ref: cf92e8d6208af51fb55ed61554b135585ed33c1b
dir: /codec/encoder/core/src/ratectl.cpp/
/*! * \copy * Copyright (c) 2009-2013, Cisco Systems * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * * ratectl.c * * Abstract * Rate Control * * History * 9/8/2009 Created * 12/26/2011 Modified * * * *************************************************************************/ #include <stdlib.h> #include <stdio.h> #include <math.h> #include "rc.h" #include "encoder_context.h" #include "utils.h" #include "svc_enc_golomb.h" namespace WelsSVCEnc { //#define _TEST_TEMP_RC_ #ifdef _TEST_TEMP_RC_ //#define _NOT_USE_AQ_FOR_TEST_ FILE *fp_test_rc = NULL; FILE *fp_vgop = NULL; #endif #define _BITS_RANGE 0 void RcInitLayerMemory(SWelsSvcRc *pWelsSvcRc, CMemoryAlign *pMA, const int32_t kiMaxTl) { const int32_t kiSliceNum = pWelsSvcRc->iSliceNum; const int32_t kiGomSize = pWelsSvcRc->iGomSize; const int32_t kiGomSizeD = kiGomSize * sizeof(double); const int32_t kiGomSizeI = kiGomSize * sizeof(int32_t); const int32_t kiLayerRcSize = kiGomSizeD + (kiGomSizeI*3) + sizeof(SRCSlicing)*kiSliceNum + sizeof(SRCTemporal)*kiMaxTl; uint8_t *pBaseMem = (uint8_t *)pMA->WelsMalloc(kiLayerRcSize, "rc_layer_memory"); if (NULL == pBaseMem) return; pWelsSvcRc->pGomComplexity = (double *)pBaseMem; pBaseMem += kiGomSizeD; pWelsSvcRc->pGomForegroundBlockNum = (int32_t *)pBaseMem; pBaseMem += kiGomSizeI; pWelsSvcRc->pCurrentFrameGomSad = (int32_t *)pBaseMem; pBaseMem += kiGomSizeI; pWelsSvcRc->pGomCost = (int32_t *)pBaseMem; pBaseMem += kiGomSizeI; pWelsSvcRc->pSlicingOverRc = (SRCSlicing *)pBaseMem; pBaseMem += sizeof(SRCSlicing)*kiSliceNum; pWelsSvcRc->pTemporalOverRc = (SRCTemporal *)pBaseMem; } void RcFreeLayerMemory(SWelsSvcRc *pWelsSvcRc, CMemoryAlign *pMA) { if (pWelsSvcRc != NULL && pWelsSvcRc->pGomComplexity != NULL) { pMA->WelsFree(pWelsSvcRc->pGomComplexity, "rc_layer_memory"); pWelsSvcRc->pGomComplexity = NULL; pWelsSvcRc->pGomForegroundBlockNum = NULL; pWelsSvcRc->pCurrentFrameGomSad = NULL; pWelsSvcRc->pGomCost = NULL; pWelsSvcRc->pSlicingOverRc = NULL; pWelsSvcRc->pTemporalOverRc = NULL; } } static inline double RcConvertQp2QStep(double dQP) { return pow( 2.0, (dQP-4.0)/6.0 ); } static inline double RcConvertQStep2Qp(double dQpStep) { return (6 * log(dQpStep) / log(2.0) + 4.0); } void RcInitSequenceParameter(sWelsEncCtx *pEncCtx) { SWelsSvcRc *pWelsSvcRc = NULL; SDLayerParam *pDLayerParam = NULL; int32_t j = 0; int32_t iMbWidth = 0; BOOL_T bMultiSliceMode = FALSE; int32_t iGomRowMode0 = 1, iGomRowMode1 = 1; #ifdef _TEST_TEMP_RC_ fp_test_rc = fopen("testRC.dat","w"); fp_vgop = fopen("vgop.dat","w"); #endif for( j=0; j<pEncCtx->pSvcParam->iNumDependencyLayer; j++ ) { SSliceCtx *pSliceCtx = &pEncCtx->pSliceCtxList[j]; pWelsSvcRc = &pEncCtx->pWelsSvcRc[j]; pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[j]; iMbWidth = (pDLayerParam->iFrameWidth>>4); pWelsSvcRc->iNumberMbFrame = iMbWidth*(pDLayerParam->iFrameHeight>>4); pWelsSvcRc->iSliceNum= pSliceCtx->iSliceNumInFrame; pWelsSvcRc->iRcVaryPercentage = _BITS_RANGE; // % -- for temp pWelsSvcRc->dRcVaryRatio = (double)pWelsSvcRc->iRcVaryPercentage/MAX_BITS_VARY_PERCENTAGE; pWelsSvcRc->dSkipBufferRatio = SKIP_RATIO; pWelsSvcRc->iQpRangeUpperInFrame = QP_RANGE_UPPER_MODE1 - (int32_t)((QP_RANGE_UPPER_MODE1 - QP_RANGE_MODE0)*pWelsSvcRc->dRcVaryRatio + 0.5); pWelsSvcRc->iQpRangeLowerInFrame = QP_RANGE_LOWER_MODE1 - (int32_t)((QP_RANGE_LOWER_MODE1 - QP_RANGE_MODE0)*pWelsSvcRc->dRcVaryRatio + 0.5); if( iMbWidth<=MB_WIDTH_THRESHOLD_90P ) { pWelsSvcRc->iSkipQpValue = SKIP_QP_90P; iGomRowMode0 = GOM_ROW_MODE0_90P; iGomRowMode1 = GOM_ROW_MODE1_90P; } else if( iMbWidth<=MB_WIDTH_THRESHOLD_180P ) { pWelsSvcRc->iSkipQpValue = SKIP_QP_180P; iGomRowMode0 = GOM_ROW_MODE0_180P; iGomRowMode1 = GOM_ROW_MODE1_180P; } else if( iMbWidth<=MB_WIDTH_THRESHOLD_360P ) { pWelsSvcRc->iSkipQpValue = SKIP_QP_360P; iGomRowMode0 = GOM_ROW_MODE0_360P; iGomRowMode1 = GOM_ROW_MODE1_360P; } else { pWelsSvcRc->iSkipQpValue = SKIP_QP_720P; iGomRowMode0 = GOM_ROW_MODE0_720P; iGomRowMode1 = GOM_ROW_MODE1_720P; } iGomRowMode0 = iGomRowMode1 + (int32_t)((iGomRowMode0 - iGomRowMode1)*pWelsSvcRc->dRcVaryRatio + 0.5); pWelsSvcRc->iNumberMbGom = iMbWidth*iGomRowMode0; pWelsSvcRc->iMinQp = GOM_MIN_QP_MODE; pWelsSvcRc->iMaxQp = GOM_MAX_QP_MODE; pWelsSvcRc->iFrameDeltaQpUpper = LAST_FRAME_QP_RANGE_UPPER_MODE1 - (int32_t)((LAST_FRAME_QP_RANGE_UPPER_MODE1 - LAST_FRAME_QP_RANGE_UPPER_MODE0)*pWelsSvcRc->dRcVaryRatio + 0.5); pWelsSvcRc->iFrameDeltaQpLower = LAST_FRAME_QP_RANGE_LOWER_MODE1 - (int32_t)((LAST_FRAME_QP_RANGE_LOWER_MODE1 - LAST_FRAME_QP_RANGE_LOWER_MODE0)*pWelsSvcRc->dRcVaryRatio + 0.5); pWelsSvcRc->iSkipFrameNum = 0; pWelsSvcRc->iGomSize = (pWelsSvcRc->iNumberMbFrame+pWelsSvcRc->iNumberMbGom-1)/pWelsSvcRc->iNumberMbGom; RcInitLayerMemory( pWelsSvcRc, pEncCtx->pMemAlign, 1+pDLayerParam->iHighestTemporalId ); bMultiSliceMode = ( (SM_RASTER_SLICE == pDLayerParam->sMso.uiSliceMode) || (SM_ROWMB_SLICE == pDLayerParam->sMso.uiSliceMode) || (SM_DYN_SLICE == pDLayerParam->sMso.uiSliceMode) ); if( bMultiSliceMode ) pWelsSvcRc->iNumberMbGom = pWelsSvcRc->iNumberMbFrame; } } void RcInitTlWeight(sWelsEncCtx *pEncCtx) { SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SRCTemporal *pTOverRc = pWelsSvcRc->pTemporalOverRc; SDLayerParam *pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId]; const int32_t kiDecompositionStages = pDLayerParam->iDecompositionStages; const int32_t kiHighestTid = pDLayerParam->iHighestTemporalId; //Index 0:Virtual GOP size, Index 1:Frame rate double WeightArray[4][4] = { {1.0, 0, 0, 0}, {0.6, 0.4, 0, 0}, {0.4, 0.3, 0.15, 0}, {0.25, 0.15, 0.125, 0.0875}}; const int32_t kiGopSize = (1<<kiDecompositionStages); int32_t i, k, n; n = 0; while (n <= kiHighestTid) { pTOverRc[n].dTlayerWeight = WeightArray[kiDecompositionStages][n]; ++ n; } //Calculate the frame index for the current frame and its reference frame for( n=0; n<VGOP_SIZE; n+=kiGopSize ) { pWelsSvcRc->iTlOfFrames[n] = 0; for( i=1; i<=kiDecompositionStages; i++ ) { for( k=1<<(kiDecompositionStages-i); k<kiGopSize; k+=(kiGopSize>>(i-1)) ) { pWelsSvcRc->iTlOfFrames[k+n]=i; } } } pWelsSvcRc->iPreviousGopSize = kiGopSize; pWelsSvcRc->iGopNumberInVGop = VGOP_SIZE/kiGopSize; } void RcUpdateBitrateFps(sWelsEncCtx *pEncCtx) { SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SRCTemporal *pTOverRc = pWelsSvcRc->pTemporalOverRc; SDLayerParam *pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId]; const int32_t kiGopSize = (1<<pDLayerParam->iDecompositionStages); const int32_t kiHighestTid = pDLayerParam->iHighestTemporalId; double input_dBitsPerFrame = pDLayerParam->iSpatialBitrate / pDLayerParam->fInputFrameRate; const int32_t kiGopBits = (int32_t)(input_dBitsPerFrame*kiGopSize); int32_t i; pWelsSvcRc->iBitRate = pDLayerParam->iSpatialBitrate; pWelsSvcRc->fFrameRate = pDLayerParam->fInputFrameRate; double dTargetVaryRange = FRAME_iTargetBits_VARY_RANGE*(1.0 - pWelsSvcRc->dRcVaryRatio); double dMinBitsRatio = 1.0 - dTargetVaryRange; double dMaxBitsRatio = 1.0 + FRAME_iTargetBits_VARY_RANGE;//dTargetVaryRange; for( i=0; i<=kiHighestTid; i++) { const double kdConstraitBits = kiGopBits*pTOverRc[i].dTlayerWeight; pTOverRc[i].iMinBitsTl = (int32_t)(kdConstraitBits*dMinBitsRatio); pTOverRc[i].iMaxBitsTl = (int32_t)(kdConstraitBits*dMaxBitsRatio); } //When bitrate is changed, pBuffer size should be updated pWelsSvcRc->iBufferSizeSkip = (int32_t)(pWelsSvcRc->iBitRate * pWelsSvcRc->dSkipBufferRatio); pWelsSvcRc->iBufferSizePadding = (int32_t)(pWelsSvcRc->iBitRate * PADDING_BUFFER_RATIO); //change remaining bits if(pWelsSvcRc->dBitsPerFrame > 0.1) pWelsSvcRc->iRemainingBits = (int32_t)(pWelsSvcRc->iRemainingBits*input_dBitsPerFrame/pWelsSvcRc->dBitsPerFrame); pWelsSvcRc->dBitsPerFrame = input_dBitsPerFrame; } void RcInitVGop(sWelsEncCtx *pEncCtx) { const int32_t kiDid = pEncCtx->uiDependencyId; SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[kiDid]; SRCTemporal *pTOverRc = pWelsSvcRc->pTemporalOverRc; const int32_t kiHighestTid = pEncCtx->pSvcParam->sDependencyLayers[kiDid].iHighestTemporalId; pWelsSvcRc->iRemainingBits = (int32_t)(VGOP_SIZE*pWelsSvcRc->dBitsPerFrame); pWelsSvcRc->dRemainingWeights = pWelsSvcRc->iGopNumberInVGop; pWelsSvcRc->iFrameCodedInVGop = 0; pWelsSvcRc->iGopIndexInVGop = 0; for (int32_t i = 0; i <= kiHighestTid; ++ i) pTOverRc[i].iGopBitsDq = 0; pWelsSvcRc->iSkipFrameInVGop=0; } void RcInitRefreshParameter(sWelsEncCtx *pEncCtx) { const int32_t kiDid = pEncCtx->uiDependencyId; SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[kiDid]; SRCTemporal *pTOverRc = pWelsSvcRc->pTemporalOverRc; SDLayerParam *pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[kiDid]; const int32_t kiHighestTid = pDLayerParam->iHighestTemporalId; int32_t i; //I frame R-Q Model pWelsSvcRc->iIntraComplexity = 0; pWelsSvcRc->iIntraMbCount = 0; //P frame R-Q Model for(i=0; i<=kiHighestTid; i++) { pTOverRc[i].iPFrameNum = 0; pTOverRc[i].dLinearCmplx = 0.0; pTOverRc[i].iFrameCmplxMean = 0; } pWelsSvcRc->iBufferFullnessSkip = 0; pWelsSvcRc->iBufferFullnessPadding = 0; pWelsSvcRc->iGopIndexInVGop = 0; pWelsSvcRc->iRemainingBits = 0; pWelsSvcRc->dBitsPerFrame = 0.0; //Backup the initial bitrate and fps pWelsSvcRc->iPreviousBitrate = pDLayerParam->iSpatialBitrate; pWelsSvcRc->dPreviousFps = pDLayerParam->fInputFrameRate; memset( pWelsSvcRc->pCurrentFrameGomSad, 0, pWelsSvcRc->iGomSize*sizeof(int32_t) ); RcInitTlWeight(pEncCtx); RcUpdateBitrateFps(pEncCtx); RcInitVGop(pEncCtx); } bool_t RcJudgeBitrateFpsUpdate(sWelsEncCtx *pEncCtx) { int32_t iCurDid = pEncCtx->uiDependencyId; SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[iCurDid]; SDLayerParam *pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[iCurDid]; if((pWelsSvcRc->iPreviousBitrate != pDLayerParam->iSpatialBitrate) || (pWelsSvcRc->dPreviousFps-pDLayerParam->fInputFrameRate)>EPSN || (pWelsSvcRc->dPreviousFps-pDLayerParam->fInputFrameRate)<-EPSN) { pWelsSvcRc->iPreviousBitrate = pDLayerParam->iSpatialBitrate; pWelsSvcRc->dPreviousFps = pDLayerParam->fInputFrameRate; return true; } else return false; } #if GOM_TRACE_FLAG void RcTraceVGopBitrate(sWelsEncCtx *pEncCtx) { const int32_t kiDid = pEncCtx->uiDependencyId; SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[kiDid]; if( pWelsSvcRc->iFrameCodedInVGop ) { const int32_t kiHighestTid = pEncCtx->pSvcParam->sDependencyLayers[kiDid].iHighestTemporalId; SRCTemporal *pTOverRc = pWelsSvcRc->pTemporalOverRc; int32_t iVGopBitrate; int32_t iTotalBits = pWelsSvcRc->iPaddingBitrateStat; int32_t iTid = 0; while (iTid <= kiHighestTid) { iTotalBits += pTOverRc[iTid].iGopBitsDq; ++ iTid; } int32_t iFrameInVGop = pWelsSvcRc->iFrameCodedInVGop+pWelsSvcRc->iSkipFrameInVGop; if(0 != iFrameInVGop) iVGopBitrate = (int32_t)( iTotalBits/iFrameInVGop *pWelsSvcRc->fFrameRate ); #ifdef _TEST_TEMP_Rc_ fprintf(fp_vgop,"%d\n",(int32_t)((double)iTotalBits/iFrameInVGop)); #endif WelsLog( pEncCtx, WELS_LOG_INFO,"[Rc] VGOPbitrate%d: %d \n", kiDid, iVGopBitrate); if ( iTotalBits > 0 ) { iTid = 0; while (iTid <= kiHighestTid) { WelsLog( pEncCtx, WELS_LOG_INFO,"T%d=%8.3f \n", iTid, (double)(pTOverRc[iTid].iGopBitsDq/iTotalBits) ); ++ iTid; } } } } #endif void RcUpdateTemporalZero(sWelsEncCtx *pEncCtx) { const int32_t kiDid = pEncCtx->uiDependencyId; SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[kiDid]; SDLayerParam *pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[kiDid]; const int32_t kiGopSize = (1<<pDLayerParam->iDecompositionStages); if( pWelsSvcRc->iPreviousGopSize != kiGopSize ) { #if GOM_TRACE_FLAG RcTraceVGopBitrate(pEncCtx); #endif RcInitTlWeight(pEncCtx); RcInitVGop(pEncCtx); } else if( pWelsSvcRc->iGopIndexInVGop == pWelsSvcRc->iGopNumberInVGop || pEncCtx->eSliceType == I_SLICE) { #if GOM_TRACE_FLAG RcTraceVGopBitrate(pEncCtx); #endif RcInitVGop(pEncCtx); } pWelsSvcRc->iGopIndexInVGop++; } void RcInitIdrQp(sWelsEncCtx *pEncCtx) { double dBpp = 0; int32_t i; //64k@6fps for 90p: bpp 0.74 QP:24 //192k@12fps for 180p: bpp 0.28 QP:26 //512k@24fps for 360p: bpp 0.09 QP:30 //1500k@30fps for 720p: bpp 0.05 QP:32 double dBppArray[4][3] = {{0.5, 0.75, 1.0}, {0.2, 0.3, 0.4}, {0.05, 0.09, 0.13}, {0.03, 0.06, 0.1}}; int32_t dInitialQPArray[4][4] = {{28, 26, 24, 22}, {30, 28, 26, 24}, {32, 30, 28, 26}, {34, 32, 30, 28}}; int32_t iBppIndex = 0; SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SDLayerParam *pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId]; if (pDLayerParam->fOutputFrameRate > EPSN && pDLayerParam->iFrameWidth && pDLayerParam->iFrameHeight) dBpp=(double)(pDLayerParam->iSpatialBitrate) / (double)(pDLayerParam->fOutputFrameRate * pDLayerParam->iFrameWidth * pDLayerParam->iFrameHeight); else dBpp = 0.1; //Area*2 if ( pDLayerParam->iFrameWidth*pDLayerParam->iFrameHeight <= 28800 ) // 90p video:160*90 iBppIndex = 0; else if ( pDLayerParam->iFrameWidth*pDLayerParam->iFrameHeight <= 115200 ) // 180p video:320*180 iBppIndex = 1; else if ( pDLayerParam->iFrameWidth*pDLayerParam->iFrameHeight <= 460800 ) // 360p video:640*360 iBppIndex = 2; else iBppIndex = 3; //Search for( i=0; i<3; i++ ) { if ( dBpp<=dBppArray[iBppIndex][i] ) break; } pWelsSvcRc->iInitialQp = dInitialQPArray[iBppIndex][i]; pWelsSvcRc->iInitialQp = (int32_t)WELS_CLIP3( pWelsSvcRc->iInitialQp, MIN_IDR_QP, MAX_IDR_QP ); pEncCtx->iGlobalQp = pWelsSvcRc->iInitialQp; pWelsSvcRc->dQStep = RcConvertQp2QStep(pEncCtx->iGlobalQp); pWelsSvcRc->iLastCalculatedQScale = pEncCtx->iGlobalQp; } void RcCalculateIdrQp(sWelsEncCtx *pEncCtx) { SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; //obtain the idr qp using previous idr complexity if(pWelsSvcRc->iNumberMbFrame != pWelsSvcRc->iIntraMbCount){ pWelsSvcRc->iIntraComplexity = (int32_t)((double)pWelsSvcRc->iIntraComplexity*pWelsSvcRc->iNumberMbFrame/pWelsSvcRc->iIntraMbCount + 0.5); } pWelsSvcRc->iInitialQp = (int32_t)RcConvertQStep2Qp( (double)pWelsSvcRc->iIntraComplexity/pWelsSvcRc->iTargetBits); pWelsSvcRc->iInitialQp = (int32_t)WELS_CLIP3( pWelsSvcRc->iInitialQp, MIN_IDR_QP, MAX_IDR_QP ); pEncCtx->iGlobalQp = pWelsSvcRc->iInitialQp; pWelsSvcRc->dQStep = RcConvertQp2QStep(pEncCtx->iGlobalQp); pWelsSvcRc->iLastCalculatedQScale = pEncCtx->iGlobalQp; } void RcCalculatePictureQp(sWelsEncCtx *pEncCtx) { SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; int32_t iTl = pEncCtx->uiTemporalId; SRCTemporal *pTOverRc = &pWelsSvcRc->pTemporalOverRc[iTl]; int32_t iLumaQp = 0; if(0 == pTOverRc->iPFrameNum) { iLumaQp = pWelsSvcRc->iInitialQp; } else{ double dCmplxRatio = (double)pEncCtx->pVaa->sComplexityAnalysisParam.iFrameComplexity/pTOverRc->iFrameCmplxMean; dCmplxRatio = WELS_CLIP3(dCmplxRatio, 1.0-FRAME_CMPLX_RATIO_RANGE, 1.0+FRAME_CMPLX_RATIO_RANGE); pWelsSvcRc->dQStep = pTOverRc->dLinearCmplx*dCmplxRatio / pWelsSvcRc->iTargetBits; iLumaQp = (int32_t)( RcConvertQStep2Qp( pWelsSvcRc->dQStep )+0.5 ); //limit QP int32_t iLastIdxCodecInVGop = pWelsSvcRc->iFrameCodedInVGop - 1; if(iLastIdxCodecInVGop < 0) iLastIdxCodecInVGop += VGOP_SIZE; int32_t iTlLast = pWelsSvcRc->iTlOfFrames[iLastIdxCodecInVGop]; int32_t iDeltaQpTemporal = iTl - iTlLast; if(0 == iTlLast && iTl > 0) iDeltaQpTemporal += 3; else if(0 == iTl && iTlLast > 0) iDeltaQpTemporal -= 3; iLumaQp = WELS_CLIP3(iLumaQp, pWelsSvcRc->iLastCalculatedQScale - pWelsSvcRc->iFrameDeltaQpLower +iDeltaQpTemporal, pWelsSvcRc->iLastCalculatedQScale + pWelsSvcRc->iFrameDeltaQpUpper + iDeltaQpTemporal); } iLumaQp = WELS_CLIP3(iLumaQp, GOM_MIN_QP_MODE, GOM_MAX_QP_MODE); pWelsSvcRc->dQStep = RcConvertQp2QStep(iLumaQp); pWelsSvcRc->iLastCalculatedQScale = iLumaQp; #ifndef _NOT_USE_AQ_FOR_TEST_ if(pEncCtx->pSvcParam->bEnableAdaptiveQuant) { iLumaQp = (int32_t)WELS_CLIP3(iLumaQp - pEncCtx->pVaa->sAdaptiveQuantParam.dAverMotionTextureIndexToDeltaQp, pWelsSvcRc->iMinQp, pWelsSvcRc->iMaxQp); } #endif pEncCtx->iGlobalQp = iLumaQp; } void RcInitSliceInformation(sWelsEncCtx *pEncCtx) { SSliceCtx *pCurSliceCtx = pEncCtx->pCurDqLayer->pSliceEncCtx; SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SRCSlicing *pSOverRc = &pWelsSvcRc->pSlicingOverRc[0]; const int32_t kiSliceNum = pCurSliceCtx->iSliceNumInFrame; const double kdBitsPerMb = (double)pWelsSvcRc->iTargetBits / pWelsSvcRc->iNumberMbFrame; for(int32_t i=0; i<kiSliceNum; i++ ) { pSOverRc->iStartMbSlice = pSOverRc->iEndMbSlice = pCurSliceCtx->pFirstMbInSlice[i]; pSOverRc->iEndMbSlice += (pCurSliceCtx->pCountMbNumInSlice[i]-1); pSOverRc->iTotalQpSlice = 0; pSOverRc->iTotalMbSlice = 0; pSOverRc->iTargetBitsSlice = (int32_t)(kdBitsPerMb * pCurSliceCtx->pCountMbNumInSlice[i]); pSOverRc->iFrameBitsSlice = 0; pSOverRc->iGomBitsSlice = 0; ++ pSOverRc; } } void RcDecideTargetBits(sWelsEncCtx *pEncCtx) { SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SRCTemporal *pTOverRc = &pWelsSvcRc->pTemporalOverRc[pEncCtx->uiTemporalId]; //allocate bits if(pEncCtx->eSliceType == I_SLICE) { pWelsSvcRc->iTargetBits = (int32_t)( pWelsSvcRc->dBitsPerFrame * IDR_BITRATE_RATIO ); } else { pWelsSvcRc->iTargetBits = (int32_t)( pWelsSvcRc->iRemainingBits*pTOverRc->dTlayerWeight/pWelsSvcRc->dRemainingWeights ); pWelsSvcRc->iTargetBits = WELS_CLIP3( pWelsSvcRc->iTargetBits, pTOverRc->iMinBitsTl, pTOverRc->iMaxBitsTl); } pWelsSvcRc->dRemainingWeights -= pTOverRc->dTlayerWeight; } void RcInitGoomParameters(sWelsEncCtx *pEncCtx) { SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SRCSlicing *pSOverRc = &pWelsSvcRc->pSlicingOverRc[0]; const int32_t kiSliceNum = pWelsSvcRc->iSliceNum; const int32_t kiGlobalQp = pEncCtx->iGlobalQp; pWelsSvcRc->iAverageFrameQp = 0; for(int32_t i=0; i<kiSliceNum; ++i ) { pSOverRc->iComplexityIndexSlice = 0; pSOverRc->iCalculatedQpSlice = kiGlobalQp; ++ pSOverRc; } memset( pWelsSvcRc->pGomComplexity, 0, pWelsSvcRc->iGomSize*sizeof(double) ); memset( pWelsSvcRc->pGomCost, 0, pWelsSvcRc->iGomSize*sizeof(int32_t) ); } void RcCalculateMbQp(sWelsEncCtx *pEncCtx,SMB* pCurMb, const int32_t kiSliceId) { SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SRCSlicing *pSOverRc = &pWelsSvcRc->pSlicingOverRc[kiSliceId]; int32_t iLumaQp = pSOverRc->iCalculatedQpSlice; #ifndef _NOT_USE_AQ_FOR_TEST_ if ( pEncCtx->pSvcParam->bEnableAdaptiveQuant ) { iLumaQp = (int8_t)WELS_CLIP3(iLumaQp + pEncCtx->pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp[pCurMb->iMbXY], pWelsSvcRc->iMinQp, 51); } #endif pCurMb->uiChromaQp = g_kuiChromaQpTable[iLumaQp]; pCurMb->uiLumaQp = iLumaQp; } SWelsSvcRc* RcJudgeBaseUsability(sWelsEncCtx *pEncCtx) { SWelsSvcRc *pWelsSvcRc = NULL, *pWelsSvcRc_Base = NULL; SDLayerParam *pDlpBase = NULL, *pDLayerParam = NULL; if( pEncCtx->uiDependencyId<=0 ) return NULL; pDlpBase = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId-1]; pWelsSvcRc_Base = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId-1]; if( pEncCtx->uiTemporalId<=pDlpBase->iDecompositionStages ) { pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; pWelsSvcRc_Base = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId-1]; pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId]; pDlpBase = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId-1]; if( (pDLayerParam->iFrameWidth*pDLayerParam->iFrameHeight/pWelsSvcRc->iNumberMbGom) == (pDlpBase->iFrameWidth*pDlpBase->iFrameHeight/pWelsSvcRc_Base->iNumberMbGom) ) return pWelsSvcRc_Base; else return NULL; } else return NULL; } void RcGomTargetBits(sWelsEncCtx *pEncCtx, const int32_t kiSliceId) { SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SWelsSvcRc *pWelsSvcRc_Base = NULL; SRCSlicing *pSOverRc = &pWelsSvcRc->pSlicingOverRc[kiSliceId]; double dAllocateBits = 0; int32_t iSumSad = 0; int32_t iLastGomIndex = 0; int32_t iLeftBits = 0; const int32_t kiComplexityIndex = pSOverRc->iComplexityIndexSlice; int32_t i; iLastGomIndex = pSOverRc->iEndMbSlice/pWelsSvcRc->iNumberMbGom; iLeftBits = pSOverRc->iTargetBitsSlice-pSOverRc->iFrameBitsSlice; if(iLeftBits <= 0) { pSOverRc->iGomTargetBits = 0; return; } else if( kiComplexityIndex >= iLastGomIndex) { dAllocateBits = iLeftBits; } else { pWelsSvcRc_Base = RcJudgeBaseUsability(pEncCtx); pWelsSvcRc_Base = (pWelsSvcRc_Base) ? pWelsSvcRc_Base : pWelsSvcRc; for( i=kiComplexityIndex; i<=iLastGomIndex; i++ ) { iSumSad += pWelsSvcRc_Base->pCurrentFrameGomSad[i]; } if(0 == iSumSad) dAllocateBits = (double)iLeftBits/(iLastGomIndex-kiComplexityIndex); else dAllocateBits = (double)iLeftBits*pWelsSvcRc_Base->pCurrentFrameGomSad[kiComplexityIndex+1]/iSumSad; } pSOverRc->iGomTargetBits = int32_t(dAllocateBits + 0.5); } void RcCalculateGomQp(sWelsEncCtx *pEncCtx, SMB* pCurMb, int32_t iSliceId) { SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SRCSlicing *pSOverRc = &pWelsSvcRc->pSlicingOverRc[iSliceId]; double dBitsRatio = 1.0; int32_t iLeftBits = pSOverRc->iTargetBitsSlice - pSOverRc->iFrameBitsSlice; int32_t iTargetLeftBits = iLeftBits + pSOverRc->iGomBitsSlice - pSOverRc->iGomTargetBits; if(iLeftBits <= 0) { pSOverRc->iCalculatedQpSlice += 2; } else { //globe decision dBitsRatio = iLeftBits / (iTargetLeftBits + 0.1); if(dBitsRatio < 0.8409) //2^(-1.5/6) pSOverRc->iCalculatedQpSlice += 2; else if(dBitsRatio < 0.9439) //2^(-0.5/6) pSOverRc->iCalculatedQpSlice += 1; else if(dBitsRatio > 1.06) //2^(0.5/6) pSOverRc->iCalculatedQpSlice -= 1; else if(dBitsRatio > 1.19) //2^(1.5/6) pSOverRc->iCalculatedQpSlice -= 2; } pSOverRc->iCalculatedQpSlice = WELS_CLIP3( pSOverRc->iCalculatedQpSlice, pEncCtx->iGlobalQp-pWelsSvcRc->iQpRangeLowerInFrame, pEncCtx->iGlobalQp+pWelsSvcRc->iQpRangeUpperInFrame ); pSOverRc->iCalculatedQpSlice = WELS_CLIP3(pSOverRc->iCalculatedQpSlice, pWelsSvcRc->iMinQp, pWelsSvcRc->iMaxQp); pSOverRc->iGomBitsSlice = 0; } void RcVBufferCalculationSkip(sWelsEncCtx *pEncCtx) { SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SRCTemporal *pTOverRc = pWelsSvcRc->pTemporalOverRc; const int32_t kiOutputBits = (int32_t)(pWelsSvcRc->dBitsPerFrame + 0.5); //condition 1: whole pBuffer fullness pWelsSvcRc->iBufferFullnessSkip += (pWelsSvcRc->iFrameDqBits - kiOutputBits); //condition 2: VGOP bits constraint const int32_t kiVGopBits = (int32_t)(pWelsSvcRc->dBitsPerFrame * VGOP_SIZE); int32_t iVGopBitsPred = 0; for(int32_t i = pWelsSvcRc->iFrameCodedInVGop+1; i<VGOP_SIZE; i++ ) iVGopBitsPred += pTOverRc[pWelsSvcRc->iTlOfFrames[i]].iMinBitsTl; iVGopBitsPred -= pWelsSvcRc->iRemainingBits; double dIncPercent = iVGopBitsPred*100.0/kiVGopBits - (double)VGOP_BITS_PERCENTAGE_DIFF; if( (pWelsSvcRc->iBufferFullnessSkip > pWelsSvcRc->iBufferSizeSkip && pWelsSvcRc->iAverageFrameQp > pWelsSvcRc->iSkipQpValue) || (dIncPercent > pWelsSvcRc->iRcVaryPercentage)) { pEncCtx->iSkipFrameFlag=1; pWelsSvcRc->iBufferFullnessSkip = pWelsSvcRc->iBufferFullnessSkip-kiOutputBits; #ifdef FRAME_INFO_OUTPUT fprintf(stderr, "skip one frame\n"); #endif } if( pWelsSvcRc->iBufferFullnessSkip<0 ) pWelsSvcRc->iBufferFullnessSkip = 0; if( pEncCtx->iSkipFrameFlag==1 ) { pWelsSvcRc->iRemainingBits += (int32_t)(pWelsSvcRc->dBitsPerFrame + 0.5); pWelsSvcRc->iSkipFrameNum++; pWelsSvcRc->iSkipFrameInVGop++; } } void RcVBufferCalculationPadding(sWelsEncCtx *pEncCtx) { SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; const int32_t kiOutputBits = (int32_t)(pWelsSvcRc->dBitsPerFrame + 0.5); const int32_t kiBufferThreshold = (int32_t)(PADDING_THRESHOLD*(-pWelsSvcRc->iBufferSizePadding)); pWelsSvcRc->iBufferFullnessPadding += (pWelsSvcRc->iFrameDqBits - kiOutputBits); if( pWelsSvcRc->iBufferFullnessPadding < kiBufferThreshold ) { pWelsSvcRc->iPaddingSize = -pWelsSvcRc->iBufferFullnessPadding; pWelsSvcRc->iPaddingSize >>= 3; // /8 pWelsSvcRc->iBufferFullnessPadding = 0; } else pWelsSvcRc->iPaddingSize=0; } void RcTraceFrameBits(sWelsEncCtx *pEncCtx) { SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; WelsLog( pEncCtx, WELS_LOG_INFO,"[Rc] encoding_qp%d, qp = %3d, index = %8d, iTid = %1d, used = %8d, target = %8d, remaingbits = %8d\n", pEncCtx->uiDependencyId, pWelsSvcRc->iAverageFrameQp, pEncCtx->uiFrameIdxRc, pEncCtx->uiTemporalId, pWelsSvcRc->iFrameDqBits, pWelsSvcRc->iTargetBits,pWelsSvcRc->iRemainingBits); } void RcUpdatePictureQpBits(sWelsEncCtx *pEncCtx, int32_t iCodedBits) { SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SRCSlicing *pSOverRc = &pWelsSvcRc->pSlicingOverRc[0]; SSliceCtx *pCurSliceCtx = pEncCtx->pCurDqLayer->pSliceEncCtx; int32_t iTotalQp = 0, iTotalMb = 0; int32_t i; if(pEncCtx->eSliceType == P_SLICE) { for( i=0; i<pCurSliceCtx->iSliceNumInFrame; i++ ) { iTotalQp += pSOverRc->iTotalQpSlice; iTotalMb += pSOverRc->iTotalMbSlice; ++ pSOverRc; } if(iTotalMb > 0) pWelsSvcRc->iAverageFrameQp = (int32_t)(1.0*iTotalQp/iTotalMb+0.5); else pWelsSvcRc->iAverageFrameQp = pEncCtx->iGlobalQp; } else { pWelsSvcRc->iAverageFrameQp = pEncCtx->iGlobalQp; } pWelsSvcRc->iFrameDqBits = iCodedBits; pWelsSvcRc->pTemporalOverRc[pEncCtx->uiTemporalId].iGopBitsDq += pWelsSvcRc->iFrameDqBits; } void RcUpdateIntraComplexity(sWelsEncCtx *pEncCtx) { SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; double iAlpha = 1.0/(1+pWelsSvcRc->iIdrNum); if(iAlpha < 0.25) iAlpha = 0.25; double dIntraCmplx = pWelsSvcRc->dQStep*pWelsSvcRc->iFrameDqBits; dIntraCmplx = (1.0-iAlpha)*pWelsSvcRc->iIntraComplexity + iAlpha*dIntraCmplx; pWelsSvcRc->iIntraComplexity = (int32_t)(dIntraCmplx + 0.5); pWelsSvcRc->iIntraMbCount = pWelsSvcRc->iNumberMbFrame; pWelsSvcRc->iIdrNum++; if(pWelsSvcRc->iIdrNum > 255) pWelsSvcRc->iIdrNum = 255; } void RcUpdateFrameComplexity(sWelsEncCtx *pEncCtx) { SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; const int32_t kiTl = pEncCtx->uiTemporalId; SRCTemporal *pTOverRc = &pWelsSvcRc->pTemporalOverRc[kiTl]; if(0 == pTOverRc->iPFrameNum){ pTOverRc->dLinearCmplx = pWelsSvcRc->iFrameDqBits * pWelsSvcRc->dQStep; } else{ pTOverRc->dLinearCmplx = LINEAR_MODEL_DECAY_FACTOR*pTOverRc->dLinearCmplx + (1.0-LINEAR_MODEL_DECAY_FACTOR)*(pWelsSvcRc->iFrameDqBits * pWelsSvcRc->dQStep); } double iAlpha = 1.0/(1+pTOverRc->iPFrameNum); if(iAlpha < SMOOTH_FACTOR_MIN_VALUE) iAlpha = SMOOTH_FACTOR_MIN_VALUE; pTOverRc->iFrameCmplxMean = (int32_t)((1.0-iAlpha)*pTOverRc->iFrameCmplxMean + iAlpha*pEncCtx->pVaa->sComplexityAnalysisParam.iFrameComplexity + 0.5); pTOverRc->iPFrameNum++; if(pTOverRc->iPFrameNum > 255) pTOverRc->iPFrameNum = 255; } int32_t RcCalculateCascadingQp(struct TagWelsEncCtx *pEncCtx, int32_t iQp) { int32_t iTemporalQp = 0; if( pEncCtx->pSvcParam->iDecompStages ) { if( pEncCtx->uiTemporalId==0 ) iTemporalQp = iQp - 3 - (pEncCtx->pSvcParam->iDecompStages-1); else iTemporalQp = iQp - (pEncCtx->pSvcParam->iDecompStages - pEncCtx->uiTemporalId); iTemporalQp = WELS_CLIP3( iTemporalQp, 1, 51 ); } else iTemporalQp = iQp; return iTemporalQp; } void WelsRcPictureInitGom(void *pCtx) { sWelsEncCtx *pEncCtx = (sWelsEncCtx*)pCtx; SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; if ( pEncCtx->eSliceType == I_SLICE ) { if(0 == pWelsSvcRc->iIdrNum) //iIdrNum == 0 means encoder has been initialed { RcInitRefreshParameter(pEncCtx); } } if( RcJudgeBitrateFpsUpdate(pEncCtx)) { RcUpdateBitrateFps(pEncCtx); } if( pEncCtx->uiTemporalId == 0 ) { RcUpdateTemporalZero(pEncCtx); } RcDecideTargetBits(pEncCtx); //decide globe_qp if(pEncCtx->eSliceType == I_SLICE) { if(0 == pWelsSvcRc->iIdrNum) RcInitIdrQp(pEncCtx); else { RcCalculateIdrQp(pEncCtx); } } else { RcCalculatePictureQp(pEncCtx); } RcInitSliceInformation(pEncCtx); RcInitGoomParameters(pEncCtx); } void WelsRcPictureInfoUpdateGom(void *pCtx, int32_t layer_size) { sWelsEncCtx *pEncCtx = (sWelsEncCtx*)pCtx; SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; int32_t iCodedBits = (layer_size<<3); RcUpdatePictureQpBits(pEncCtx, iCodedBits); if ( pEncCtx->eSliceType == P_SLICE ) { RcUpdateFrameComplexity(pEncCtx); } else { RcUpdateIntraComplexity(pEncCtx); } pWelsSvcRc->iRemainingBits -= pWelsSvcRc->iFrameDqBits; #if GOM_TRACE_FLAG RcTraceFrameBits(pEncCtx); #endif #if SKIP_FRAME_FLAG if ( pEncCtx->uiDependencyId == pEncCtx->pSvcParam->iNumDependencyLayer - 1 ) { RcVBufferCalculationSkip(pEncCtx); } #endif if ( pEncCtx->pSvcParam->iPaddingFlag ) RcVBufferCalculationPadding(pEncCtx); pWelsSvcRc->iFrameCodedInVGop++; #ifdef _TEST_TEMP_Rc_ fprintf(fp_test_rc, "%d\n", pWelsSvcRc->iFrameDqBits); if(pEncCtx->iSkipFrameFlag) fprintf(fp_test_rc, "0\n"); fflush(fp_test_rc); #endif } void WelsRcMbInitGom(void *pCtx, SMB* pCurMb, SSlice *pSlice) { sWelsEncCtx *pEncCtx = (sWelsEncCtx*)pCtx; SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; const int32_t kiSliceId = pSlice->uiSliceIdx; SRCSlicing *pSOverRc = &pWelsSvcRc->pSlicingOverRc[kiSliceId]; SBitStringAux * bs = pSlice->pSliceBsa; pSOverRc->iBsPosSlice = BsGetBitsPos(bs); if(pEncCtx->eSliceType==I_SLICE) return; //calculate gom qp and target bits at the beginning of gom if(0 == (pCurMb->iMbXY%pWelsSvcRc->iNumberMbGom)){ if(pCurMb->iMbXY != pSOverRc->iStartMbSlice){ pSOverRc->iComplexityIndexSlice++; RcCalculateGomQp(pEncCtx, pCurMb, kiSliceId); } RcGomTargetBits(pEncCtx, kiSliceId); } RcCalculateMbQp(pEncCtx,pCurMb,kiSliceId); } void WelsRcMbInfoUpdateGom(void *pCtx, SMB* pCurMb, int32_t iCostLuma, SSlice *pSlice) { sWelsEncCtx *pEncCtx = (sWelsEncCtx*)pCtx; SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SBitStringAux * bs = pSlice->pSliceBsa; int32_t iSliceId = pSlice->uiSliceIdx; SRCSlicing *pSOverRc = &pWelsSvcRc->pSlicingOverRc[iSliceId]; const int32_t kiComplexityIndex = pSOverRc->iComplexityIndexSlice; int32_t cur_mb_bits = BsGetBitsPos(bs) - pSOverRc->iBsPosSlice; pSOverRc->iFrameBitsSlice += cur_mb_bits; pSOverRc->iGomBitsSlice += cur_mb_bits; pWelsSvcRc->pGomCost[kiComplexityIndex] += iCostLuma; if(cur_mb_bits > 0){ pSOverRc->iTotalQpSlice += pCurMb->uiLumaQp; pSOverRc->iTotalMbSlice++; } } void WelsRcPictureInitDisable(void *pCtx) { sWelsEncCtx *pEncCtx = (sWelsEncCtx*)pCtx; SWelsSvcRc *pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId]; SDLayerParam *pDLayerParam = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId]; const int32_t kiQp = pDLayerParam->iDLayerQp; pEncCtx->iGlobalQp = RcCalculateCascadingQp( pEncCtx, kiQp ); if ( pEncCtx->pSvcParam->bEnableAdaptiveQuant && (pEncCtx->eSliceType == P_SLICE) ) { pEncCtx->iGlobalQp = (int32_t)WELS_CLIP3(pEncCtx->iGlobalQp - pEncCtx->pVaa->sAdaptiveQuantParam.dAverMotionTextureIndexToDeltaQp, GOM_MIN_QP_MODE, GOM_MAX_QP_MODE); } pWelsSvcRc->iAverageFrameQp = pEncCtx->iGlobalQp; } void WelsRcPictureInfoUpdateDisable(void *pCtx, int32_t layer_size) { } void WelsRcMbInitDisable(void *pCtx, SMB* pCurMb, SSlice *pSlice) { sWelsEncCtx *pEncCtx = (sWelsEncCtx*)pCtx; int32_t iLumaQp = pEncCtx->iGlobalQp; if ( pEncCtx->pSvcParam->bEnableAdaptiveQuant && (pEncCtx->eSliceType == P_SLICE) ) { iLumaQp = (int8_t)WELS_CLIP3(iLumaQp + pEncCtx->pVaa->sAdaptiveQuantParam.pMotionTextureIndexToDeltaQp[pCurMb->iMbXY], GOM_MIN_QP_MODE, 51); } pCurMb->uiChromaQp = g_kuiChromaQpTable[iLumaQp]; pCurMb->uiLumaQp = iLumaQp; } void WelsRcMbInfoUpdateDisable(void *pCtx, SMB* pCurMb, int32_t iCostLuma, SSlice *pSlice) { } void WelsRcInitModule(void *pCtx, int32_t iModule) { sWelsEncCtx *pEncCtx = (sWelsEncCtx*)pCtx; SWelsRcFunc * pRcf = &pEncCtx->pFuncList->pfRc; switch(iModule) { case WELS_RC_DISABLE: pRcf->pfWelsRcPictureInit = WelsRcPictureInitDisable; pRcf->pfWelsRcPictureInfoUpdate = WelsRcPictureInfoUpdateDisable; pRcf->pfWelsRcMbInit = WelsRcMbInitDisable; pRcf->pfWelsRcMbInfoUpdate = WelsRcMbInfoUpdateDisable; break; case WELS_RC_GOM: default: pRcf->pfWelsRcPictureInit = WelsRcPictureInitGom; pRcf->pfWelsRcPictureInfoUpdate = WelsRcPictureInfoUpdateGom; pRcf->pfWelsRcMbInit = WelsRcMbInitGom; pRcf->pfWelsRcMbInfoUpdate = WelsRcMbInfoUpdateGom; break; } RcInitSequenceParameter(pEncCtx); } void WelsRcFreeMemory(void *pCtx) { sWelsEncCtx *pEncCtx = (sWelsEncCtx*)pCtx; SWelsSvcRc *pWelsSvcRc = NULL; int32_t i = 0; #ifdef _TEST_TEMP_Rc_ if(fp_test_rc) fclose(fp_test_rc); fp_test_rc = NULL; if(fp_vgop) fclose(fp_vgop); fp_vgop = NULL; #endif for( i=0; i<pEncCtx->pSvcParam->iNumDependencyLayer; i++ ) { pWelsSvcRc = &pEncCtx->pWelsSvcRc[i]; RcFreeLayerMemory(pWelsSvcRc, pEncCtx->pMemAlign); } } }//end of namespace