ref: 122d6a9f15f9bc46b295c0ccd66eb361ea2e897a
dir: /test/encoder/EncUT_DecodeMbAux.cpp/
#include <gtest/gtest.h> #include "decode_mb_aux.h" #include "wels_common_basis.h" #include "macros.h" #include "cpu.h" using namespace WelsEnc; TEST (DecodeMbAuxTest, TestIhdm_4x4_dc) { short W[16], T[16], Y[16]; for (int i = 0; i < 16; i++) W[i] = rand() % 256 + 1; T[0] = W[0] + W[4] + W[8] + W[12]; T[1] = W[1] + W[5] + W[9] + W[13]; T[2] = W[2] + W[6] + W[10] + W[14]; T[3] = W[3] + W[7] + W[11] + W[15]; T[4] = W[0] + W[4] - W[8] - W[12]; T[5] = W[1] + W[5] - W[9] - W[13]; T[6] = W[2] + W[6] - W[10] - W[14]; T[7] = W[3] + W[7] - W[11] - W[15]; T[8] = W[0] - W[4] - W[8] + W[12]; T[9] = W[1] - W[5] - W[9] + W[13]; T[10] = W[2] - W[6] - W[10] + W[14]; T[11] = W[3] - W[7] - W[11] + W[15]; T[12] = W[0] - W[4] + W[8] - W[12]; T[13] = W[1] - W[5] + W[9] - W[13]; T[14] = W[2] - W[6] + W[10] - W[14]; T[15] = W[3] - W[7] + W[11] - W[15]; Y[0] = T[0] + T[1] + T[2] + T[3]; Y[1] = T[0] + T[1] - T[2] - T[3]; Y[2] = T[0] - T[1] - T[2] + T[3]; Y[3] = T[0] - T[1] + T[2] - T[3]; Y[4] = T[4] + T[5] + T[6] + T[7]; Y[5] = T[4] + T[5] - T[6] - T[7]; Y[6] = T[4] - T[5] - T[6] + T[7]; Y[7] = T[4] - T[5] + T[6] - T[7]; Y[8] = T[8] + T[9] + T[10] + T[11]; Y[9] = T[8] + T[9] - T[10] - T[11]; Y[10] = T[8] - T[9] - T[10] + T[11]; Y[11] = T[8] - T[9] + T[10] - T[11]; Y[12] = T[12] + T[13] + T[14] + T[15]; Y[13] = T[12] + T[13] - T[14] - T[15]; Y[14] = T[12] - T[13] - T[14] + T[15]; Y[15] = T[12] - T[13] + T[14] - T[15]; WelsIHadamard4x4Dc (W); for (int i = 0; i < 16; i++) EXPECT_EQ (Y[i], W[i]); } TEST (DecodeMbAuxTest, TestDequant_4x4_luma_dc) { short T[16], W[16]; for (int qp = 0; qp < 12; qp++) { for (int i = 0; i < 16; i++) { T[i] = rand() % 256 + 1; W[i] = T[i]; } WelsDequantLumaDc4x4 (W, qp); for (int i = 0; i < 16; i++) { T[i] = (((T[i] * g_kuiDequantCoeff[qp % 6][0] + (1 << (1 - qp / 6)))) >> (2 - qp / 6)); EXPECT_EQ (T[i], W[i]); } } } TEST (DecodeMbAuxTest, TestDequant_ihdm_4x4_c) { short W[16], T[16], Y[16]; const unsigned short mf = rand() % 16 + 1; for (int i = 0; i < 16; i++) W[i] = rand() % 256 + 1; T[0] = W[0] + W[4] + W[8] + W[12]; T[1] = W[1] + W[5] + W[9] + W[13]; T[2] = W[2] + W[6] + W[10] + W[14]; T[3] = W[3] + W[7] + W[11] + W[15]; T[4] = W[0] + W[4] - W[8] - W[12]; T[5] = W[1] + W[5] - W[9] - W[13]; T[6] = W[2] + W[6] - W[10] - W[14]; T[7] = W[3] + W[7] - W[11] - W[15]; T[8] = W[0] - W[4] - W[8] + W[12]; T[9] = W[1] - W[5] - W[9] + W[13]; T[10] = W[2] - W[6] - W[10] + W[14]; T[11] = W[3] - W[7] - W[11] + W[15]; T[12] = W[0] - W[4] + W[8] - W[12]; T[13] = W[1] - W[5] + W[9] - W[13]; T[14] = W[2] - W[6] + W[10] - W[14]; T[15] = W[3] - W[7] + W[11] - W[15]; Y[0] = (T[0] + T[1] + T[2] + T[3]) * mf; Y[1] = (T[0] + T[1] - T[2] - T[3]) * mf; Y[2] = (T[0] - T[1] - T[2] + T[3]) * mf; Y[3] = (T[0] - T[1] + T[2] - T[3]) * mf; Y[4] = (T[4] + T[5] + T[6] + T[7]) * mf; Y[5] = (T[4] + T[5] - T[6] - T[7]) * mf; Y[6] = (T[4] - T[5] - T[6] + T[7]) * mf; Y[7] = (T[4] - T[5] + T[6] - T[7]) * mf; Y[8] = (T[8] + T[9] + T[10] + T[11]) * mf; Y[9] = (T[8] + T[9] - T[10] - T[11]) * mf; Y[10] = (T[8] - T[9] - T[10] + T[11]) * mf; Y[11] = (T[8] - T[9] + T[10] - T[11]) * mf; Y[12] = (T[12] + T[13] + T[14] + T[15]) * mf; Y[13] = (T[12] + T[13] - T[14] - T[15]) * mf; Y[14] = (T[12] - T[13] - T[14] + T[15]) * mf; Y[15] = (T[12] - T[13] + T[14] - T[15]) * mf; WelsDequantIHadamard4x4_c (W, mf); for (int i = 0; i < 16; i++) EXPECT_EQ (Y[i], W[i]); } TEST (DecodeMbAuxTest, TestDequant_4x4_c) { short W[16], T[16]; unsigned short mf[16]; for (int i = 0; i < 16; i++) { W[i] = rand() % 256 + 1; T[i] = W[i]; } for (int i = 0; i < 8; i++) mf[i] = rand() % 16 + 1; WelsDequant4x4_c (W, mf); for (int i = 0; i < 16; i++) EXPECT_EQ (T[i]*mf[i % 8], W[i]); } TEST (DecodeMbAuxTest, TestDequant_4_4x4_c) { short W[64], T[64]; unsigned short mf[16]; for (int i = 0; i < 64; i++) { W[i] = rand() % 256 + 1; T[i] = W[i]; } for (int i = 0; i < 8; i++) mf[i] = rand() % 16 + 1; WelsDequantFour4x4_c (W, mf); for (int i = 0; i < 64; i++) EXPECT_EQ (T[i]*mf[i % 8], W[i]); } void WelsDequantHadamard2x2DcAnchor (int16_t* pDct, int16_t iMF) { const int16_t iSumU = pDct[0] + pDct[2]; const int16_t iDelU = pDct[0] - pDct[2]; const int16_t iSumD = pDct[1] + pDct[3]; const int16_t iDelD = pDct[1] - pDct[3]; pDct[0] = ((iSumU + iSumD) * iMF) >> 1; pDct[1] = ((iSumU - iSumD) * iMF) >> 1; pDct[2] = ((iDelU + iDelD) * iMF) >> 1; pDct[3] = ((iDelU - iDelD) * iMF) >> 1; } TEST (DecodeMbAuxTest, WelsDequantIHadamard2x2Dc) { int16_t iDct[4], iRefDct[4]; int16_t iMF; iMF = rand() & 127; for (int i = 0; i < 4; i++) iDct[i] = iRefDct[i] = (rand() & 65535) - 32768; WelsDequantHadamard2x2DcAnchor (iRefDct, iMF); WelsDequantIHadamard2x2Dc (iDct, iMF); bool ok = true; for (int i = 0; i < 4; i++) { if (iDct[i] != iRefDct[i]) { ok = false; break; } } EXPECT_TRUE (ok); } #define FDEC_STRIDE 32 template<typename clip_t> void WelsIDctT4Anchor (uint8_t* p_dst, int16_t dct[16]) { int16_t tmp[16]; int32_t iStridex2 = (FDEC_STRIDE << 1); int32_t iStridex3 = iStridex2 + FDEC_STRIDE; uint8_t uiDst = 0; int i; for (i = 0; i < 4; i++) { tmp[i << 2] = dct[i << 2] + dct[ (i << 2) + 1] + dct[ (i << 2) + 2] + (dct[ (i << 2) + 3] >> 1); tmp[ (i << 2) + 1] = dct[i << 2] + (dct[ (i << 2) + 1] >> 1) - dct[ (i << 2) + 2] - dct[ (i << 2) + 3]; tmp[ (i << 2) + 2] = dct[i << 2] - (dct[ (i << 2) + 1] >> 1) - dct[ (i << 2) + 2] + dct[ (i << 2) + 3]; tmp[ (i << 2) + 3] = dct[i << 2] - dct[ (i << 2) + 1] + dct[ (i << 2) + 2] - (dct[ (i << 2) + 3] >> 1); } for (i = 0; i < 4; i++) { uiDst = p_dst[i]; p_dst[i] = WelsClip1 (uiDst + (clip_t (tmp[i] + tmp[4 + i] + tmp[8 + i] + (tmp[12 + i] >> 1) + 32) >> 6)); uiDst = p_dst[i + FDEC_STRIDE]; p_dst[i + FDEC_STRIDE] = WelsClip1 (uiDst + (clip_t (tmp[i] + (tmp[4 + i] >> 1) - tmp[8 + i] - tmp[12 + i] + 32) >> 6)); uiDst = p_dst[i + iStridex2]; p_dst[i + iStridex2] = WelsClip1 (uiDst + (clip_t (tmp[i] - (tmp[4 + i] >> 1) - tmp[8 + i] + tmp[12 + i] + 32) >> 6)); uiDst = p_dst[i + iStridex3]; p_dst[i + iStridex3] = WelsClip1 (uiDst + (clip_t (tmp[i] - tmp[4 + i] + tmp[8 + i] - (tmp[12 + i] >> 1) + 32) >> 6)); } } template<typename clip_t> void TestIDctT4Rec (PIDctFunc func) { int16_t iRefDct[16]; uint8_t iRefDst[16 * FDEC_STRIDE]; ENFORCE_STACK_ALIGN_1D (int16_t, iDct, 16, 16); ENFORCE_STACK_ALIGN_1D (uint8_t, iPred, 16 * FDEC_STRIDE, 16); ENFORCE_STACK_ALIGN_1D (uint8_t, iRec, 16 * FDEC_STRIDE, 16); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { iRefDct[i * 4 + j] = iDct[i * 4 + j] = (rand() & 65535) - 32768; iPred[i * FDEC_STRIDE + j] = iRefDst[i * FDEC_STRIDE + j] = rand() & 255; } } WelsIDctT4Anchor<clip_t> (iRefDst, iRefDct); func (iRec, FDEC_STRIDE, iPred, FDEC_STRIDE, iDct); int ok = -1; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { if (iRec[i * FDEC_STRIDE + j] != iRefDst[i * FDEC_STRIDE + j]) { ok = i * 4 + j; break; } } } EXPECT_EQ (ok, -1); } TEST (DecodeMbAuxTest, WelsIDctT4Rec_c) { TestIDctT4Rec<int32_t> (WelsIDctT4Rec_c); } #if defined(X86_ASM) TEST (DecodeMbAuxTest, WelsIDctT4Rec_mmx) { TestIDctT4Rec<int16_t> (WelsIDctT4Rec_mmx); } TEST (DecodeMbAuxTest, WelsIDctT4Rec_sse2) { TestIDctT4Rec<int16_t> (WelsIDctT4Rec_sse2); } #if defined(HAVE_AVX2) TEST (DecodeMbAuxTest, WelsIDctT4Rec_avx2) { if (WelsCPUFeatureDetect (0) & WELS_CPU_AVX2) TestIDctT4Rec<int16_t> (WelsIDctT4Rec_avx2); } #endif #endif #if defined(HAVE_MMI) TEST (DecodeMbAuxTest, WelsIDctT4Rec_mmi) { TestIDctT4Rec<int16_t> (WelsIDctT4Rec_mmi); } #endif template<typename clip_t> void WelsIDctT8Anchor (uint8_t* p_dst, int16_t dct[4][16]) { WelsIDctT4Anchor<clip_t> (&p_dst[0], dct[0]); WelsIDctT4Anchor<clip_t> (&p_dst[4], dct[1]); WelsIDctT4Anchor<clip_t> (&p_dst[4 * FDEC_STRIDE + 0], dct[2]); WelsIDctT4Anchor<clip_t> (&p_dst[4 * FDEC_STRIDE + 4], dct[3]); } template<typename clip_t> void TestIDctFourT4Rec (PIDctFunc func) { int16_t iRefDct[4][16]; uint8_t iRefDst[16 * FDEC_STRIDE]; ENFORCE_STACK_ALIGN_1D (int16_t, iDct, 64, 16); ENFORCE_STACK_ALIGN_1D (uint8_t, iPred, 16 * FDEC_STRIDE, 16); ENFORCE_STACK_ALIGN_1D (uint8_t, iRec, 16 * FDEC_STRIDE, 16); for (int k = 0; k < 4; k++) for (int i = 0; i < 16; i++) iRefDct[k][i] = iDct[k * 16 + i] = (rand() & 65535) - 32768; for (int i = 0; i < 8; i++) for (int j = 0; j < 8; j++) iPred[i * FDEC_STRIDE + j] = iRefDst[i * FDEC_STRIDE + j] = rand() & 255; WelsIDctT8Anchor<clip_t> (iRefDst, iRefDct); func (iRec, FDEC_STRIDE, iPred, FDEC_STRIDE, iDct); int ok = -1; for (int i = 0; i < 8; i++) { for (int j = 0; j < 8; j++) { if (iRec[i * FDEC_STRIDE + j] != iRefDst[i * FDEC_STRIDE + j]) { ok = i * 8 + j; break; } } } EXPECT_EQ (ok, -1); } TEST (DecodeMbAuxTest, WelsIDctFourT4Rec_c) { TestIDctFourT4Rec<int32_t> (WelsIDctFourT4Rec_c); } void WelsIDctRecI16x4DcAnchor (uint8_t* p_dst, int16_t dct[4]) { for (int i = 0; i < 4; i++, p_dst += FDEC_STRIDE) { p_dst[0] = WelsClip1 (p_dst[0] + ((dct[0] + 32) >> 6)); p_dst[1] = WelsClip1 (p_dst[1] + ((dct[0] + 32) >> 6)); p_dst[2] = WelsClip1 (p_dst[2] + ((dct[0] + 32) >> 6)); p_dst[3] = WelsClip1 (p_dst[3] + ((dct[0] + 32) >> 6)); p_dst[4] = WelsClip1 (p_dst[4] + ((dct[1] + 32) >> 6)); p_dst[5] = WelsClip1 (p_dst[5] + ((dct[1] + 32) >> 6)); p_dst[6] = WelsClip1 (p_dst[6] + ((dct[1] + 32) >> 6)); p_dst[7] = WelsClip1 (p_dst[7] + ((dct[1] + 32) >> 6)); p_dst[8] = WelsClip1 (p_dst[8] + ((dct[2] + 32) >> 6)); p_dst[9] = WelsClip1 (p_dst[9] + ((dct[2] + 32) >> 6)); p_dst[10] = WelsClip1 (p_dst[10] + ((dct[2] + 32) >> 6)); p_dst[11] = WelsClip1 (p_dst[11] + ((dct[2] + 32) >> 6)); p_dst[12] = WelsClip1 (p_dst[12] + ((dct[3] + 32) >> 6)); p_dst[13] = WelsClip1 (p_dst[13] + ((dct[3] + 32) >> 6)); p_dst[14] = WelsClip1 (p_dst[14] + ((dct[3] + 32) >> 6)); p_dst[15] = WelsClip1 (p_dst[15] + ((dct[3] + 32) >> 6)); } } void WelsIDctRecI16x16DcAnchor (uint8_t* p_dst, int16_t dct[4][4]) { for (int i = 0; i < 4; i++, p_dst += 4 * FDEC_STRIDE) WelsIDctRecI16x4DcAnchor (&p_dst[0], dct[i]); } TEST (DecodeMbAuxTest, WelsIDctRecI16x16Dc_c) { uint8_t iRefDst[16 * FDEC_STRIDE]; int16_t iRefDct[4][4]; ENFORCE_STACK_ALIGN_1D (int16_t, iDct, 16, 16); ENFORCE_STACK_ALIGN_1D (uint8_t, iPred, 16 * FDEC_STRIDE, 16); ENFORCE_STACK_ALIGN_1D (uint8_t, iRec, 16 * FDEC_STRIDE, 16); for (int i = 0; i < 16; i++) for (int j = 0; j < 16; j++) iRefDst[i * FDEC_STRIDE + j] = iPred[i * FDEC_STRIDE + j] = rand() & 255; for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) iRefDct[i][j] = iDct[i * 4 + j] = (rand() & 65535) - 32768; WelsIDctRecI16x16DcAnchor (iRefDst, iRefDct); WelsIDctRecI16x16Dc_c (iRec, FDEC_STRIDE, iPred, FDEC_STRIDE, iDct); int ok = -1; for (int i = 0; i < 16; i++) { for (int j = 0; j < 16; j++) { if (iRec[i * FDEC_STRIDE + j] != iRefDst[i * FDEC_STRIDE + j]) { ok = i * 16 + j; break; } } } EXPECT_EQ (ok, -1); } #if defined(X86_ASM) TEST (DecodeMbAuxTest, WelsIDctFourT4Rec_sse2) { TestIDctFourT4Rec<int16_t> (WelsIDctFourT4Rec_sse2); } #if defined(HAVE_AVX2) TEST (DecodeMbAuxTest, WelsIDctFourT4Rec_avx2) { if (WelsCPUFeatureDetect (0) & WELS_CPU_AVX2) TestIDctFourT4Rec<int16_t> (WelsIDctFourT4Rec_avx2); } #endif TEST (DecodeMbAuxTest, WelsIDctRecI16x16Dc_sse2) { int32_t iCpuCores = 0; uint32_t uiCpuFeatureFlag = WelsCPUFeatureDetect (&iCpuCores); if (uiCpuFeatureFlag & WELS_CPU_SSE2) { uint8_t iRefDst[16 * FDEC_STRIDE]; int16_t iRefDct[4][4]; ENFORCE_STACK_ALIGN_1D (int16_t, iDct, 16, 16); ENFORCE_STACK_ALIGN_1D (uint8_t, iPred, 16 * FDEC_STRIDE, 16); ENFORCE_STACK_ALIGN_1D (uint8_t, iRec, 16 * FDEC_STRIDE, 16); for (int i = 0; i < 16; i++) for (int j = 0; j < 16; j++) iRefDst[i * FDEC_STRIDE + j] = iPred[i * FDEC_STRIDE + j] = rand() & 255; for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) iRefDct[i][j] = iDct[i * 4 + j] = (rand() & ((1 << 15) - 1)) - (1 << 14); //2^14 limit, (2^15+32) will cause overflow for SSE2. WelsIDctRecI16x16DcAnchor (iRefDst, iRefDct); WelsIDctRecI16x16Dc_sse2 (iRec, FDEC_STRIDE, iPred, FDEC_STRIDE, iDct); int ok = -1; for (int i = 0; i < 16; i++) { for (int j = 0; j < 16; j++) { if (iRec[i * FDEC_STRIDE + j] != iRefDst[i * FDEC_STRIDE + j]) { ok = i * 16 + j; break; } } } EXPECT_EQ (ok, -1); } } #endif #if defined(HAVE_MMI) TEST (DecodeMbAuxTest, WelsIDctFourT4Rec_mmi) { TestIDctFourT4Rec<int16_t> (WelsIDctFourT4Rec_mmi); } TEST (DecodeMbAuxTest, WelsIDctRecI16x16Dc_mmi) { int32_t iCpuCores = 0; uint32_t uiCpuFeatureFlag = WelsCPUFeatureDetect (&iCpuCores); if (uiCpuFeatureFlag & WELS_CPU_MMI) { uint8_t iRefDst[16 * FDEC_STRIDE]; int16_t iRefDct[4][4]; ENFORCE_STACK_ALIGN_1D (int16_t, iDct, 16, 16); ENFORCE_STACK_ALIGN_1D (uint8_t, iPred, 16 * FDEC_STRIDE, 16); ENFORCE_STACK_ALIGN_1D (uint8_t, iRec, 16 * FDEC_STRIDE, 16); for (int i = 0; i < 16; i++) for (int j = 0; j < 16; j++) iRefDst[i * FDEC_STRIDE + j] = iPred[i * FDEC_STRIDE + j] = rand() & 255; for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) iRefDct[i][j] = iDct[i * 4 + j] = (rand() & ((1 << 15) - 1)) - (1 << 14); //2^14 limit, (2^15+32) will cause overflow for SSE2. WelsIDctRecI16x16DcAnchor (iRefDst, iRefDct); WelsIDctRecI16x16Dc_mmi (iRec, FDEC_STRIDE, iPred, FDEC_STRIDE, iDct); int ok = -1; for (int i = 0; i < 16; i++) { for (int j = 0; j < 16; j++) { if (iRec[i * FDEC_STRIDE + j] != iRefDst[i * FDEC_STRIDE + j]) { ok = i * 16 + j; break; } } } EXPECT_EQ (ok, -1); } } #endif