand of one of these operators is another * instance of it, e.g. (2^3)^4. Bit 1 means we need parens * when the right operand is another instance of the same * operator, e.g. 2-(3-4). Thus: * * - this field is 0 for a fully associative operator, since * we never need parens. * - it's 1 for a right-associative operator. * - it's 2 for a left-associative operator. * - it's 3 for a _non_-associative operator (which always * uses parens just to be sure). */ int assoc; /* * Whether the operator is commutative. Saves time in the * search if we don't have to try it both ways round. */ int commutes; /* * Function which implements the operator. Returns true on * success, false on failure. Takes two rationals and writes * out a third. */ int (*perform)(int *a, int *b, int *output); }; struct rules { const struct operation *const *ops; int use_all; }; #define MUL(r, a, b) do { \ (r) = (a) * (b); \ if ((b) && (a) && (r) / (b) != (a)) return false; \ } while (0) #define ADD(r, a, b) do { \ (r) = (a) + (b); \ if ((a) > 0 && (b) > 0 && (r) < 0) return false; \ if ((a) < 0 && (b) < 0 && (r) > 0) return false; \ } while (0) #define OUT(output, n, d) do { \ int g = gcd((n),(d)); \ if (g < 0) g = -g; \ if ((d) < 0) g = -g; \ if (g == -1 && (n) < -INT_MAX) return false; \ if (g == -1 && (d) < -INT_MAX) return false; \ (output)[0] = (n)/g; \ (output)[1] = (d)/g; \ assert((output)[1] > 0); \ } while (0) static int gcd(int x, int y) { while (x != 0 && y != 0) { int t = x; x = y; y = t % y; } return abs(x + y); /* i.e. whichever one isn't zero */ } static int perform_add(int *a, int *b, int *output) { int at, bt, tn, bn; /* * a0/a1 + b0/b1 = (a0*b1 + b0*a1) / (a1*b1) */ MUL(at, a[0], b[1]); MUL(bt, b[0], a[1]); ADD(tn, at, bt); MUL(bn, a[1], b[1]); OUT(output, tn, bn); return true; } static int perform_sub(int *a, int *b, int *output) { int at, bt, tn, bn; /* * a0/a1 - b0/b1 = (a0*b1 - b0*a1) / (a1*b1) */ MUL(at, a[0], b[1]); MUL(bt, b[0], a[1]); ADD(tn, at, -bt); MUL(bn, a[1], b[1]); OUT(output, tn, bn); return true; } static int perform_mul(int *a, int *b, int *output) { int tn, bn; /* * a0/a1 * b0/b1 = (a0*b0) / (a1*b1) */ MUL(tn, a[0], b[0]); MUL(bn, a[1], b[1]); OUT(output, tn, bn); return true; } static int perform_div(int *a, int *b, int *output) { int tn, bn; /* * Division by zero is outlawed. */ if (b[0] == 0) return false; /* * a0/a1 / b0/b1 = (a0*b1) / (a1*b0) */ MUL(tn, a[0], b[1]); MUL(bn, a[1], b[0]); OUT(output, tn, bn); return true; } static int perform_exact_div(int *a, int *b, int *output) { int tn, bn; /* * Division by zero is outlawed. */ if (b[0] == 0) return false; /* * a0/a1 / b0/b1 = (a0*b1) / (a1*b0) */ MUL(tn, a[0], b[1]); MUL(bn, a[1], b[0]); OUT(output, tn, bn); /* * Exact division means we require the result to be an integer. */ return (output[1] == 1); } static int max_p10(int n, int *p10_r) { /* * Find the smallest power of ten strictly greater than n. * * Special case: we must return at least 10, even if n is * zero. (This is because this function is used for finding * the power of ten by which to multiply a number being * concatenated to the front of n, and concatenating 1 to 0 * should yield 10 and not 1.) */ int p10 = 10; while (p10 <= (INT_MAX/10) && p10 <= n) p10 *= 10; if (p10 > INT_MAX/10) return false; /* integer overflow */ *p10_r = p10; return true; } static int perform_concat(int *a, int *b, int *output) { int t1, t2, p10; /* * We can't concatenate anything which isn't a non-negative * integer. */ if (a[1] != 1 || b[1] != 1 || a[0] < 0 || b[0] < 0) return false; /* * For concatenation, we can safely assume leading zeroes * aren't an issue. It isn't clear whether they `should' be * allowed, but it turns out not to matter: concatenating a * leading zero on to a number in order to harmlessly get rid * of the zero is never necessary because unwanted zeroes can * be disposed of by adding them to something instead. So we * disallow them always. * * The only other possibility is that you might want to * concatenate a leading zero on to something and then * concatenate another non-zero digit on to _that_ (to make, * for example, 106); but that's also unnecessary, because you * can make 106 just as easily by concatenating the 0 on to the * _end_ of the 1 first. */ if (a[0] == 0) return false; if (!max_p10(b[0], &p10)) return false; MUL(t1, p10, a[0]); ADD(t2, t1, b[0]); OUT(output, t2, 1); return true; } #define IPOW(ret, x, y) do { \ int ipow_limit = (y); \ if ((x) == 1 || (x) == 0) ipow_limit = 1; \ else if ((x) == -1) ipow_limit &= 1; \ (ret) = 1; \ while (ipow_limit-- > 0) { \ int tmp; \ MUL(tmp, ret, x); \ ret = tmp; \ } \ } while (0) static int perform_exp(int *a, int *b, int *output) { int an, ad, xn, xd; /* * Exponentiation is permitted if the result is rational. This * means that: * * - first we see whether we can take the (denominator-of-b)th * root of a and get a rational; if not, we give up. * * - then we do take that root of a * * - then we multiply by itself (numerator-of-b) times. */ if (b[1] > 1) { an = (int)(0.5 + pow(a[0], 1.0/b[1])); ad = (int)(0.5 + pow(a[1], 1.0/b[1])); IPOW(xn, an, b[1]); IPOW(xd, ad, b[1]); if (xn != a[0] || xd != a[1]) return false; } else { an = a[0]; ad = a[1]; } if (b[0] >= 0) { IPOW(xn, an, b[0]); IPOW(xd, ad, b[0]); } else { IPOW(xd, an, -b[0]); IPOW(xn, ad, -b[0]); } if (xd == 0) return false; OUT(output, xn, xd); return true; } static int perform_factorial(int *a, int *b, int *output) { int ret, t, i; /* * Factorials of non-negative integers are permitted. */ if (a[1] != 1 || a[0] < 0) return false; /* * However, a special case: we don't take a factorial of * anything which would thereby remain the same. */ if (a[0] == 1 || a[0] == 2) return false; ret = 1; for (i = 1; i <= a[0]; i++) { MUL(t, ret, i); ret = t; } OUT(output, ret, 1); return true; } static int perform_decimal(int *a, int *b, int *output) { int p10; /* * Add a decimal digit to the front of a number; * fail if it's not an integer. * So, 1 --> 0.1, 15 --> 0.15, * or, rather, 1 --> 1/10, 15 --> 15/100, * x --> x / (smallest power of 10 > than x) * */ if (a[1] != 1) return false; if (!max_p10(a[0], &p10)) return false; OUT(output, a[0], p10); return true; } static int perform_recur(int *a, int *b, int *output) { int p10, tn, bn; /* * This converts a number like .4 to .44444..., or .45 to .45454... * The input number must be -1 < a < 1. * * Calculate the smallest power of 10 that divides the denominator exactly, * returning if no such power of 10 exists. Then multiply the numerator * up accordingly, and the new denominator becomes that power of 10 - 1. */ if (abs(a[0]) >= abs(a[1])) return false; /* -1 < a < 1 */ p10 = 10; while (p10 <= (INT_MAX/10)) { if ((a[1] <= p10) && (p10 % a[1]) == 0) goto found; p10 *= 10; } return false; found: tn = a[0] * (p10 / a[1]); bn = p10 - 1; OUT(output, tn, bn); return true; } static int perform_root(int *a, int *b, int *output) { /* * A root B is: 1 iff a == 0 * B ^ (1/A) otherwise */ int ainv[2], res; if (a[0] == 0) { OUT(output, 1, 1); return true; } OUT(ainv, a[1], a[0]); res = perform_exp(b, ainv, output); return res; } static int perform_perc(int *a, int *b, int *output) { if (a[0] == 0) return false; /* 0% = 0, uninteresting. */ if (a[1] > (INT_MAX/100)) return false; OUT(output, a[0], a[1]*100); return true; } static int perform_gamma(int *a, int *b, int *output) { int asub1[2]; /* * gamma(a) = (a-1)! * * special case not caught by perform_fact: gamma(1) is 1 so * don't bother. */ if (a[0] == 1 && a[1] == 1) return false; OUT(asub1, a[0]-a[1], a[1]); return perform_factorial(asub1, b, output); } static int perform_sqrt(int *a, int *b, int *output) { int half[2] = { 1, 2 }; /* * sqrt(0) == 0, sqrt(1) == 1: don't perform unary noops. */ if (a[0] == 0 || (a[0] == 1 && a[1] == 1)) return false; return perform_exp(a, half, output); } const static struct operation op_add = { true, "+", "+", 0, 10, 0, true, perform_add }; const static struct operation op_sub = { true, "-", "-", 0, 10, 2, false, perform_sub }; const static struct operation op_mul = { true, "*", "*", 0, 20, 0, true, perform_mul }; const static struct operation op_div = { true, "/", "/", 0, 20, 2, false, perform_div }; const static struct operation op_xdiv = { true, "/", "/", 0, 20, 2, false, perform_exact_div }; const static struct operation op_concat = { false, "", "concat", OPFLAG_NEEDS_CONCAT | OPFLAG_KEEPS_CONCAT, 1000, 0, false, perform_concat }; const static struct operation op_exp = { true, "^", "^", 0, 30, 1, false, perform_exp }; const static struct operation op_factorial = { true, "!", "!", OPFLAG_UNARY, 40, 0, false, perform_factorial }; const static struct operation op_decimal = { true, ".", ".", OPFLAG_UNARY | OPFLAG_UNARYPREFIX | OPFLAG_NEEDS_CONCAT | OPFLAG_KEEPS_CONCAT, 50, 0, false, perform_decimal }; const static struct operation op_recur = { true, "...", "recur", OPFLAG_UNARY | OPFLAG_NEEDS_CONCAT, 45, 2, false, perform_recur }; const static struct operation op_root = { true, "v~", "root", 0, 30, 1, false, perform_root }; const static struct operation op_perc = { true, "%", "%", OPFLAG_UNARY | OPFLAG_NEEDS_CONCAT, 45, 1, false, perform_perc }; const static struct operation op_gamma = { true, "gamma", "gamma", OPFLAG_UNARY | OPFLAG_UNARYPREFIX | OPFLAG_FN, 1, 3, false, perform_gamma }; const static struct operation op_sqrt = { true, "v~", "sqrt", OPFLAG_UNARY | OPFLAG_UNARYPREFIX, 30, 1, false, perform_sqrt }; /* * In Countdown, divisions resulting in fractions are disallowed. * http://www.askoxford.com/wordgames/countdown/rules/ */ const static struct operation *const ops_countdown[] = { &op_add, &op_mul, &op_sub, &op_xdiv, NULL }; const static struct rules rules_countdown = { ops_countdown, false }; /* * A slightly different rule set which handles the reasonably well * known puzzle of making 24 using two 3s and two 8s. For this we * need rational rather than integer division. */ const static struct operation *const ops_3388[] = { &op_add, &op_mul, &op_sub, &op_div, NULL }; const static struct rules rules_3388 = { ops_3388, true }; /* * A still more permissive rule set usable for the four-4s problem * and similar things. Permits concatenation. */ const static struct operation *const ops_four4s[] = { &op_add, &op_mul, &op_sub, &op_div, &op_concat, NULL }; const static struct rules rules_four4s = { ops_four4s, true }; /* * The most permissive ruleset I can think of. Permits * exponentiation, and also silly unary operators like factorials. */ const static struct operation *const ops_anythinggoes[] = { &op_add, &op_mul, &op_sub, &op_div, &op_concat, &op_exp, &op_factorial, &op_decimal, &op_recur, &op_root, &op_perc, &op_gamma, &op_sqrt, NULL }; const static struct rules rules_anythinggoes = { ops_anythinggoes, true }; #define ratcmp(a,op,b) ( (long long)(a)[0] * (b)[1] op \ (long long)(b)[0] * (a)[1] ) static int addtoset(struct set *set, int newnumber[2]) { int i, j; /* Find where we want to insert the new number */ for (i = 0; i < set->nnumbers && ratcmp(set->numbers+2*i, <, newnumber); i++); /* Move everything else up */ for (j = set->nnumbers; j > i; j--) { set->numbers[2*j] = set->numbers[2*j-2]; set->numbers[2*j+1] = set->numbers[2*j-1]; } /* Insert the new number */ set->numbers[2*i] = newnumber[0]; set->numbers[2*i+1] = newnumber[1]; set->nnumbers++; return i; } #define ensure(array, size, newlen, type) do { \ if ((newlen) > (size)) { \ (size) = (newlen) + 512; \ (array) = sresize((array), (size), type); \ } \ } while (0) static int setcmp(void *av, void *bv) { struct set *a = (struct set *)av; struct set *b = (struct set *)bv; int i; if (a->nnumbers < b->nnumbers) return -1; else if (a->nnumbers > b->nnumbers) return +1; if (a->flags < b->flags) return -1; else if (a->flags > b->flags) return +1; for (i = 0; i < a->nnumbers; i++) { if (ratcmp(a->numbers+2*i, <, b->numbers+2*i)) return -1; else if (ratcmp(a->numbers+2*i, >, b->numbers+2*i)) return +1; } return 0; } static int outputcmp(void *av, void *bv) { struct output *a = (struct output *)av; struct output *b = (struct output *)bv; if (a->number < b->number) return -1; else if (a->number > b->number) return +1; return 0; } static int outputfindcmp(void *av, void *bv) { int *a = (int *)av; struct output *b = (struct output *)bv; if (*a < b->number) return -1; else if (*a > b->number) return +1; return 0; } static void addset(struct sets *s, struct set *set, int multiple, struct set *prev, int pa, int po, int pb, int pr) { struct set *s2; int npaths = (prev ? prev->npaths : 1); assert(set == s->setlists[s->nsets / SETLISTLEN] + s->nsets % SETLISTLEN); s2 = add234(s->settree, set); if (s2 == set) { /* * New set added to the tree. */ set->a.prev = prev; set->a.pa = pa; set->a.po = po; set->a.pb = pb; set->a.pr = pr; set->npaths = npaths; s->nsets++; s->nnumbers += 2 * set->nnumbers; set->as = NULL; set->nas = set->assize = 0; } else { /* * Rediscovered an existing set. Update its npaths. */ s2->npaths += npaths; /* * And optionally enter it as an additional ancestor. */ if (multiple) { if (s2->nas >= s2->assize) { s2->assize = s2->nas * 3 / 2 + 4; s2->as = sresize(s2->as, s2->assize, struct ancestor); } s2->as[s2->nas].prev = prev; s2->as[s2->nas].pa = pa; s2->as[s2->nas].po = po; s2->as[s2->nas].pb = pb; s2->as[s2->nas].pr = pr; s2->nas++; } } } static struct set *newset(struct sets *s, int nnumbers, int flags) { struct set *sn; ensure(s->setlists, s->setlistsize, s->nsets/SETLISTLEN+1, struct set *); while (s->nsetlists <= s->nsets / SETLISTLEN) s->setlists[s->nsetlists++] = snewn(SETLISTLEN, struct set); sn = s->setlists[s->nsets / SETLISTLEN] + s->nsets % SETLISTLEN; if (s->nnumbers + nnumbers * 2 > s->nnumberlists * NUMBERLISTLEN) s->nnumbers = s->nnumberlists * NUMBERLISTLEN; ensure(s->numberlists, s->numberlistsize, s->nnumbers/NUMBERLISTLEN+1, int *); while (s->nnumberlists <= s->nnumbers / NUMBERLISTLEN) s->numberlists[s->nnumberlists++] = snewn(NUMBERLISTLEN, int); sn->numbers = s->numberlists[s->nnumbers / NUMBERLISTLEN] + s->nnumbers % NUMBERLISTLEN; /* * Start the set off empty. */ sn->nnumbers = 0; sn->flags = flags; return sn; } static int addoutput(struct sets *s, struct set *ss, int index, int *n) { struct output *o, *o2; /* * Target numbers are always integers. */ if (ss->numbers[2*index+1] != 1) return false; ensure(s->outputlists, s->outputlistsize, s->noutputs/OUTPUTLISTLEN+1, struct output *); while (s->noutputlists <= s->noutputs / OUTPUTLISTLEN) s->outputlists[s->noutputlists++] = snewn(OUTPUTLISTLEN, struct output); o = s->outputlists[s->noutputs / OUTPUTLISTLEN] + s->noutputs % OUTPUTLISTLEN; o->number = ss->numbers[2*index]; o->set = ss; o->index = index; o->npaths = ss->npaths; o2 = add234(s->outputtree, o); if (o2 != o) { o2->npaths += o->npaths; } else { s->noutputs++; } *n = o->number; return true; } static struct sets *do_search(int ninputs, int *inputs, const struct rules *rules, int *target, int debug, int multiple) { struct sets *s; struct set *sn; int qpos, i; const struct operation *const *ops = rules->ops; s = snew(struct sets); s->setlists = NULL; s->nsets = s->nsetlists = s->setlistsize = 0; s->numberlists = NULL; s->nnumbers = s->nnumberlists = s->numberlistsize = 0; s->outputlists = NULL; s->noutputs = s->noutputlists = s->outputlistsize = 0; s->settree = newtree234(setcmp); s->outputtree = newtree234(outputcmp); s->ops = ops; /* * Start with the input set. */ sn = newset(s, ninputs, SETFLAG_CONCAT); for (i = 0; i < ninputs; i++) { int newnumber[2]; newnumber[0] = inputs[i]; newnumber[1] = 1; addtoset(sn, newnumber); } addset(s, sn, multiple, NULL, 0, 0, 0, 0); /* * Now perform the breadth-first search: keep looping over sets * until we run out of steam. */ qpos = 0; while (qpos < s->nsets) { struct set *ss = s->setlists[qpos / SETLISTLEN] + qpos % SETLISTLEN; struct set *sn; int i, j, k, m; if (debug) { int i; printf("processing set:"); for (i = 0; i < ss->nnumbers; i++) { printf(" %d", ss->numbers[2*i]); if (ss->numbers[2*i+1] != 1) printf("/%d", ss->numbers[2*i+1]); } printf("\n"); } /* * Record all the valid output numbers in this state. We * can always do this if there's only one number in the * state; otherwise, we can only do it if we aren't * required to use all the numbers in coming to our answer. */ if (ss->nnumbers == 1 || !rules->use_all) { for (i = 0; i < ss->nnumbers; i++) { int n; if (addoutput(s, ss, i, &n) && target && n == *target) return s; } } /* * Try every possible operation from this state. */ for (k = 0; ops[k] && ops[k]->perform; k++) { if ((ops[k]->flags & OPFLAG_NEEDS_CONCAT) && !(ss->flags & SETFLAG_CONCAT)) continue; /* can't use this operation here */ for (i = 0; i < ss->nnumbers; i++) { int jlimit = (ops[k]->flags & OPFLAG_UNARY ? 1 : ss->nnumbers); for (j = 0; j < jlimit; j++) { int n[2], newnn = ss->nnumbers; int pa, po, pb, pr; if (!(ops[k]->flags & OPFLAG_UNARY)) { if (i == j) continue; /* can't combine a number with itself */ if (i > j && ops[k]->commutes) continue; /* no need to do this both ways round */ newnn--; } if (!ops[k]->perform(ss->numbers+2*i, ss->numbers+2*j, n)) continue; /* operation failed */ sn = newset(s, newnn, ss->flags); if (!(ops[k]->flags & OPFLAG_KEEPS_CONCAT)) sn->flags &= ~SETFLAG_CONCAT; for (m = 0; m < ss->nnumbers; m++) { if (m == i || (!(ops[k]->flags & OPFLAG_UNARY) && m == j)) continue; sn->numbers[2*sn->nnumbers] = ss->numbers[2*m]; sn->numbers[2*sn->nnumbers + 1] = ss->numbers[2*m + 1]; sn->nnumbers++; } pa = i; if (ops[k]->flags & OPFLAG_UNARY) pb = sn->nnumbers+10; else pb = j; po = k; pr = addtoset(sn, n); addset(s, sn, multiple, ss, pa, po, pb, pr); if (debug) { int i; if (ops[k]->flags & OPFLAG_UNARYPREFIX) printf(" %s %d ->", ops[po]->dbgtext, pa); else if (ops[k]->flags & OPFLAG_UNARY) printf(" %d %s ->", pa, ops[po]->dbgtext); else printf(" %d %s %d ->", pa, ops[po]->dbgtext, pb); for (i = 0; i < sn->nnumbers; i++) { printf(" %d", sn->numbers[2*i]); if (sn->numbers[2*i+1] != 1) printf("/%d", sn->numbers[2*i+1]); } printf("\n"); } } } } qpos++; } return s; } static void free_sets(struct sets *s) { int i; freetree234(s->settree); freetree234(s->outputtree); for (i = 0; i < s->nsetlists; i++) sfree(s->setlists[i]); sfree(s->setlists); for (i = 0; i < s->nnumberlists; i++) sfree(s->numberlists[i]); sfree(s->numberlists); for (i = 0; i < s->noutputlists; i++) sfree(s->outputlists[i]); sfree(s->outputlists); sfree(s); } /* * Print a text formula for producing a given output. */ void print_recurse(struct sets *s, struct set *ss, int pathindex, int index, int priority, int assoc, int child); void print_recurse_inner(struct sets *s, struct set *ss, struct ancestor *a, int pathindex, int index, int priority, int assoc, int child) { if (a->prev && index != a->pr) { int pi; /* * This number was passed straight down from this set's * predecessor. Find its index in the previous set and * recurse to there. */ pi = index; assert(pi != a->pr); if (pi > a->pr) pi--; if (pi >= min(a->pa, a->pb)) { pi++; if (pi >= max(a->pa, a->pb)) pi++; } print_recurse(s, a->prev, pathindex, pi, priority, assoc, child); } else if (a->prev && index == a->pr && s->ops[a->po]->display) { /* * This number was created by a displayed operator in the * transition from this set to its predecessor. Hence we * write an open paren, then recurse into the first * operand, then write the operator, then the second * operand, and finally close the paren. */ const char *op; int parens, thispri, thisassoc; /* * Determine whether we need parentheses. */ thispri = s->ops[a->po]->priority; thisassoc = s->ops[a->po]->assoc; parens = (thispri < priority || (thispri == priority && (assoc & child))); if (parens) putchar('('); if (s->ops[a->po]->flags & OPFLAG_UNARYPREFIX) for (op = s->ops[a->po]->text; *op; op++) putchar(*op); if (s->ops[a->po]->flags & OPFLAG_FN) putchar('('); print_recurse(s, a->prev, pathindex, a->pa, thispri, thisassoc, 1); if (s->ops[a->po]->flags & OPFLAG_FN) putchar(')'); if (!(s->ops[a->po]->flags & OPFLAG_UNARYPREFIX)) for (op = s->ops[a->po]->text; *op; op++) putchar(*op); if (!(s->ops[a->po]->flags & OPFLAG_UNARY)) print_recurse(s, a->prev, pathindex, a->pb, thispri, thisassoc, 2); if (parens) putchar(')'); } else { /* * This number is either an original, or something formed * by a non-displayed operator (concatenation). Either way, * we display it as is. */ printf("%d", ss->numbers[2*index]); if (ss->numbers[2*index+1] != 1) printf("/%d", ss->numbers[2*index+1]); } } void print_recurse(struct sets *s, struct set *ss, int pathindex, int index, int priority, int assoc, int child) { if (!ss->a.prev || pathindex < ss->a.prev->npaths) { print_recurse_inner(s, ss, &ss->a, pathindex, index, priority, assoc, child); } else { int i; pathindex -= ss->a.prev->npaths; for (i = 0; i < ss->nas; i++) { if (pathindex < ss->as[i].prev->npaths) { print_recurse_inner(s, ss, &ss->as[i], pathindex, index, priority, assoc, child); break; } pathindex -= ss->as[i].prev->npaths; } } } void print(int pathindex, struct sets *s, struct output *o) { print_recurse(s, o->set, pathindex, o->index, 0, 0, 0); } /* * gcc -g -O0 -o numgame numgame.c -I.. ../{malloc,tree234,nullfe}.c -lm */ int main(int argc, char **argv) { int doing_opts = true; const struct rules *rules = NULL; char *pname = argv[0]; int got_target = false, target = 0; int numbers[10], nnumbers = 0; int verbose = false; int pathcounts = false; int multiple = false; int debug_bfs = false; int got_range = false, rangemin = 0, rangemax = 0; struct output *o; struct sets *s; int i, start, limit; while (--argc) { char *p = *++argv; int c; if (doing_opts && *p == '-') { p++; if (!strcmp(p, "-")) { doing_opts = false; continue; } else if (*p == '-') { p++; if (!strcmp(p, "debug-bfs")) { debug_bfs = true; } else { fprintf(stderr, "%s: option '--%s' not recognised\n", pname, p); } } else while (p && *p) switch (c = *p++) { case 'C': rules = &rules_countdown; break; case 'B': rules = &rules_3388; break; case 'D': rules = &rules_four4s; break; case 'A': rules = &rules_anythinggoes; break; case 'v': verbose = true; break; case 'p': pathcounts = true; break; case 'm': multiple = true; break; case 't': case 'r': { char *v; if (*p) { v = p; p = NULL; } else if (--argc) { v = *++argv; } else { fprintf(stderr, "%s: option '-%c' expects an" " argument\n", pname, c); return 1; } switch (c) { case 't': got_target = true; target = atoi(v); break; case 'r': { char *sep = strchr(v, '-'); got_range = true; if (sep) { rangemin = atoi(v); rangemax = atoi(sep+1); } else { rangemin = 0; rangemax = atoi(v); } } break; } } break; default: fprintf(stderr, "%s: option '-%c' not" " recognised\n", pname, c); return 1; } } else { if (nnumbers >= lenof(numbers)) { fprintf(stderr, "%s: internal limit of %d numbers exceeded\n", pname, (int)lenof(numbers)); return 1; } else { numbers[nnumbers++] = atoi(p); } } } if (!rules) { fprintf(stderr, "%s: no rule set specified; use -C,-B,-D,-A\n", pname); return 1; } if (!nnumbers) { fprintf(stderr, "%s: no input numbers specified\n", pname); return 1; } if (got_range) { if (got_target) { fprintf(stderr, "%s: only one of -t and -r may be specified\n", pname); return 1; } if (rangemin >= rangemax) { fprintf(stderr, "%s: range not sensible (%d - %d)\n", pname, rangemin, rangemax); return 1; } } s = do_search(nnumbers, numbers, rules, (got_target ? &target : NULL), debug_bfs, multiple); if (got_target) { o = findrelpos234(s->outputtree, &target, outputfindcmp, REL234_LE, &start); if (!o) start = -1; o = findrelpos234(s->outputtree, &target, outputfindcmp, REL234_GE, &limit); if (!o) limit = -1; assert(start != -1 || limit != -1); if (start == -1) start = limit; else if (limit == -1) limit = start; limit++; } else if (got_range) { if (!findrelpos234(s->outputtree, &rangemin, outputfindcmp, REL234_GE, &start) || !findrelpos234(s->outputtree, &rangemax, outputfindcmp, REL234_LE, &limit)) { printf("No solutions available in specified range %d-%d\n", rangemin, rangemax); return 1; } limit++; } else { start = 0; limit = count234(s->outputtree); } for (i = start; i < limit; i++) { char buf[256]; o = index234(s->outputtree, i); sprintf(buf, "%d", o->number); if (pathcounts) sprintf(buf + strlen(buf), " [%d]", o->npaths); if (got_target || verbose) { int j, npaths; if (multiple) npaths = o->npaths; else npaths = 1; for (j = 0; j < npaths; j++) { printf("%s = ", buf); print(j, s, o); putchar('\n'); } } else { printf("%s\n", buf); } } free_sets(s); return 0; } /* vim: set shiftwidth=4 tabstop=8: */