ref: 14e1e05510ac02a5502823bafe46d98c6fab3e5c
dir: /dsf.c/
/* * dsf.c: some functions to handle a disjoint set forest, * which is a data structure useful in any solver which has to * worry about avoiding closed loops. */ #include <assert.h> #include <string.h> #include "puzzles.h" struct DSF { int size; int *p; }; void dsf_reinit(DSF *dsf) { int i; for (i = 0; i < dsf->size; i++) dsf->p[i] = 6; /* Bottom bit of each element of this array stores whether that * element is opposite to its parent, which starts off as * false. Second bit of each element stores whether that element * is the root of its tree or not. If it's not the root, the * remaining 30 bits are the parent, otherwise the remaining 30 * bits are the number of elements in the tree. */ } void dsf_copy(DSF *to, DSF *from) { assert(to->size == from->size && "Mismatch in dsf_copy"); memcpy(to->p, from->p, to->size * sizeof(int)); } DSF *snew_dsf(int size) { DSF *ret = snew(DSF); ret->size = size; ret->p = snewn(size, int); dsf_reinit(ret); return ret; } void dsf_free(DSF *dsf) { if (dsf) { sfree(dsf->p); sfree(dsf); } } int dsf_canonify(DSF *dsf, int index) { return edsf_canonify(dsf, index, NULL); } bool dsf_equivalent(DSF *dsf, int i1, int i2) { return edsf_canonify(dsf, i1, NULL) == edsf_canonify(dsf, i2, NULL); } void dsf_merge(DSF *dsf, int v1, int v2) { edsf_merge(dsf, v1, v2, false); } int dsf_size(DSF *dsf, int index) { return dsf->p[dsf_canonify(dsf, index)] >> 2; } int edsf_canonify(DSF *dsf, int index, bool *inverse_return) { int start_index = index, canonical_index; bool inverse = false; assert(0 <= index && index < dsf->size && "Overrun in edsf_canonify"); /* Find the index of the canonical element of the 'equivalence class' of * which start_index is a member, and figure out whether start_index is the * same as or inverse to that. */ while ((dsf->p[index] & 2) == 0) { inverse ^= (dsf->p[index] & 1); index = dsf->p[index] >> 2; } canonical_index = index; if (inverse_return) *inverse_return = inverse; /* Update every member of this 'equivalence class' to point directly at the * canonical member. */ index = start_index; while (index != canonical_index) { int nextindex = dsf->p[index] >> 2; bool nextinverse = inverse ^ (dsf->p[index] & 1); dsf->p[index] = (canonical_index << 2) | inverse; inverse = nextinverse; index = nextindex; } assert(!inverse); return index; } void edsf_merge(DSF *dsf, int v1, int v2, bool inverse) { bool i1, i2; assert(0 <= v1 && v1 < dsf->size && "Overrun in edsf_merge"); assert(0 <= v2 && v2 < dsf->size && "Overrun in edsf_merge"); v1 = edsf_canonify(dsf, v1, &i1); assert(dsf->p[v1] & 2); inverse ^= i1; v2 = edsf_canonify(dsf, v2, &i2); assert(dsf->p[v2] & 2); inverse ^= i2; if (v1 == v2) assert(!inverse); else { /* * We always make the smaller of v1 and v2 the new canonical * element. This ensures that the canonical element of any * class in this structure is always the first element in * it. 'Keen' depends critically on this property. * * (Jonas Koelker previously had this code choosing which * way round to connect the trees by examining the sizes of * the classes being merged, so that the root of the * larger-sized class became the new root. This gives better * asymptotic performance, but I've changed it to do it this * way because I like having a deterministic canonical * element.) */ if (v1 > v2) { int v3 = v1; v1 = v2; v2 = v3; } dsf->p[v1] += (dsf->p[v2] >> 2) << 2; dsf->p[v2] = (v1 << 2) | inverse; } v2 = edsf_canonify(dsf, v2, &i2); assert(v2 == v1); assert(i2 == inverse); }