ref: 0bd1a8057841386754f9f4a8a268616c7ce80e80
dir: /hat.c/
/* * Code to generate patches of the aperiodic 'hat' tiling discovered * in 2023. * * auxiliary/doc/hats.html contains an explanation of the basic ideas * of this algorithm, which can't really be put in a source file * because it just has too many complicated diagrams. So read that * first, because the comments in here will refer to it. * * Discoverers' website: https://cs.uwaterloo.ca/~csk/hat/ * Preprint of paper: https://arxiv.org/abs/2303.10798 */ #include <assert.h> #include <math.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "puzzles.h" #include "hat.h" /* * Coordinate system: * * The output of this code lives on the tiling known to grid.c as * 'Kites', which can be viewed as a tiling of hexagons each of which * is subdivided into six kites sharing their pointy vertex, or * (equivalently) a tiling of equilateral triangles each subdivided * into three kits sharing their blunt vertex. * * We express coordinates in this system relative to the basis (1, r) * where r = (1 + sqrt(3)i) / 2 is a primitive 6th root of unity. This * gives us a system in which two integer coordinates can address any * grid point, provided we scale up so that the side length of the * equilateral triangles in the tiling is 6. */ typedef struct Point { int x, y; /* represents x + yr */ } Point; static inline Point pointscale(int scale, Point a) { Point r = { scale * a.x, scale * a.y }; return r; } static inline Point pointadd(Point a, Point b) { Point r = { a.x + b.x, a.y + b.y }; return r; } /* * We identify a single kite by the coordinates of its four vertices. * This allows us to construct the coordinates of an adjacent kite by * taking affine transformations of the original kite's vertices. * * This is a useful way to do it because it means that if you reflect * the kite (by swapping its left and right vertices) then these * transformations also perform in a reflected way. This will be * useful in the code below that outputs the coordinates of each hat, * because this way it can work by walking around its 8 kites using a * fixed set of steps, and if the hat is reflected, then we just * reflect the starting kite before doing that, and everything still * works. */ typedef struct Kite { Point centre, left, right, outer; } Kite; static inline Kite kite_left(Kite k) { Kite r; r.centre = k.centre; r.right = k.left; r.outer = pointadd(pointscale(2, k.left), pointscale(-1, k.outer)); r.left = pointadd(pointadd(k.centre, k.left), pointscale(-1, k.right)); return r; } static inline Kite kite_right(Kite k) { Kite r; r.centre = k.centre; r.left = k.right; r.outer = pointadd(pointscale(2, k.right), pointscale(-1, k.outer)); r.right = pointadd(pointadd(k.centre, k.right), pointscale(-1, k.left)); return r; } static inline Kite kite_forward_left(Kite k) { Kite r; r.outer = k.outer; r.right = k.left; r.centre = pointadd(pointscale(2, k.left), pointscale(-1, k.centre)); r.left = pointadd(pointadd(k.right, k.left), pointscale(-1, k.centre)); return r; } static inline Kite kite_forward_right(Kite k) { Kite r; r.outer = k.outer; r.left = k.right; r.centre = pointadd(pointscale(2, k.right), pointscale(-1, k.centre)); r.right = pointadd(pointadd(k.left, k.right), pointscale(-1, k.centre)); return r; } typedef enum KiteStep { KS_LEFT, KS_RIGHT, KS_F_LEFT, KS_F_RIGHT } KiteStep; static inline Kite kite_step(Kite k, KiteStep step) { switch (step) { case KS_LEFT: return kite_left(k); case KS_RIGHT: return kite_right(k); case KS_F_LEFT: return kite_forward_left(k); default /* case KS_F_RIGHT */: return kite_forward_right(k); } } /* * Function to enumerate the kites in a rectangular region, in a * serpentine-raster fashion so that every kite delivered shares an * edge with a recent previous one. */ #define KE_NKEEP 3 typedef struct KiteEnum { /* Fields private to the enumerator */ int state; int x, y, w, h; unsigned curr_index; /* Fields the client can legitimately read out */ Kite *curr; Kite recent[KE_NKEEP]; unsigned last_index; KiteStep last_step; /* step that got curr from recent[last_index] */ } KiteEnum; static void first_kite(KiteEnum *s, int w, int h) { Kite start = { {0,0}, {0, 3}, {3, 0}, {2, 2} }; size_t i; for (i = 0; i < KE_NKEEP; i++) s->recent[i] = start; /* initialise to *something* */ s->curr_index = 0; s->curr = &s->recent[s->curr_index]; s->state = 1; s->w = w; s->h = h; s->x = 0; s->y = 0; } static bool next_kite(KiteEnum *s) { unsigned lastbut1 = s->last_index; s->last_index = s->curr_index; s->curr_index = (s->curr_index + 1) % KE_NKEEP; s->curr = &s->recent[s->curr_index]; switch (s->state) { /* States 1,2,3 walk rightwards along the upper side of a * horizontal grid line with a pointy kite end at the start * point */ case 1: s->last_step = KS_F_RIGHT; s->state = 2; break; case 2: if (s->x+1 >= s->w) { s->last_step = KS_F_RIGHT; s->state = 4; break; } s->last_step = KS_RIGHT; s->state = 3; s->x++; break; case 3: s->last_step = KS_RIGHT; s->state = 1; break; /* State 4 is special: we've just moved up into a row below a * grid line, but we can't produce the rightmost tile of that * row because it's not adjacent any tile so far emitted. So * instead, emit the second-rightmost tile, and next time, * we'll emit the rightmost. */ case 4: s->last_step = KS_LEFT; s->state = 5; break; /* And now we have to emit the third-rightmost tile relative * to the last but one tile we emitted (the one from state 2, * not state 4). */ case 5: s->last_step = KS_RIGHT; s->last_index = lastbut1; s->state = 6; break; /* Now states 6-8 handle the general case of walking leftwards * along the lower side of a line, starting from a * right-angled kite end. */ case 6: if (s->x <= 0) { if (s->y+1 >= s->h) { s->state = 0; return false; } s->last_step = KS_RIGHT; s->state = 9; s->y++; break; } s->last_step = KS_F_RIGHT; s->state = 7; s->x--; break; case 7: s->last_step = KS_RIGHT; s->state = 8; break; case 8: s->last_step = KS_RIGHT; s->state = 6; break; /* States 9,10,11 walk rightwards along the upper side of a * horizontal grid line with a right-angled kite end at the * start point. This time there's no awkward transition from * the previous row. */ case 9: s->last_step = KS_RIGHT; s->state = 10; break; case 10: s->last_step = KS_RIGHT; s->state = 11; break; case 11: if (s->x+1 >= s->w) { /* Another awkward transition to the next row, where we * have to generate it based on the previous state-9 tile. * But this time at least we generate the rightmost tile * of the new row, so the next states will be simple. */ s->last_step = KS_F_RIGHT; s->last_index = lastbut1; s->state = 12; break; } s->last_step = KS_F_RIGHT; s->state = 9; s->x++; break; /* States 12,13,14 walk leftwards along the upper edge of a * horizontal grid line with a pointy kite end at the start * point */ case 12: s->last_step = KS_F_RIGHT; s->state = 13; break; case 13: if (s->x <= 0) { if (s->y+1 >= s->h) { s->state = 0; return false; } s->last_step = KS_LEFT; s->state = 1; s->y++; break; } s->last_step = KS_RIGHT; s->state = 14; s->x--; break; case 14: s->last_step = KS_RIGHT; s->state = 12; break; default: return false; } *s->curr = kite_step(s->recent[s->last_index], s->last_step); return true; } /* * Assorted useful definitions. */ typedef enum TileType { TT_H, TT_T, TT_P, TT_F, TT_KITE, TT_HAT } TileType; static const char tilechars[] = "HTPF"; #define HAT_KITES 8 /* number of kites in a hat */ #define MT_MAXEXPAND 13 /* largest number of metatiles in any expansion */ /* * Definitions for the autogenerated hat-tables.h header file that * defines all the lookup tables. */ typedef struct KitemapEntry { int kite, hat, meta; /* all -1 if impossible */ } KitemapEntry; typedef struct MetamapEntry { int meta, meta2; } MetamapEntry; static inline size_t kitemap_index(KiteStep step, unsigned kite, unsigned hat, unsigned meta) { return step + 4 * (kite + 8 * (hat + 4 * meta)); } static inline size_t metamap_index(unsigned meta, unsigned meta2) { return meta2 * MT_MAXEXPAND + meta; } /* * The actual tables. */ #include "hat-tables.h" /* * One set of tables that we write by hand: the permitted ways to * extend the coordinate system outwards from a given metatile. * * One obvious approach would be to make a table of all the places * each metatile can appear in the expansion of another (e.g. H can be * subtile 0, 1 or 2 of another H, subtile 0 of a T, or 0 or 1 of a P * or an F), and when we need to decide what our current topmost tile * turns out to be a subtile of, choose equiprobably at random from * those options. * * That's what I did originally, but a better approach is to skew the * probabilities. We'd like to generate our patch of actual tiling * uniformly at random, in the sense that if you selected uniformly * from a very large region of the plane, the distribution of possible * finite patches of tiling would converge to some limit as that * region tended to infinity, and we'd be picking from that limiting * distribution on finite patches. * * For this we have to refer back to the original paper, which * indicates the subset of each metatile's expansion that can be * considered to 'belong' to that metatile, such that every subtile * belongs to exactly one parent metatile, and the overlaps are * eliminated. Reading out the diagrams from their Figure 2.8: * * - H: we discard three of the outer F subtiles, in the symmetric * positions index by our coordinates as 7, 10, 11. So we keep the * remaining subtiles {0,1,2,3,4,5,6,8,9,12}, which consist of * three H, one T, three P and three F. * * - T: only the central H expanded from a T is considered to belong * to it, so we just keep {0}, a single H. * * - P: we discard everything intersected by a long edge of the * parallelogram, leaving the central three tiles and the endmost * pair of F. That is, we keep {0,1,4,5,10}, consisting of two H, * one P and two F. * * - F: looks like P at one end, and we retain the corresponding set * of tiles there, but at the other end we keep the two F on either * side of the endmost one. So we keep {0,1,3,6,8,10}, consisting of * two H, one P and _three_ F. * * Adding up the tile numbers gives us this matrix system: * * (H_1) (3 1 2 2)(H_0) * (T_1) = (1 0 0 0)(T_0) * (P_1) (3 0 1 1)(P_0) * (F_1) (3 0 2 3)(F_0) * * which says that if you have a patch of metatiling consisting of H_0 * H tiles, T_0 T tiles etc, then this matrix shows the number H_1 of * smaller H tiles, etc, expanded from it. * * If you expand _many_ times, that's equivalent to raising the matrix * to a power: * * n * (H_n) (3 1 2 2) (H_0) * (T_n) = (1 0 0 0) (T_0) * (P_n) (3 0 1 1) (P_0) * (F_n) (3 0 2 3) (F_0) * * The limiting distribution of metatiles is obtained by looking at * the four-way ratio between H_n, T_n, P_n and F_n as n tends to * infinity. To calculate this, we find the eigenvalues and * eigenvectors of the matrix, and extract the eigenvector * corresponding to the eigenvalue of largest magnitude. (Things get * more complicated in cases where there isn't a _unique_ eigenvalue * of largest magnitude, but here, there is.) * * That eigenvector is * * [ 1 ] [ 1 ] * [ (7 - 3 sqrt(5)) / 2 ] ~= [ 0.14589803375031545538 ] * [ 3 sqrt(5) - 6 ] [ 0.70820393249936908922 ] * [ (9 - 3 sqrt(5)) / 2 ] [ 1.14589803375031545538 ] * * So those are the limiting relative proportions of metatiles. * * So if we have a particular metatile, how likely is it for its * parent to be one of those? We have to adjust by the number of * metatiles of each type that each tile has as its children. For * example, the P and F tiles have one P child each, but the H has * three P children. So if we have a P, the proportion of H in its * potential ancestry is three times what's shown here. (And T can't * occur at all as a parent.) * * In other words, we should choose _each coordinate_ with probability * corresponding to one of those numbers (scaled down so they all sum * to 1). Continuing to use P as an example, it will be: * * - child 4 of H with relative probability 1 * - child 5 of H with relative probability 1 * - child 6 of H with relative probability 1 * - child 4 of P with relative probability 0.70820393249936908922 * - child 3 of F with relative probability 1.14589803375031545538 * * and then we obtain the true probabilities by scaling those values * down so that they sum to 1. * * The tables below give a reasonable approximation in 32-bit * integers to these proportions. */ typedef struct MetatilePossibleParent { TileType type; unsigned index; unsigned long probability; } MetatilePossibleParent; /* The above probabilities scaled up by 10000000 */ #define PROB_H 10000000 #define PROB_T 1458980 #define PROB_P 7082039 #define PROB_F 11458980 static const MetatilePossibleParent parents_H[] = { { TT_H, 0, PROB_H }, { TT_H, 1, PROB_H }, { TT_H, 2, PROB_H }, { TT_T, 0, PROB_T }, { TT_P, 0, PROB_P }, { TT_P, 1, PROB_P }, { TT_F, 0, PROB_F }, { TT_F, 1, PROB_F }, }; static const MetatilePossibleParent parents_T[] = { { TT_H, 3, PROB_H }, }; static const MetatilePossibleParent parents_P[] = { { TT_H, 4, PROB_H }, { TT_H, 5, PROB_H }, { TT_H, 6, PROB_H }, { TT_P, 4, PROB_P }, { TT_F, 3, PROB_F }, }; static const MetatilePossibleParent parents_F[] = { { TT_H, 8, PROB_H }, { TT_H, 9, PROB_H }, { TT_H, 12, PROB_H }, { TT_P, 5, PROB_P }, { TT_P, 10, PROB_P }, { TT_F, 6, PROB_F }, { TT_F, 8, PROB_F }, { TT_F, 10, PROB_F }, }; static const MetatilePossibleParent *const possible_parents[] = { parents_H, parents_T, parents_P, parents_F, }; static const size_t n_possible_parents[] = { lenof(parents_H), lenof(parents_T), lenof(parents_P), lenof(parents_F), }; /* * Similarly, we also want to choose our absolute starting hat with * close to uniform probability, which again we do by looking at the * limiting ratio of the metatile types, and this time, scaling by the * number of hats in each metatile. * * We cheatingly use the same MetatilePossibleParent struct, because * it's got all the right fields, even if it has an inappropriate * name. */ static const MetatilePossibleParent starting_hats[] = { { TT_H, 0, PROB_H }, { TT_H, 1, PROB_H }, { TT_H, 2, PROB_H }, { TT_H, 3, PROB_H }, { TT_T, 0, PROB_P }, { TT_P, 0, PROB_P }, { TT_P, 1, PROB_P }, { TT_F, 0, PROB_F }, { TT_F, 1, PROB_F }, }; #undef PROB_H #undef PROB_T #undef PROB_P #undef PROB_F /* * Coordinate system for tracking kites within a randomly selected * part of the recursively expanded hat tiling. * * HatCoords will store an array of HatCoord, in little-endian * arrangement. So hc->c[0] will always have type TT_KITE and index a * single kite within a hat; hc->c[1] will have type TT_HAT and index * a hat within a first-order metatile; hc->c[2] will be the smallest * metatile containing this hat, and hc->c[3, 4, 5, ...] will be * higher-order metatiles as needed. * * The last coordinate stored, hc->c[hc->nc-1], will have a tile type * but no index (represented by index==-1). This means "we haven't * decided yet what this level of metatile needs to be". If we need to * refer to this level during the step_coords algorithm, we make it up * at random, based on a table of what metatiles each type can * possibly be part of, at what index. */ typedef struct HatCoord { int index; /* index within that tile, or -1 if not yet known */ TileType type; /* type of this tile */ } HatCoord; typedef struct HatCoords { HatCoord *c; size_t nc, csize; } HatCoords; static HatCoords *hc_new(void) { HatCoords *hc = snew(HatCoords); hc->nc = hc->csize = 0; hc->c = NULL; return hc; } static void hc_free(HatCoords *hc) { if (hc) { sfree(hc->c); sfree(hc); } } static void hc_make_space(HatCoords *hc, size_t size) { if (hc->csize < size) { hc->csize = hc->csize * 5 / 4 + 16; if (hc->csize < size) hc->csize = size; hc->c = sresize(hc->c, hc->csize, HatCoord); } } static HatCoords *hc_copy(HatCoords *hc_in) { HatCoords *hc_out = hc_new(); hc_make_space(hc_out, hc_in->nc); memcpy(hc_out->c, hc_in->c, hc_in->nc * sizeof(*hc_out->c)); hc_out->nc = hc_in->nc; return hc_out; } static const MetatilePossibleParent *choose_mpp( random_state *rs, const MetatilePossibleParent *parents, size_t nparents) { /* * If we needed to do this _efficiently_, we'd rewrite all those * tables above as cumulative frequency tables and use binary * search. But this happens about log n times in a grid of area n, * so it hardly matters, and it's easier to keep the tables * legible. */ unsigned long limit = 0, value; size_t i; for (i = 0; i < nparents; i++) limit += parents[i].probability; value = random_upto(rs, limit); for (i = 0; i+1 < nparents; i++) { if (value < parents[i].probability) return &parents[i]; value -= parents[i].probability; } assert(i == nparents - 1); assert(value < parents[i].probability); return &parents[i]; } /* * HatCoordContext is the shared context of a whole run of the * algorithm. Its 'prototype' HatCoords object represents the * coordinates of the starting kite, and is extended as necessary; any * other HatCoord that needs extending will copy the higher-order * values from ctx->prototype as needed, so that once each choice has * been made, it remains consistent. * * When we're inventing a random piece of tiling in the first place, * we append to ctx->prototype by choosing a random (but legal) * higher-level metatile for the current topmost one to turn out to be * part of. When we're replaying a generation whose parameters are * already stored, we don't have a random_state, and we make fixed * decisions if not enough coordinates were provided. * * (Of course another approach would be to reject grid descriptions * that didn't define enough coordinates! But that would involve a * whole extra iteration over the whole grid region just for * validation, and that seems like more timewasting than really * needed. So we tolerate short descriptions, and do something * deterministic with them.) */ typedef struct HatCoordContext { random_state *rs; HatCoords *prototype; } HatCoordContext; static void init_coords_random(HatCoordContext *ctx, random_state *rs) { const MetatilePossibleParent *starting_hat = choose_mpp( rs, starting_hats, lenof(starting_hats)); ctx->rs = rs; ctx->prototype = hc_new(); hc_make_space(ctx->prototype, 3); ctx->prototype->c[2].type = starting_hat->type; ctx->prototype->c[2].index = -1; ctx->prototype->c[1].type = TT_HAT; ctx->prototype->c[1].index = starting_hat->index; ctx->prototype->c[0].type = TT_KITE; ctx->prototype->c[0].index = random_upto(rs, HAT_KITES); ctx->prototype->nc = 3; } static inline int metatile_char_to_enum(char metatile) { return (metatile == 'H' ? TT_H : metatile == 'T' ? TT_T : metatile == 'P' ? TT_P : metatile == 'F' ? TT_F : -1); } static void init_coords_params(HatCoordContext *ctx, const struct HatPatchParams *hp) { size_t i; ctx->rs = NULL; ctx->prototype = hc_new(); assert(hp->ncoords >= 3); hc_make_space(ctx->prototype, hp->ncoords + 1); ctx->prototype->nc = hp->ncoords + 1; for (i = 0; i < hp->ncoords; i++) ctx->prototype->c[i].index = hp->coords[i]; ctx->prototype->c[hp->ncoords].type = metatile_char_to_enum(hp->final_metatile); ctx->prototype->c[hp->ncoords].index = -1; ctx->prototype->c[0].type = TT_KITE; ctx->prototype->c[1].type = TT_HAT; for (i = hp->ncoords - 1; i > 1; i--) { TileType metatile = ctx->prototype->c[i+1].type; assert(hp->coords[i] < nchildren[metatile]); ctx->prototype->c[i].type = children[metatile][hp->coords[i]]; } assert(hp->coords[0] < 8); } static HatCoords *initial_coords(HatCoordContext *ctx) { return hc_copy(ctx->prototype); } /* * Extend hc until it has at least n coordinates in, by copying from * ctx->prototype if needed, and extending ctx->prototype if needed in * order to do that. */ static void ensure_coords(HatCoordContext *ctx, HatCoords *hc, size_t n) { if (ctx->prototype->nc < n) { hc_make_space(ctx->prototype, n); while (ctx->prototype->nc < n) { TileType type = ctx->prototype->c[ctx->prototype->nc - 1].type; assert(ctx->prototype->c[ctx->prototype->nc - 1].index == -1); const MetatilePossibleParent *parent; if (ctx->rs) parent = choose_mpp(ctx->rs, possible_parents[type], n_possible_parents[type]); else parent = possible_parents[type]; ctx->prototype->c[ctx->prototype->nc - 1].index = parent->index; ctx->prototype->c[ctx->prototype->nc].index = -1; ctx->prototype->c[ctx->prototype->nc].type = parent->type; ctx->prototype->nc++; } } hc_make_space(hc, n); while (hc->nc < n) { assert(hc->c[hc->nc - 1].index == -1); assert(hc->c[hc->nc - 1].type == ctx->prototype->c[hc->nc - 1].type); hc->c[hc->nc - 1].index = ctx->prototype->c[hc->nc - 1].index; hc->c[hc->nc].index = -1; hc->c[hc->nc].type = ctx->prototype->c[hc->nc].type; hc->nc++; } } static void cleanup_coords(HatCoordContext *ctx) { hc_free(ctx->prototype); } #ifdef DEBUG_COORDS static inline void debug_coords(const char *prefix, HatCoords *hc, const char *suffix) { const char *sep = ""; static const char *const types[] = {"H","T","P","F","kite","hat"}; fputs(prefix, stderr); for (size_t i = 0; i < hc->nc; i++) { fprintf(stderr, "%s %s ", sep, types[hc->c[i].type]); sep = " ."; if (hc->c[i].index == -1) fputs("?", stderr); else fprintf(stderr, "%d", hc->c[i].index); } fputs(suffix, stderr); } #else #define debug_coords(p,c,s) ((void)0) #endif /* * The actual system for finding the coordinates of an adjacent kite. */ /* * Kitemap step: ensure we have enough coordinates to know two levels * of meta-tiling, and use the kite map for the outer layer to move * around the individual kites. If this fails, return NULL. */ static HatCoords *try_step_coords_kitemap( HatCoordContext *ctx, HatCoords *hc_in, KiteStep step) { ensure_coords(ctx, hc_in, 4); debug_coords(" try kitemap ", hc_in, "\n"); unsigned kite = hc_in->c[0].index; unsigned hat = hc_in->c[1].index; unsigned meta = hc_in->c[2].index; TileType meta2type = hc_in->c[3].type; const KitemapEntry *ke = &kitemap[meta2type][ kitemap_index(step, kite, hat, meta)]; if (ke->kite >= 0) { /* * Success! We've got coordinates for the next kite in this * direction. */ HatCoords *hc_out = hc_copy(hc_in); hc_out->c[2].index = ke->meta; hc_out->c[2].type = children[meta2type][ke->meta]; hc_out->c[1].index = ke->hat; hc_out->c[1].type = TT_HAT; hc_out->c[0].index = ke->kite; hc_out->c[0].type = TT_KITE; debug_coords(" success! ", hc_out, "\n"); return hc_out; } return NULL; } /* * Recursive metamap step. Try using the metamap to rewrite the * coordinates at hc->c[depth] and hc->c[depth+1] (using the metamap * for the tile type described in hc->c[depth+2]). If successful, * recurse back down to see if this led to a successful step via the * kitemap. If even that fails (so that we need to try a higher-order * metamap rewrite), return NULL. */ static HatCoords *try_step_coords_metamap( HatCoordContext *ctx, HatCoords *hc_in, KiteStep step, size_t depth) { HatCoords *hc_tmp = NULL, *hc_out; ensure_coords(ctx, hc_in, depth+3); #ifdef DEBUG_COORDS fprintf(stderr, " try meta %-4d", (int)depth); debug_coords("", hc_in, "\n"); #endif unsigned meta_orig = hc_in->c[depth].index; unsigned meta2_orig = hc_in->c[depth+1].index; TileType meta3type = hc_in->c[depth+2].type; unsigned meta = meta_orig, meta2 = meta2_orig; while (true) { const MetamapEntry *me; HatCoords *hc_curr = hc_tmp ? hc_tmp : hc_in; if (depth > 2) hc_out = try_step_coords_metamap(ctx, hc_curr, step, depth - 1); else hc_out = try_step_coords_kitemap(ctx, hc_curr, step); if (hc_out) { hc_free(hc_tmp); return hc_out; } me = &metamap[meta3type][metamap_index(meta, meta2)]; assert(me->meta != -1); if (me->meta == meta_orig && me->meta2 == meta2_orig) { hc_free(hc_tmp); return NULL; } meta = me->meta; meta2 = me->meta2; /* * We must do the rewrite in a copy of hc_in. It's not * _necessarily_ obvious that that's the case (any successful * rewrite leaves the coordinates still valid and still * referring to the same kite, right?). But the problem is * that we might do a rewrite at this level more than once, * and in between, a metamap rewrite at the next level down * might have modified _one_ of the two coordinates we're * messing about with. So it's easiest to let the recursion * just use a separate copy. */ if (!hc_tmp) hc_tmp = hc_copy(hc_in); hc_tmp->c[depth+1].index = meta2; hc_tmp->c[depth+1].type = children[meta3type][meta2]; hc_tmp->c[depth].index = meta; hc_tmp->c[depth].type = children[hc_tmp->c[depth+1].type][meta]; debug_coords(" rewritten -> ", hc_tmp, "\n"); } } /* * The top-level algorithm for finding the next tile. */ static HatCoords *step_coords(HatCoordContext *ctx, HatCoords *hc_in, KiteStep step) { HatCoords *hc_out; size_t depth; #ifdef DEBUG_COORDS static const char *const directions[] = { " left\n", " right\n", " forward left\n", " forward right\n" }; debug_coords("step start ", hc_in, directions[step]); #endif /* * First, just try a kitemap step immediately. If that succeeds, * we're done. */ if ((hc_out = try_step_coords_kitemap(ctx, hc_in, step)) != NULL) return hc_out; /* * Otherwise, try metamap rewrites at successively higher layers * until one works. Each one will recurse back down to the * kitemap, as described above. */ for (depth = 2;; depth++) { if ((hc_out = try_step_coords_metamap( ctx, hc_in, step, depth)) != NULL) return hc_out; } } /* * Generate a random set of parameters for a tiling of a given size. * To do this, we iterate over the whole tiling via first_kite and * next_kite, and for each kite, calculate its coordinates. But then * we throw the coordinates away and don't do anything with them! * * But the side effect of _calculating_ all those coordinates is that * we found out how far ctx->prototype needed to be extended, and did * so, pulling random choices out of our random_state. So after this * iteration, ctx->prototype contains everything we need to replicate * the same piece of tiling next time. */ void hat_tiling_randomise(struct HatPatchParams *hp, int w, int h, random_state *rs) { HatCoordContext ctx[1]; HatCoords *coords[KE_NKEEP]; KiteEnum s[1]; size_t i; init_coords_random(ctx, rs); for (i = 0; i < lenof(coords); i++) coords[i] = NULL; first_kite(s, w, h); coords[s->curr_index] = initial_coords(ctx); while (next_kite(s)) { hc_free(coords[s->curr_index]); coords[s->curr_index] = step_coords( ctx, coords[s->last_index], s->last_step); } hp->ncoords = ctx->prototype->nc - 1; hp->coords = snewn(hp->ncoords, unsigned char); for (i = 0; i < hp->ncoords; i++) hp->coords[i] = ctx->prototype->c[i].index; hp->final_metatile = tilechars[ctx->prototype->c[hp->ncoords].type]; cleanup_coords(ctx); for (i = 0; i < lenof(coords); i++) hc_free(coords[i]); } const char *hat_tiling_params_invalid(const struct HatPatchParams *hp) { TileType metatile; size_t i; if (hp->ncoords < 3) return "Grid parameters require at least three coordinates"; if (metatile_char_to_enum(hp->final_metatile) < 0) return "Grid parameters contain an invalid final metatile"; if (hp->coords[0] >= 8) return "Grid parameters contain an invalid kite index"; metatile = metatile_char_to_enum(hp->final_metatile); for (i = hp->ncoords - 1; i > 1; i--) { if (hp->coords[i] >= nchildren[metatile]) return "Grid parameters contain an invalid metatile index"; metatile = children[metatile][hp->coords[i]]; } if (hp->coords[1] >= hats_in_metatile[metatile]) return "Grid parameters contain an invalid hat index"; return NULL; } /* * For each kite generated by hat_tiling_generate, potentially * generate an output hat and give it to our caller. * * We do this by starting from kite #0 of each hat, and tracing round * the boundary. If the whole boundary is within the caller's bounding * region, we return it; if it goes off the edge, we don't. * * (Of course, every hat we _do_ want to return will have all its * kites inside the rectangle, so its kite #0 will certainly be caught * by this iteration.) */ typedef void (*internal_hat_callback_fn)(void *ctx, Kite kite0, HatCoords *hc, int *coords); static void maybe_report_hat(int w, int h, Kite kite, HatCoords *hc, internal_hat_callback_fn cb, void *cbctx) { Kite kite0; Point vertices[14]; size_t i, j; bool reversed = false; int coords[28]; /* Only iterate from kite #0 of a hat */ if (hc->c[0].index != 0) return; kite0 = kite; /* * Identify reflected hats: they are always hat #3 of an H * metatile. If we find one, reflect the starting kite so that the * kite_step operations below will go in the other direction. */ if (hc->c[2].type == TT_H && hc->c[1].index == 3) { reversed = true; Point tmp = kite.left; kite.left = kite.right; kite.right = tmp; } vertices[0] = kite.centre; vertices[1] = kite.right; vertices[2] = kite.outer; vertices[3] = kite.left; kite = kite_left(kite); /* now on kite #1 */ kite = kite_forward_right(kite); /* now on kite #2 */ vertices[4] = kite.centre; kite = kite_right(kite); /* now on kite #3 */ vertices[5] = kite.right; vertices[6] = kite.outer; kite = kite_forward_left(kite); /* now on kite #4 */ vertices[7] = kite.left; vertices[8] = kite.centre; kite = kite_right(kite); /* now on kite #5 */ kite = kite_right(kite); /* now on kite #6 */ kite = kite_right(kite); /* now on kite #7 */ vertices[9] = kite.right; vertices[10] = kite.outer; vertices[11] = kite.left; kite = kite_left(kite); /* now on kite #6 again */ vertices[12] = kite.outer; vertices[13] = kite.left; if (reversed) { /* For a reversed kite, also reverse the vertex order, so that * we report every polygon in a consistent orientation */ for (i = 0, j = 13; i < j; i++, j--) { Point tmp = vertices[i]; vertices[i] = vertices[j]; vertices[j] = tmp; } } /* * Convert from our internal coordinate system into the orthogonal * one used in this module's external API. In the same loop, we * might as well do the bounds check. */ for (i = 0; i < 14; i++) { Point v = vertices[i]; int x = (v.x * 2 + v.y) / 3, y = v.y; if (x < 0 || x > 4*w || y < 0 || y > 6*h) return; /* a vertex of this kite is out of bounds */ coords[2*i] = x; coords[2*i+1] = y; } cb(cbctx, kite0, hc, coords); } struct internal_ctx { hat_tile_callback_fn external_cb; void *external_cbctx; }; static void report_hat(void *vctx, Kite kite0, HatCoords *hc, int *coords) { struct internal_ctx *ctx = (struct internal_ctx *)vctx; ctx->external_cb(ctx->external_cbctx, 14, coords); } /* * Generate a hat tiling from a previously generated set of parameters. */ void hat_tiling_generate(const struct HatPatchParams *hp, int w, int h, hat_tile_callback_fn cb, void *cbctx) { HatCoordContext ctx[1]; HatCoords *coords[KE_NKEEP]; KiteEnum s[1]; size_t i; struct internal_ctx report_hat_ctx[1]; report_hat_ctx->external_cb = cb; report_hat_ctx->external_cbctx = cbctx; init_coords_params(ctx, hp); for (i = 0; i < lenof(coords); i++) coords[i] = NULL; first_kite(s, w, h); coords[s->curr_index] = initial_coords(ctx); maybe_report_hat(w, h, *s->curr, coords[s->curr_index], report_hat, report_hat_ctx); while (next_kite(s)) { hc_free(coords[s->curr_index]); coords[s->curr_index] = step_coords( ctx, coords[s->last_index], s->last_step); maybe_report_hat(w, h, *s->curr, coords[s->curr_index], report_hat, report_hat_ctx); } cleanup_coords(ctx); for (i = 0; i < lenof(coords); i++) hc_free(coords[i]); } #ifdef TEST_HAT #include <stdarg.h> static HatCoords *hc_construct_v(TileType type, va_list ap) { HatCoords *hc = hc_new(); while (true) { int index = va_arg(ap, int); hc_make_space(hc, hc->nc + 1); hc->c[hc->nc].type = type; hc->c[hc->nc].index = index; hc->nc++; if (index < 0) return hc; type = va_arg(ap, TileType); } } static HatCoords *hc_construct(TileType type, ...) { HatCoords *hc; va_list ap; va_start(ap, type); hc = hc_construct_v(type, ap); va_end(ap); return hc; } static bool hc_equal(HatCoords *hc1, HatCoords *hc2) { size_t i; if (hc1->nc != hc2->nc) return false; for (i = 0; i < hc1->nc; i++) { if (hc1->c[i].type != hc2->c[i].type || hc1->c[i].index != hc2->c[i].index) return false; } return true; } static bool hc_expect(const char *file, int line, HatCoords *hc, TileType type, ...) { bool equal; va_list ap; HatCoords *hce; va_start(ap, type); hce = hc_construct_v(type, ap); va_end(ap); equal = hc_equal(hc, hce); if (!equal) { fprintf(stderr, "%s:%d: coordinate mismatch\n", file, line); debug_coords(" expected: ", hce, "\n"); debug_coords(" actual: ", hc, "\n"); } hc_free(hce); return equal; } #define EXPECT(hc, ...) do { \ if (!hc_expect(__FILE__, __LINE__, hc, __VA_ARGS__)) \ fails++; \ } while (0) /* * For four-colouring the tiling: these tables give a colouring of * each kitemap, with colour 3 assigned to the reflected tiles in the * middle of the H, and 0,1,2 chosen arbitrarily. */ static const int fourcolours_H[] = { /* 0 */ 0, 2, 1, 3, /* 1 */ 1, 0, 2, 3, /* 2 */ 0, 2, 1, 3, /* 3 */ 1, -1, -1, -1, /* 4 */ 1, 2, -1, -1, /* 5 */ 1, 2, -1, -1, /* 6 */ 2, 1, -1, -1, /* 7 */ 0, 1, -1, -1, /* 8 */ 2, 0, -1, -1, /* 9 */ 2, 0, -1, -1, /* 10 */ 0, 1, -1, -1, /* 11 */ 0, 1, -1, -1, /* 12 */ 2, 0, -1, -1, }; static const int fourcolours_T[] = { /* 0 */ 1, 2, 0, 3, /* 1 */ 2, 1, -1, -1, /* 2 */ 0, 1, -1, -1, /* 3 */ 0, 2, -1, -1, /* 4 */ 2, 0, -1, -1, /* 5 */ 0, 1, -1, -1, /* 6 */ 1, 2, -1, -1, }; static const int fourcolours_P[] = { /* 0 */ 2, 1, 0, 3, /* 1 */ 1, 2, 0, 3, /* 2 */ 2, 1, -1, -1, /* 3 */ 0, 2, -1, -1, /* 4 */ 0, 1, -1, -1, /* 5 */ 1, 2, -1, -1, /* 6 */ 2, 0, -1, -1, /* 7 */ 0, 1, -1, -1, /* 8 */ 1, 0, -1, -1, /* 9 */ 2, 1, -1, -1, /* 10 */ 0, 2, -1, -1, }; static const int fourcolours_F[] = { /* 0 */ 2, 0, 1, 3, /* 1 */ 0, 2, 1, 3, /* 2 */ 1, 2, -1, -1, /* 3 */ 1, 0, -1, -1, /* 4 */ 0, 2, -1, -1, /* 5 */ 2, 1, -1, -1, /* 6 */ 2, 0, -1, -1, /* 7 */ 0, 1, -1, -1, /* 8 */ 0, 1, -1, -1, /* 9 */ 2, 0, -1, -1, /* 10 */ 1, 2, -1, -1, }; static const int *const fourcolours[] = { fourcolours_H, fourcolours_T, fourcolours_P, fourcolours_F, }; /* * Structure that describes how the colours in the above maps are * translated to output colours. This will vary with each kitemap our * coordinates pass through, in order to maintain consistency. */ typedef struct FourColourMap { unsigned char map[4]; } FourColourMap; /* * Make an initial FourColourMap by choosing the initial permutation * of the three 'normal' hat colours randomly. */ static inline FourColourMap fourcolourmap_initial(random_state *rs) { FourColourMap f; unsigned i; /* Start with the identity mapping */ for (i = 0; i < 4; i++) f.map[i] = i; /* Randomly permute colours 0,1,2, leaving 3 as the distinguished * colour for reflected hats */ shuffle(f.map, 3, sizeof(f.map[0]), rs); return f; } static inline FourColourMap fourcolourmap_update( FourColourMap prevm, HatCoords *prevc, HatCoords *currc, KiteStep step, HatCoordContext *ctx) { size_t i, m1, m2; const int *f1, *f2; unsigned sum; int missing; FourColourMap newm; HatCoords *prev2c; /* * If prevc and currc are in the same kitemap anyway, that's the * easy case: the colour map for the new kitemap is the same as * for the old one, because they're the same kitemap. */ ensure_coords(ctx, prevc, currc->nc); ensure_coords(ctx, currc, prevc->nc); for (i = 3; i < prevc->nc; i++) if (currc->c[i].index != prevc->c[i].index) goto mismatch; return prevm; mismatch: /* * The step_coords algorithm guarantees that the _new_ coordinate * currc is expected to be in a kitemap containing both this kite * and the previous one (because it first transformed the previous * coordinate until it _could_ take a step within the same * kitemap, and then did). * * So if we reverse the last step we took, we should get a second * HatCoords describing the same kite as prevc but showing its * position in the _new_ kitemap. This lets us figure out a pair * of corresponding metatile indices within the old and new * kitemaps (by looking at which metatile prevc and prev2c claim * to be in). * * That metatile will also always be a P or an F (because all * metatiles overlapping the next kitemap are of those types), * which means it will have two hats in it. And those hats will be * adjacent, so differently coloured. Hence, we have enough * information to decide how two of the new kitemap's three normal * colours map to the colours we were using in the old kitemap - * and then the third is determined by process of elimination. */ prev2c = step_coords( ctx, currc, (step == KS_LEFT ? KS_RIGHT : step == KS_RIGHT ? KS_LEFT : step == KS_F_LEFT ? KS_F_RIGHT : KS_F_LEFT)); /* Metatile indices within the old and new kitemaps */ m1 = prevc->c[2].index; m2 = prev2c->c[2].index; /* The colourings of those metatiles' hats in our fixed fourcolours[] */ f1 = fourcolours[prevc->c[3].type] + 4*m1; f2 = fourcolours[prev2c->c[3].type] + 4*m2; /* * Start making our new output map, filling in all three normal * colours to 255 = "don't know yet". */ newm.map[3] = 3; newm.map[0] = newm.map[1] = newm.map[2] = 255; /* * Iterate over the tile colourings in fourcolours[] for these * metatiles, matching up our mappings. */ for (i = 0; i < 4; i++) { /* They should be the same metatile, so have same number of hats! */ assert((f1[i] == -1) == (f2[i] == -1)); if (f1[i] != 255) newm.map[f2[i]] = prevm.map[f1[i]]; } /* * We expect to have filled in exactly two of the three normal * colours. Find the missing index, and fill in its colour by * arithmetic (using the fact that the three colours add up to 3). */ sum = 0; missing = -1; for (i = 0; i < 3; i++) { if (newm.map[i] == 255) { assert(missing == -1); /* shouldn't have two missing colours */ missing = i; } else { sum += newm.map[i]; } } assert(missing != -1); assert(0 < sum && sum <= 3); newm.map[missing] = 3 - sum; return newm; } static bool unit_tests(void) { int fails = 0; HatCoordContext ctx[1]; HatCoords *hc_in, *hc_out; ctx->rs = NULL; ctx->prototype = hc_construct(TT_KITE, 0, TT_HAT, 0, TT_H, -1); /* Simple steps within a hat */ hc_in = hc_construct(TT_KITE, 6, TT_HAT, 2, TT_H, 1, TT_H, -1); hc_out = step_coords(ctx, hc_in, KS_LEFT); EXPECT(hc_out, TT_KITE, 5, TT_HAT, 2, TT_H, 1, TT_H, -1); hc_free(hc_in); hc_free(hc_out); hc_in = hc_construct(TT_KITE, 6, TT_HAT, 2, TT_H, 1, TT_H, -1); hc_out = step_coords(ctx, hc_in, KS_RIGHT); EXPECT(hc_out, TT_KITE, 7, TT_HAT, 2, TT_H, 1, TT_H, -1); hc_free(hc_in); hc_free(hc_out); hc_in = hc_construct(TT_KITE, 5, TT_HAT, 2, TT_H, 1, TT_H, -1); hc_out = step_coords(ctx, hc_in, KS_F_LEFT); EXPECT(hc_out, TT_KITE, 2, TT_HAT, 2, TT_H, 1, TT_H, -1); hc_free(hc_in); hc_free(hc_out); hc_in = hc_construct(TT_KITE, 5, TT_HAT, 2, TT_H, 1, TT_H, -1); hc_out = step_coords(ctx, hc_in, KS_F_RIGHT); EXPECT(hc_out, TT_KITE, 1, TT_HAT, 2, TT_H, 1, TT_H, -1); hc_free(hc_in); hc_free(hc_out); /* Step between hats in the same kitemap, which can change the * metatile type at layer 2 */ hc_in = hc_construct(TT_KITE, 6, TT_HAT, 2, TT_H, 1, TT_H, -1); hc_out = step_coords(ctx, hc_in, KS_F_LEFT); EXPECT(hc_out, TT_KITE, 3, TT_HAT, 0, TT_H, 0, TT_H, -1); hc_free(hc_in); hc_free(hc_out); hc_in = hc_construct(TT_KITE, 7, TT_HAT, 2, TT_H, 1, TT_H, -1); hc_out = step_coords(ctx, hc_in, KS_F_RIGHT); EXPECT(hc_out, TT_KITE, 4, TT_HAT, 0, TT_T, 3, TT_H, -1); hc_free(hc_in); hc_free(hc_out); /* Step off the edge of one kitemap, necessitating a metamap * rewrite of layers 2,3 to get into a different kitemap where * that step can be made */ hc_in = hc_construct(TT_KITE, 6, TT_HAT, 0, TT_P, 2, TT_P, 3, TT_P, -1); hc_out = step_coords(ctx, hc_in, KS_F_RIGHT); /* Working: * kite 6 . hat 0 . P 2 . P 3 . P ? * -> kite 6 . hat 0 . P 6 . H 0 . P ? (P metamap says 2.3 = 6.0) */ EXPECT(hc_out, TT_KITE, 7, TT_HAT, 1, TT_H, 1, TT_H, 0, TT_P, -1); hc_free(hc_in); hc_free(hc_out); cleanup_coords(ctx); return fails == 0; } typedef struct pspoint { float x, y; } pspoint; typedef struct psbbox { bool started; pspoint bl, tr; } psbbox; static inline void psbbox_add(psbbox *bbox, pspoint p) { if (!bbox->started || bbox->bl.x > p.x) bbox->bl.x = p.x; if (!bbox->started || bbox->tr.x < p.x) bbox->tr.x = p.x; if (!bbox->started || bbox->bl.y > p.y) bbox->bl.y = p.y; if (!bbox->started || bbox->tr.y < p.y) bbox->tr.y = p.y; bbox->started = true; } typedef enum OutFmt { OF_POSTSCRIPT, OF_PYTHON } OutFmt; typedef enum ColourMode { CM_SEMANTIC, CM_FOURCOLOUR } ColourMode; typedef struct drawctx { OutFmt outfmt; ColourMode colourmode; psbbox *bbox; KiteEnum *kiteenum; FourColourMap fourcolourmap[KE_NKEEP]; } drawctx; static void bbox_add_hat(void *vctx, Kite kite0, HatCoords *hc, int *coords) { drawctx *ctx = (drawctx *)vctx; pspoint p; size_t i; for (i = 0; i < 14; i++) { p.x = coords[2*i] * 1.5; p.y = coords[2*i+1] * sqrt(0.75); psbbox_add(ctx->bbox, p); } } static void header(drawctx *ctx) { switch (ctx->outfmt) { case OF_POSTSCRIPT: { float xext = ctx->bbox->tr.x - ctx->bbox->bl.x; float yext = ctx->bbox->tr.y - ctx->bbox->bl.y; float ext = (xext > yext ? xext : yext); float scale = 500 / ext; float ox = 287 - scale * (ctx->bbox->bl.x + ctx->bbox->tr.x) / 2; float oy = 421 - scale * (ctx->bbox->bl.y + ctx->bbox->tr.y) / 2; printf("%%!PS-Adobe-2.0\n%%%%Creator: hat-test from Simon Tatham's " "Portable Puzzle Collection\n%%%%Pages: 1\n" "%%%%BoundingBox: %f %f %f %f\n" "%%%%EndComments\n%%%%Page: 1 1\n", ox + scale * ctx->bbox->bl.x - 20, oy + scale * ctx->bbox->bl.y - 20, ox + scale * ctx->bbox->tr.x + 20, oy + scale * ctx->bbox->tr.y + 20); printf("%f %f translate %f dup scale\n", ox, oy, scale); printf("%f setlinewidth\n", scale * 0.03); printf("0 setgray 1 setlinejoin 1 setlinecap\n"); break; } default: break; } } static void draw_hat(void *vctx, Kite kite0, HatCoords *hc, int *coords) { drawctx *ctx = (drawctx *)vctx; pspoint p; size_t i; int orientation; /* * Determine an index for the hat's orientation, based on the axis * of symmetry of its kite #0. */ { int dx = kite0.outer.x - kite0.centre.x; int dy = kite0.outer.y - kite0.centre.y; orientation = 0; while (dx < 0 || dy < 0) { int newdx = dx + dy; int newdy = -dx; dx = newdx; dy = newdy; orientation++; assert(orientation < 6); } } switch (ctx->outfmt) { case OF_POSTSCRIPT: { const char *colour; printf("newpath"); for (i = 0; i < 14; i++) { p.x = coords[2*i] * 1.5; p.y = coords[2*i+1] * sqrt(0.75); printf(" %f %f %s", p.x, p.y, i ? "lineto" : "moveto"); } printf(" closepath gsave"); switch (ctx->colourmode) { case CM_SEMANTIC: if (hc->c[2].type == TT_H) { colour = (hc->c[1].index == 3 ? "0 0.5 0.8 setrgbcolor" : "0.6 0.8 1 setrgbcolor"); } else if (hc->c[2].type == TT_F) { colour = "0.7 setgray"; } else { colour = "1 setgray"; } break; default /* case CM_FOURCOLOUR */: { /* * Determine the colour of this tile by translating the * fixed colour from fourcolours[] through our current * FourColourMap. */ FourColourMap f = ctx->fourcolourmap[ctx->kiteenum->curr_index]; const int *m = fourcolours[hc->c[3].type]; static const char *const colours[] = { "1 0.7 0.7 setrgbcolor", "1 1 0.7 setrgbcolor", "0.7 1 0.7 setrgbcolor", "0.6 0.6 1 setrgbcolor", }; colour = colours[f.map[m[hc->c[2].index * 4 + hc->c[1].index]]]; break; } } printf(" %s fill grestore", colour); printf(" stroke\n"); break; } case OF_PYTHON: { printf("hat('%c', %d, %d, [", "HTPF"[hc->c[2].type], hc->c[1].index, orientation); for (i = 0; i < 14; i++) printf("%s(%d,%d)", i ? ", " : "", coords[2*i], coords[2*i+1]); printf("])\n"); break; } } } static void trailer(drawctx *dctx) { switch (dctx->outfmt) { case OF_POSTSCRIPT: { printf("showpage\n"); printf("%%%%Trailer\n"); printf("%%%%EOF\n"); break; } default: break; } } int main(int argc, char **argv) { psbbox bbox[1]; KiteEnum s[1]; HatCoordContext ctx[1]; HatCoords *coords[KE_NKEEP]; random_state *rs; const char *random_seed = "12345"; int w = 10, h = 10; int argpos = 0; size_t i; drawctx dctx[1]; dctx->outfmt = OF_POSTSCRIPT; dctx->colourmode = CM_SEMANTIC; dctx->kiteenum = s; while (--argc > 0) { const char *arg = *++argv; if (!strcmp(arg, "--help")) { printf(" usage: hat-test [options] [<width>] [<height>]\n" "options: --python write a Python function call per hat\n" " --seed=STR vary the starting random seed\n" " also: hat-test --test\n"); return 0; } else if (!strcmp(arg, "--test")) { return unit_tests() ? 0 : 1; } else if (!strcmp(arg, "--python")) { dctx->outfmt = OF_PYTHON; } else if (!strcmp(arg, "--fourcolour")) { dctx->colourmode = CM_FOURCOLOUR; } else if (!strncmp(arg, "--seed=", 7)) { random_seed = arg+7; } else if (arg[0] == '-') { fprintf(stderr, "unrecognised option '%s'\n", arg); return 1; } else { switch (argpos++) { case 0: w = atoi(arg); break; case 1: h = atoi(arg); break; default: fprintf(stderr, "unexpected extra argument '%s'\n", arg); return 1; } } } for (i = 0; i < lenof(coords); i++) coords[i] = NULL; rs = random_new(random_seed, strlen(random_seed)); init_coords_random(ctx, rs); bbox->started = false; dctx->bbox = bbox; first_kite(s, w, h); coords[s->curr_index] = initial_coords(ctx); maybe_report_hat(w, h, *s->curr, coords[s->curr_index], bbox_add_hat, dctx); while (next_kite(s)) { hc_free(coords[s->curr_index]); coords[s->curr_index] = step_coords( ctx, coords[s->last_index], s->last_step); maybe_report_hat(w, h, *s->curr, coords[s->curr_index], bbox_add_hat, dctx); } for (i = 0; i < lenof(coords); i++) { hc_free(coords[i]); coords[i] = NULL; } header(dctx); first_kite(s, w, h); coords[s->curr_index] = initial_coords(ctx); dctx->fourcolourmap[s->curr_index] = fourcolourmap_initial(rs); maybe_report_hat(w, h, *s->curr, coords[s->curr_index], draw_hat, dctx); while (next_kite(s)) { hc_free(coords[s->curr_index]); coords[s->curr_index] = step_coords( ctx, coords[s->last_index], s->last_step); dctx->fourcolourmap[s->curr_index] = fourcolourmap_update( dctx->fourcolourmap[s->last_index], coords[s->last_index], coords[s->curr_index], s->last_step, ctx); maybe_report_hat(w, h, *s->curr, coords[s->curr_index], draw_hat, dctx); } for (i = 0; i < lenof(coords); i++) { hc_free(coords[i]); coords[i] = NULL; } trailer(dctx); cleanup_coords(ctx); return 0; } #endif