ref: a0b005d038e0e523578594d1b8cd15a66af28fc6
dir: /demos/stm32f429_disco/stm/stm32f4_spl/src/stm32f4xx_hal_nand.c/
/** ****************************************************************************** * @file stm32f4xx_hal_nand.c * @author MCD Application Team * @version V1.0.0 * @date 18-February-2014 * @brief NAND HAL module driver. * This file provides a generic firmware to drive NAND memories mounted * as external device. * @verbatim ============================================================================== ##### How to use this driver ##### ============================================================================== [..] This driver is a generic layered driver which contains a set of APIs used to control NAND flash memories. It uses the FMC/FSMC layer functions to interface with NAND devices. This driver is used as follows: (+) NAND flash memory configuration sequence using the function HAL_NAND_Init() with control and timing parameters for both common and attribute spaces. (+) Read NAND flash memory maker and device IDs using the function HAL_NAND_Read_ID(). The read information is stored in the NAND_ID_TypeDef structure declared by the function caller. (+) Access NAND flash memory by read/write operations using the functions HAL_NAND_Read_Page()/HAL_NAND_Read_SpareArea(), HAL_NAND_Write_Page()/HAL_NAND_Write_SpareArea() to read/write page(s)/spare area(s). These functions use specific device information (Block, page size..) predefined by the user in the HAL_NAND_Info_TypeDef structure. The read/write address information is contained by the Nand_Address_Typedef structure passed as parameter. (+) Perform NAND flash Reset chip operation using the function HAL_NAND_Reset(). (+) Perform NAND flash erase block operation using the function HAL_NAND_Erase_Block(). The erase block address information is contained in the Nand_Address_Typedef structure passed as parameter. (+) Read the NAND flash status operation using the function HAL_NAND_Read_Status(). (+) You can also control the NAND device by calling the control APIs HAL_NAND_ECC_Enable()/ HAL_NAND_ECC_Disable() to respectively enable/disable the ECC code correction feature or the function HAL_NAND_GetECC() to get the ECC correction code. (+) You can monitor the NAND device HAL state by calling the function HAL_NAND_GetState() [..] (@) This driver is a set of generic APIs which handle standard NAND flash operations. If a NAND flash device contains different operations and/or implementations, it should be implemented separately. @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2014 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f4xx_hal.h" /** @addtogroup STM32F4xx_HAL_Driver * @{ */ /** @defgroup NAND * @brief NAND driver modules * @{ */ #ifdef HAL_NAND_MODULE_ENABLED #if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) || defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /** @defgroup NAND_Private_Functions * @{ */ /** @defgroup NAND_Group1 Initialization and de-initialization functions * @brief Initialization and Configuration functions * @verbatim ============================================================================== ##### NAND Initialization and de-initialization functions ##### ============================================================================== [..] This section provides functions allowing to initialize/de-initialize the NAND memory @endverbatim * @{ */ /** * @brief Perform NAND memory Initialization sequence * @param hnand: pointer to NAND handle * @param ComSpace_Timing: pointer to Common space timing structure * @param AttSpace_Timing: pointer to Attribute space timing structure * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Init(NAND_HandleTypeDef *hnand, FMC_NAND_PCC_TimingTypeDef *ComSpace_Timing, FMC_NAND_PCC_TimingTypeDef *AttSpace_Timing) { /* Check the NAND handle state */ if(hnand == NULL) { return HAL_ERROR; } if(hnand->State == HAL_NAND_STATE_RESET) { /* Initialize the low level hardware (MSP) */ HAL_NAND_MspInit(hnand); } /* Initialize NAND control Interface */ FMC_NAND_Init(hnand->Instance, &(hnand->Init)); /* Initialize NAND common space timing Interface */ FMC_NAND_CommonSpace_Timing_Init(hnand->Instance, ComSpace_Timing, hnand->Init.NandBank); /* Initialize NAND attribute space timing Interface */ FMC_NAND_AttributeSpace_Timing_Init(hnand->Instance, AttSpace_Timing, hnand->Init.NandBank); /* Enable the NAND device */ __FMC_NAND_ENABLE(hnand->Instance, hnand->Init.NandBank); /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; return HAL_OK; } /** * @brief Perform NAND memory De-Initialization sequence * @param hnand: pointer to NAND handle * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_DeInit(NAND_HandleTypeDef *hnand) { /* Initialize the low level hardware (MSP) */ HAL_NAND_MspDeInit(hnand); /* Configure the NAND registers with their reset values */ FMC_NAND_DeInit(hnand->Instance, hnand->Init.NandBank); /* Reset the NAND controller state */ hnand->State = HAL_NAND_STATE_RESET; /* Release Lock */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief NAND MSP Init * @param hnand: pointer to NAND handle * @retval None */ __weak void HAL_NAND_MspInit(NAND_HandleTypeDef *hnand) { /* NOTE : This function Should not be modified, when the callback is needed, the HAL_NAND_MspInit could be implemented in the user file */ } /** * @brief NAND MSP DeInit * @param hnand: pointer to NAND handle * @retval None */ __weak void HAL_NAND_MspDeInit(NAND_HandleTypeDef *hnand) { /* NOTE : This function Should not be modified, when the callback is needed, the HAL_NAND_MspDeInit could be implemented in the user file */ } /** * @brief This function handles NAND device interrupt request. * @param hnand: pointer to NAND handle * @retval HAL status */ void HAL_NAND_IRQHandler(NAND_HandleTypeDef *hnand) { /* Check NAND interrupt Rising edge flag */ if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_RISING_EDGE)) { /* NAND interrupt callback*/ HAL_NAND_ITCallback(hnand); /* Clear NAND interrupt Rising edge pending bit */ __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_RISING_EDGE); } /* Check NAND interrupt Level flag */ if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_LEVEL)) { /* NAND interrupt callback*/ HAL_NAND_ITCallback(hnand); /* Clear NAND interrupt Level pending bit */ __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_LEVEL); } /* Check NAND interrupt Falling edge flag */ if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FALLING_EDGE)) { /* NAND interrupt callback*/ HAL_NAND_ITCallback(hnand); /* Clear NAND interrupt Falling edge pending bit */ __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FALLING_EDGE); } /* Check NAND interrupt FIFO empty flag */ if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FEMPT)) { /* NAND interrupt callback*/ HAL_NAND_ITCallback(hnand); /* Clear NAND interrupt FIFO empty pending bit */ __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FEMPT); } } /** * @brief NAND interrupt feature callback * @param hnand: pointer to NAND handle * @retval None */ __weak void HAL_NAND_ITCallback(NAND_HandleTypeDef *hnand) { /* NOTE : This function Should not be modified, when the callback is needed, the HAL_NAND_ITCallback could be implemented in the user file */ } /** * @} */ /** @defgroup NAND_Group2 Input and Output functions * @brief Input Output and memory control functions * @verbatim ============================================================================== ##### NAND Input and Output functions ##### ============================================================================== [..] This section provides functions allowing to use and control the NAND memory @endverbatim * @{ */ /** * @brief Read the NAND memory electronic signature * @param hnand: pointer to NAND handle * @param pNAND_ID: NAND ID structure * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Read_ID(NAND_HandleTypeDef *hnand, NAND_IDTypeDef *pNAND_ID) { __IO uint32_t data = 0; uint32_t deviceAddress = 0; /* Process Locked */ __HAL_LOCK(hnand); /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { deviceAddress = NAND_DEVICE1; } else { deviceAddress = NAND_DEVICE2; } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_BUSY; /* Send Read ID command sequence */ *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = 0x90; *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00; /* Read the electronic signature from NAND flash */ data = *(__IO uint32_t *)deviceAddress; /* Return the data read */ pNAND_ID->Maker_Id = ADDR_1st_CYCLE(data); pNAND_ID->Device_Id = ADDR_2nd_CYCLE(data); pNAND_ID->Third_Id = ADDR_3rd_CYCLE(data); pNAND_ID->Fourth_Id = ADDR_4th_CYCLE(data); /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief NAND memory reset * @param hnand: pointer to NAND handle * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Reset(NAND_HandleTypeDef *hnand) { uint32_t deviceAddress = 0; /* Process Locked */ __HAL_LOCK(hnand); /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { deviceAddress = NAND_DEVICE1; } else { deviceAddress = NAND_DEVICE2; } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_BUSY; /* Send NAND reset command */ *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = 0xFF; /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief Read Page(s) from NAND memory block * @param hnand: pointer to NAND handle * @param pAddress : pointer to NAND address structure * @param pBuffer : pointer to destination read buffer * @param NumPageToRead : number of pages to read from block * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Read_Page(NAND_HandleTypeDef *hnand, NAND_AddressTypedef *pAddress, uint8_t *pBuffer, uint32_t NumPageToRead) { __IO uint32_t index = 0; uint32_t deviceAddress = 0, size = 0, numPagesRead = 0, nandAddress = 0; /* Process Locked */ __HAL_LOCK(hnand); /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { deviceAddress = NAND_DEVICE1; } else { deviceAddress = NAND_DEVICE2; } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_BUSY; /* NAND raw address calculation */ nandAddress = ARRAY_ADDRESS(pAddress, hnand); /* Page(s) read loop */ while((NumPageToRead != 0) && (nandAddress < (hnand->Info.BlockSize) * (hnand->Info.PageSize))) { /* update the buffer size */ size = (hnand->Info.PageSize) + ((hnand->Info.PageSize) * numPagesRead); /* Send read page command sequence */ *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_A; *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1st_CYCLE(nandAddress); *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2nd_CYCLE(nandAddress); *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3rd_CYCLE(nandAddress); /* for 512 and 1 GB devices, 4th cycle is required */ if(hnand->Info.BlockNbr >= 1024) { *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4th_CYCLE(nandAddress); } *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = 0x30; /* Get Data into Buffer */ for(; index < size; index++) { *(uint8_t *)pBuffer++ = *(uint8_t *)deviceAddress; } /* Increment read pages number */ numPagesRead++; /* Decrement pages to read */ NumPageToRead--; /* Increment the NAND address */ nandAddress = (uint32_t)(nandAddress + (hnand->Info.PageSize * 8)); } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief Write Page(s) to NAND memory block * @param hnand: pointer to NAND handle * @param pAddress : pointer to NAND address structure * @param pBuffer : pointer to source buffer to write * @param NumPageToWrite : number of pages to write to block * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Write_Page(NAND_HandleTypeDef *hnand, NAND_AddressTypedef *pAddress, uint8_t *pBuffer, uint32_t NumPageToWrite) { __IO uint32_t index = 0; uint32_t timeout = 0; uint32_t deviceAddress = 0, size = 0 , numPagesWritten = 0, nandAddress = 0; /* Process Locked */ __HAL_LOCK(hnand); /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { deviceAddress = NAND_DEVICE1; } else { deviceAddress = NAND_DEVICE2; } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_BUSY; /* NAND raw address calculation */ nandAddress = ARRAY_ADDRESS(pAddress, hnand); /* Page(s) write loop */ while((NumPageToWrite != 0) && (nandAddress < (hnand->Info.BlockSize) * (hnand->Info.PageSize))) { /* update the buffer size */ size = (hnand->Info.PageSize) + ((hnand->Info.PageSize) * numPagesWritten); /* Send write page command sequence */ *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_A; *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = 0x80; *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1st_CYCLE(nandAddress); *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2nd_CYCLE(nandAddress); *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3rd_CYCLE(nandAddress); /* for 512 and 1 GB devices, 4th cycle is required */ if(hnand->Info.BlockNbr >= 1024) { *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4th_CYCLE(nandAddress); } /* Write data to memory */ for(; index < size; index++) { *(__IO uint8_t *)deviceAddress = *(uint8_t *)pBuffer++; } *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = 0x10; /* Read status until NAND is ready */ while(HAL_NAND_Read_Status(hnand) != NAND_READY) { /* Check for timeout value */ timeout = HAL_GetTick() + NAND_WRITE_TIMEOUT; if(HAL_GetTick() >= timeout) { return HAL_TIMEOUT; } } /* Increment written pages number */ numPagesWritten++; /* Decrement pages to write */ NumPageToWrite--; /* Increment the NAND address */ nandAddress = (uint32_t)(nandAddress + (hnand->Info.PageSize * 8)); } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief Read Spare area(s) from NAND memory * @param hnand: pointer to NAND handle * @param pAddress : pointer to NAND address structure * @param pBuffer: pointer to source buffer to write * @param NumSpareAreaToRead: Number of spare area to read * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Read_SpareArea(NAND_HandleTypeDef *hnand, NAND_AddressTypedef *pAddress, uint8_t *pBuffer, uint32_t NumSpareAreaToRead) { __IO uint32_t index = 0; uint32_t deviceAddress = 0, size = 0, numSpareAreaRead = 0, nandAddress = 0; /* Process Locked */ __HAL_LOCK(hnand); /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { deviceAddress = NAND_DEVICE1; } else { deviceAddress = NAND_DEVICE2; } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_BUSY; /* NAND raw address calculation */ nandAddress = ARRAY_ADDRESS(pAddress, hnand); /* Spare area(s) read loop */ while((NumSpareAreaToRead != 0) && (nandAddress < (hnand->Info.BlockSize) * (hnand->Info.SpareAreaSize))) { /* update the buffer size */ size = (hnand->Info.PageSize) + ((hnand->Info.PageSize) * numSpareAreaRead); /* Send read spare area command sequence */ *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_C; *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1st_CYCLE(nandAddress); *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2nd_CYCLE(nandAddress); *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3rd_CYCLE(nandAddress); /* for 512 and 1 GB devices, 4th cycle is required */ if(hnand->Info.BlockNbr >= 1024) { *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4th_CYCLE(nandAddress); } *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = 0x30; /* Get Data into Buffer */ for ( ;index < size; index++) { *(uint8_t *)pBuffer++ = *(uint8_t *)deviceAddress; } /* Increment read spare areas number */ numSpareAreaRead++; /* Decrement spare areas to read */ NumSpareAreaToRead--; /* Increment the NAND address */ nandAddress = (uint32_t)(nandAddress + (hnand->Info.SpareAreaSize)); } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief Write Spare area(s) to NAND memory * @param hnand: pointer to NAND handle * @param pAddress : pointer to NAND address structure * @param pBuffer : pointer to source buffer to write * @param NumSpareAreaTowrite : number of spare areas to write to block * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Write_SpareArea(NAND_HandleTypeDef *hnand, NAND_AddressTypedef *pAddress, uint8_t *pBuffer, uint32_t NumSpareAreaTowrite) { __IO uint32_t index = 0; uint32_t timeout = 0; uint32_t deviceAddress = 0, size = 0, numSpareAreaWritten = 0, nandAddress = 0; /* Process Locked */ __HAL_LOCK(hnand); /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { deviceAddress = NAND_DEVICE1; } else { deviceAddress = NAND_DEVICE2; } /* Update the FMC_NAND controller state */ hnand->State = HAL_NAND_STATE_BUSY; /* NAND raw address calculation */ nandAddress = ARRAY_ADDRESS(pAddress, hnand); /* Spare area(s) write loop */ while((NumSpareAreaTowrite != 0) && (nandAddress < (hnand->Info.BlockSize) * (hnand->Info.SpareAreaSize))) { /* update the buffer size */ size = (hnand->Info.PageSize) + ((hnand->Info.PageSize) * numSpareAreaWritten); /* Send write Spare area command sequence */ *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = NAND_CMD_AREA_C; *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = 0x80; *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = 0x00; *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_1st_CYCLE(nandAddress); *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_2nd_CYCLE(nandAddress); *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_3rd_CYCLE(nandAddress); /* for 512 and 1 GB devices, 4th cycle is required */ if(hnand->Info.BlockNbr >= 1024) { *(__IO uint8_t *)((uint32_t)(deviceAddress | ADDR_AREA)) = ADDR_4th_CYCLE(nandAddress); } /* Write data to memory */ for(; index < size; index++) { *(__IO uint8_t *)deviceAddress = *(uint8_t *)pBuffer++; } *(__IO uint8_t *)((uint32_t)(deviceAddress | CMD_AREA)) = 0x10; /* Read status until NAND is ready */ while(HAL_NAND_Read_Status(hnand) != NAND_READY) { /* Check for timeout value */ timeout = HAL_GetTick() + NAND_WRITE_TIMEOUT; if(HAL_GetTick() >= timeout) { return HAL_TIMEOUT; } } /* Increment written spare areas number */ numSpareAreaWritten++; /* Decrement spare areas to write */ NumSpareAreaTowrite--; /* Increment the NAND address */ nandAddress = (uint32_t)(nandAddress + (hnand->Info.PageSize)); } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief NAND memory Block erase * @param hnand: pointer to NAND handle * @param pAddress : pointer to NAND address structure * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_Erase_Block(NAND_HandleTypeDef *hnand, NAND_AddressTypedef *pAddress) { uint32_t DeviceAddress = 0; /* Process Locked */ __HAL_LOCK(hnand); /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { DeviceAddress = NAND_DEVICE1; } else { DeviceAddress = NAND_DEVICE2; } /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_BUSY; /* Send Erase block command sequence */ *(__IO uint8_t *)((uint32_t)(DeviceAddress | CMD_AREA)) = 0x60; *(__IO uint8_t *)((uint32_t)(DeviceAddress | ADDR_AREA)) = ADDR_1st_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); *(__IO uint8_t *)((uint32_t)(DeviceAddress | ADDR_AREA)) = ADDR_2nd_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); *(__IO uint8_t *)((uint32_t)(DeviceAddress | ADDR_AREA)) = ADDR_3rd_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); /* for 512 and 1 GB devices, 4th cycle is required */ if(hnand->Info.BlockNbr >= 1024) { *(__IO uint8_t *)((uint32_t)(DeviceAddress | ADDR_AREA)) = ADDR_4th_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); } *(__IO uint8_t *)((uint32_t)(DeviceAddress | CMD_AREA)) = 0xD0; /* Update the NAND controller state */ hnand->State = HAL_NAND_STATE_READY; /* Process unlocked */ __HAL_UNLOCK(hnand); return HAL_OK; } /** * @brief NAND memory read status * @param hnand: pointer to NAND handle * @retval NAND status */ uint32_t HAL_NAND_Read_Status(NAND_HandleTypeDef *hnand) { uint32_t data = 0; uint32_t DeviceAddress = 0; /* Identify the device address */ if(hnand->Init.NandBank == FMC_NAND_BANK2) { DeviceAddress = NAND_DEVICE1; } else { DeviceAddress = NAND_DEVICE2; } /* Send Read status operation command */ *(__IO uint8_t *)((uint32_t)(DeviceAddress | CMD_AREA)) = 0x70; /* Read status register data */ data = *(__IO uint8_t *)DeviceAddress; /* Return the status */ if((data & NAND_ERROR) == NAND_ERROR) { return NAND_ERROR; } else if((data & NAND_READY) == NAND_READY) { return NAND_READY; } return NAND_BUSY; } /** * @brief Increment the NAND memory address * @param hnand: pointer to NAND handle * @param pAddress: pointer to NAND adress structure * @retval The new status of the increment address operation. It can be: * - NAND_VALID_ADDRESS: When the new address is valid address * - NAND_INVALID_ADDRESS: When the new address is invalid address */ uint32_t HAL_NAND_Address_Inc(NAND_HandleTypeDef *hnand, NAND_AddressTypedef *pAddress) { uint32_t status = NAND_VALID_ADDRESS; /* Increment page address */ pAddress->Page++; /* Check NAND address is valid */ if(pAddress->Page == hnand->Info.BlockSize) { pAddress->Page = 0; pAddress->Block++; if(pAddress->Block == hnand->Info.ZoneSize) { pAddress->Block = 0; pAddress->Zone++; if(pAddress->Zone == (hnand->Info.ZoneSize/ hnand->Info.BlockNbr)) { status = NAND_INVALID_ADDRESS; } } } return (status); } /** * @} */ /** @defgroup NAND_Group3 Control functions * @brief management functions * @verbatim ============================================================================== ##### NAND Control functions ##### ============================================================================== [..] This subsection provides a set of functions allowing to control dynamically the NAND interface. @endverbatim * @{ */ /** * @brief Enables dynamically NAND ECC feature. * @param hnand: pointer to NAND handle * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_ECC_Enable(NAND_HandleTypeDef *hnand) { /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Update the NAND state */ hnand->State = HAL_NAND_STATE_BUSY; /* Enable ECC feature */ FMC_NAND_ECC_Enable(hnand->Instance, hnand->Init.NandBank); /* Update the NAND state */ hnand->State = HAL_NAND_STATE_READY; return HAL_OK; } /** * @brief Disables dynamically FMC_NAND ECC feature. * @param hnand: pointer to NAND handle * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_ECC_Disable(NAND_HandleTypeDef *hnand) { /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Update the NAND state */ hnand->State = HAL_NAND_STATE_BUSY; /* Disable ECC feature */ FMC_NAND_ECC_Disable(hnand->Instance, hnand->Init.NandBank); /* Update the NAND state */ hnand->State = HAL_NAND_STATE_READY; return HAL_OK; } /** * @brief Disables dynamically NAND ECC feature. * @param hnand: pointer to NAND handle * @param ECCval: pointer to ECC value * @param Timeout: maximum timeout to wait * @retval HAL status */ HAL_StatusTypeDef HAL_NAND_GetECC(NAND_HandleTypeDef *hnand, uint32_t *ECCval, uint32_t Timeout) { HAL_StatusTypeDef status = HAL_OK; /* Check the NAND controller state */ if(hnand->State == HAL_NAND_STATE_BUSY) { return HAL_BUSY; } /* Update the NAND state */ hnand->State = HAL_NAND_STATE_BUSY; /* Get NAND ECC value */ status = FMC_NAND_GetECC(hnand->Instance, ECCval, hnand->Init.NandBank, Timeout); /* Update the NAND state */ hnand->State = HAL_NAND_STATE_READY; return status; } /** * @} */ /** @defgroup NAND_Group4 State functions * @brief Peripheral State functions * @verbatim ============================================================================== ##### NAND State functions ##### ============================================================================== [..] This subsection permit to get in run-time the status of the NAND controller and the data flow. @endverbatim * @{ */ /** * @brief return the NAND state * @param hnand: pointer to NAND handle * @retval HAL state */ HAL_NAND_StateTypeDef HAL_NAND_GetState(NAND_HandleTypeDef *hnand) { return hnand->State; } /** * @} */ /** * @} */ #endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx || STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */ #endif /* HAL_NAND_MODULE_ENABLED */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/