ref: 52a1caf80302fcaa86466785cd036bdfab2d2298
dir: /demos/stm32f429_disco/stm/stm32f4_spl/src/stm32f4xx_fmc.c/
/** ****************************************************************************** * @file stm32f4xx_fmc.c * @author MCD Application Team * @version V1.3.0 * @date 08-November-2013 * @brief This file provides firmware functions to manage the following * functionalities of the FMC peripheral: * + Interface with SRAM, PSRAM, NOR and OneNAND memories * + Interface with NAND memories * + Interface with 16-bit PC Card compatible memories * + Interface with SDRAM memories * + Interrupts and flags management * ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT 2013 STMicroelectronics</center></h2> * * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License"); * You may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.st.com/software_license_agreement_liberty_v2 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f4xx_fmc.h" #include "stm32f4xx_rcc.h" /** @addtogroup STM32F4xx_StdPeriph_Driver * @{ */ /** @defgroup FMC * @brief FMC driver modules * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* --------------------- FMC registers bit mask ---------------------------- */ /* FMC BCRx Mask */ #define BCR_MBKEN_SET ((uint32_t)0x00000001) #define BCR_MBKEN_RESET ((uint32_t)0x000FFFFE) #define BCR_FACCEN_SET ((uint32_t)0x00000040) /* FMC PCRx Mask */ #define PCR_PBKEN_SET ((uint32_t)0x00000004) #define PCR_PBKEN_RESET ((uint32_t)0x000FFFFB) #define PCR_ECCEN_SET ((uint32_t)0x00000040) #define PCR_ECCEN_RESET ((uint32_t)0x000FFFBF) #define PCR_MEMORYTYPE_NAND ((uint32_t)0x00000008) /* FMC SDCRx write protection Mask*/ #define SDCR_WriteProtection_RESET ((uint32_t)0x00007DFF) /* FMC SDCMR Mask*/ #define SDCMR_CTB1_RESET ((uint32_t)0x003FFFEF) #define SDCMR_CTB2_RESET ((uint32_t)0x003FFFF7) #define SDCMR_CTB1_2_RESET ((uint32_t)0x003FFFE7) /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /** @defgroup FMC_Private_Functions * @{ */ /** @defgroup FMC_Group1 NOR/SRAM Controller functions * @brief NOR/SRAM Controller functions * @verbatim =============================================================================== ##### NOR and SRAM Controller functions ##### =============================================================================== [..] The following sequence should be followed to configure the FMC to interface with SRAM, PSRAM, NOR or OneNAND memory connected to the NOR/SRAM Bank: (#) Enable the clock for the FMC and associated GPIOs using the following functions: RCC_AHB3PeriphClockCmd(RCC_AHB3Periph_FMC, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE); (#) FMC pins configuration (++) Connect the involved FMC pins to AF12 using the following function GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_FMC); (++) Configure these FMC pins in alternate function mode by calling the function GPIO_Init(); (#) Declare a FMC_NORSRAMInitTypeDef structure, for example: FMC_NORSRAMInitTypeDef FMC_NORSRAMInitStructure; and fill the FMC_NORSRAMInitStructure variable with the allowed values of the structure member. (#) Initialize the NOR/SRAM Controller by calling the function FMC_NORSRAMInit(&FMC_NORSRAMInitStructure); (#) Then enable the NOR/SRAM Bank, for example: FMC_NORSRAMCmd(FMC_Bank1_NORSRAM2, ENABLE); (#) At this stage you can read/write from/to the memory connected to the NOR/SRAM Bank. @endverbatim * @{ */ /** * @brief De-initializes the FMC NOR/SRAM Banks registers to their default * reset values. * @param FMC_Bank: specifies the FMC Bank to be used * This parameter can be one of the following values: * @arg FMC_Bank1_NORSRAM1: FMC Bank1 NOR/SRAM1 * @arg FMC_Bank1_NORSRAM2: FMC Bank1 NOR/SRAM2 * @arg FMC_Bank1_NORSRAM3: FMC Bank1 NOR/SRAM3 * @arg FMC_Bank1_NORSRAM4: FMC Bank1 NOR/SRAM4 * @retval None */ void FMC_NORSRAMDeInit(uint32_t FMC_Bank) { /* Check the parameter */ assert_param(IS_FMC_NORSRAM_BANK(FMC_Bank)); /* FMC_Bank1_NORSRAM1 */ if(FMC_Bank == FMC_Bank1_NORSRAM1) { FMC_Bank1->BTCR[FMC_Bank] = 0x000030DB; } /* FMC_Bank1_NORSRAM2, FMC_Bank1_NORSRAM3 or FMC_Bank1_NORSRAM4 */ else { FMC_Bank1->BTCR[FMC_Bank] = 0x000030D2; } FMC_Bank1->BTCR[FMC_Bank + 1] = 0x0FFFFFFF; FMC_Bank1E->BWTR[FMC_Bank] = 0x0FFFFFFF; } /** * @brief Initializes the FMC NOR/SRAM Banks according to the specified * parameters in the FMC_NORSRAMInitStruct. * @param FMC_NORSRAMInitStruct : pointer to a FMC_NORSRAMInitTypeDef structure * that contains the configuration information for the FMC NOR/SRAM * specified Banks. * @retval None */ void FMC_NORSRAMInit(FMC_NORSRAMInitTypeDef* FMC_NORSRAMInitStruct) { uint32_t tmpr = 0; /* Check the parameters */ assert_param(IS_FMC_NORSRAM_BANK(FMC_NORSRAMInitStruct->FMC_Bank)); assert_param(IS_FMC_MUX(FMC_NORSRAMInitStruct->FMC_DataAddressMux)); assert_param(IS_FMC_MEMORY(FMC_NORSRAMInitStruct->FMC_MemoryType)); assert_param(IS_FMC_NORSRAM_MEMORY_WIDTH(FMC_NORSRAMInitStruct->FMC_MemoryDataWidth)); assert_param(IS_FMC_BURSTMODE(FMC_NORSRAMInitStruct->FMC_BurstAccessMode)); assert_param(IS_FMC_WAIT_POLARITY(FMC_NORSRAMInitStruct->FMC_WaitSignalPolarity)); assert_param(IS_FMC_WRAP_MODE(FMC_NORSRAMInitStruct->FMC_WrapMode)); assert_param(IS_FMC_WAIT_SIGNAL_ACTIVE(FMC_NORSRAMInitStruct->FMC_WaitSignalActive)); assert_param(IS_FMC_WRITE_OPERATION(FMC_NORSRAMInitStruct->FMC_WriteOperation)); assert_param(IS_FMC_WAITE_SIGNAL(FMC_NORSRAMInitStruct->FMC_WaitSignal)); assert_param(IS_FMC_EXTENDED_MODE(FMC_NORSRAMInitStruct->FMC_ExtendedMode)); assert_param(IS_FMC_ASYNWAIT(FMC_NORSRAMInitStruct->FMC_AsynchronousWait)); assert_param(IS_FMC_WRITE_BURST(FMC_NORSRAMInitStruct->FMC_WriteBurst)); assert_param(IS_FMC_CONTINOUS_CLOCK(FMC_NORSRAMInitStruct->FMC_ContinousClock)); assert_param(IS_FMC_ADDRESS_SETUP_TIME(FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_AddressSetupTime)); assert_param(IS_FMC_ADDRESS_HOLD_TIME(FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_AddressHoldTime)); assert_param(IS_FMC_DATASETUP_TIME(FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_DataSetupTime)); assert_param(IS_FMC_TURNAROUND_TIME(FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_BusTurnAroundDuration)); assert_param(IS_FMC_CLK_DIV(FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_CLKDivision)); assert_param(IS_FMC_DATA_LATENCY(FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_DataLatency)); assert_param(IS_FMC_ACCESS_MODE(FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_AccessMode)); /* NOR/SRAM Bank control register configuration */ FMC_Bank1->BTCR[FMC_NORSRAMInitStruct->FMC_Bank] = (uint32_t)FMC_NORSRAMInitStruct->FMC_DataAddressMux | FMC_NORSRAMInitStruct->FMC_MemoryType | FMC_NORSRAMInitStruct->FMC_MemoryDataWidth | FMC_NORSRAMInitStruct->FMC_BurstAccessMode | FMC_NORSRAMInitStruct->FMC_WaitSignalPolarity | FMC_NORSRAMInitStruct->FMC_WrapMode | FMC_NORSRAMInitStruct->FMC_WaitSignalActive | FMC_NORSRAMInitStruct->FMC_WriteOperation | FMC_NORSRAMInitStruct->FMC_WaitSignal | FMC_NORSRAMInitStruct->FMC_ExtendedMode | FMC_NORSRAMInitStruct->FMC_AsynchronousWait | FMC_NORSRAMInitStruct->FMC_WriteBurst | FMC_NORSRAMInitStruct->FMC_ContinousClock; if(FMC_NORSRAMInitStruct->FMC_MemoryType == FMC_MemoryType_NOR) { FMC_Bank1->BTCR[FMC_NORSRAMInitStruct->FMC_Bank] |= (uint32_t)BCR_FACCEN_SET; } /* Configure Continuous clock feature when bank2..4 is used */ if((FMC_NORSRAMInitStruct->FMC_ContinousClock == FMC_CClock_SyncAsync) && (FMC_NORSRAMInitStruct->FMC_Bank != FMC_Bank1_NORSRAM1)) { tmpr = (uint32_t)((FMC_Bank1->BTCR[FMC_Bank1_NORSRAM1+1]) & ~(((uint32_t)0x0F) << 20)); FMC_Bank1->BTCR[FMC_Bank1_NORSRAM1] |= FMC_NORSRAMInitStruct->FMC_ContinousClock; FMC_Bank1->BTCR[FMC_Bank1_NORSRAM1] |= FMC_BurstAccessMode_Enable; FMC_Bank1->BTCR[FMC_Bank1_NORSRAM1+1] = (uint32_t)(tmpr | (((FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_CLKDivision)-1) << 20)); } /* NOR/SRAM Bank timing register configuration */ FMC_Bank1->BTCR[FMC_NORSRAMInitStruct->FMC_Bank+1] = (uint32_t)FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_AddressSetupTime | (FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_AddressHoldTime << 4) | (FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_DataSetupTime << 8) | (FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_BusTurnAroundDuration << 16) | ((FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_CLKDivision) << 20) | ((FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_DataLatency) << 24) | FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_AccessMode; /* NOR/SRAM Bank timing register for write configuration, if extended mode is used */ if(FMC_NORSRAMInitStruct->FMC_ExtendedMode == FMC_ExtendedMode_Enable) { assert_param(IS_FMC_ADDRESS_SETUP_TIME(FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_AddressSetupTime)); assert_param(IS_FMC_ADDRESS_HOLD_TIME(FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_AddressHoldTime)); assert_param(IS_FMC_DATASETUP_TIME(FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_DataSetupTime)); assert_param(IS_FMC_CLK_DIV(FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_CLKDivision)); assert_param(IS_FMC_DATA_LATENCY(FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_DataLatency)); assert_param(IS_FMC_ACCESS_MODE(FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_AccessMode)); FMC_Bank1E->BWTR[FMC_NORSRAMInitStruct->FMC_Bank] = (uint32_t)FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_AddressSetupTime | (FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_AddressHoldTime << 4 )| (FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_DataSetupTime << 8) | ((FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_CLKDivision) << 20) | ((FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_DataLatency) << 24) | FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_AccessMode; } else { FMC_Bank1E->BWTR[FMC_NORSRAMInitStruct->FMC_Bank] = 0x0FFFFFFF; } } /** * @brief Fills each FMC_NORSRAMInitStruct member with its default value. * @param FMC_NORSRAMInitStruct: pointer to a FMC_NORSRAMInitTypeDef structure * which will be initialized. * @retval None */ void FMC_NORSRAMStructInit(FMC_NORSRAMInitTypeDef* FMC_NORSRAMInitStruct) { /* Reset NOR/SRAM Init structure parameters values */ FMC_NORSRAMInitStruct->FMC_Bank = FMC_Bank1_NORSRAM1; FMC_NORSRAMInitStruct->FMC_DataAddressMux = FMC_DataAddressMux_Enable; FMC_NORSRAMInitStruct->FMC_MemoryType = FMC_MemoryType_SRAM; FMC_NORSRAMInitStruct->FMC_MemoryDataWidth = FMC_NORSRAM_MemoryDataWidth_16b; FMC_NORSRAMInitStruct->FMC_BurstAccessMode = FMC_BurstAccessMode_Disable; FMC_NORSRAMInitStruct->FMC_AsynchronousWait = FMC_AsynchronousWait_Disable; FMC_NORSRAMInitStruct->FMC_WaitSignalPolarity = FMC_WaitSignalPolarity_Low; FMC_NORSRAMInitStruct->FMC_WrapMode = FMC_WrapMode_Disable; FMC_NORSRAMInitStruct->FMC_WaitSignalActive = FMC_WaitSignalActive_BeforeWaitState; FMC_NORSRAMInitStruct->FMC_WriteOperation = FMC_WriteOperation_Enable; FMC_NORSRAMInitStruct->FMC_WaitSignal = FMC_WaitSignal_Enable; FMC_NORSRAMInitStruct->FMC_ExtendedMode = FMC_ExtendedMode_Disable; FMC_NORSRAMInitStruct->FMC_WriteBurst = FMC_WriteBurst_Disable; FMC_NORSRAMInitStruct->FMC_ContinousClock = FMC_CClock_SyncOnly; FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_AddressSetupTime = 15; FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_AddressHoldTime = 15; FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_DataSetupTime = 255; FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_BusTurnAroundDuration = 15; FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_CLKDivision = 15; FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_DataLatency = 15; FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_AccessMode = FMC_AccessMode_A; FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_AddressSetupTime = 15; FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_AddressHoldTime = 15; FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_DataSetupTime = 255; FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_BusTurnAroundDuration = 15; FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_CLKDivision = 15; FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_DataLatency = 15; FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_AccessMode = FMC_AccessMode_A; } /** * @brief Enables or disables the specified NOR/SRAM Memory Bank. * @param FMC_Bank: specifies the FMC Bank to be used * This parameter can be one of the following values: * @arg FMC_Bank1_NORSRAM1: FMC Bank1 NOR/SRAM1 * @arg FMC_Bank1_NORSRAM2: FMC Bank1 NOR/SRAM2 * @arg FMC_Bank1_NORSRAM3: FMC Bank1 NOR/SRAM3 * @arg FMC_Bank1_NORSRAM4: FMC Bank1 NOR/SRAM4 * @param NewState: new state of the FMC_Bank. This parameter can be: ENABLE or DISABLE. * @retval None */ void FMC_NORSRAMCmd(uint32_t FMC_Bank, FunctionalState NewState) { assert_param(IS_FMC_NORSRAM_BANK(FMC_Bank)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the selected NOR/SRAM Bank by setting the PBKEN bit in the BCRx register */ FMC_Bank1->BTCR[FMC_Bank] |= BCR_MBKEN_SET; } else { /* Disable the selected NOR/SRAM Bank by clearing the PBKEN bit in the BCRx register */ FMC_Bank1->BTCR[FMC_Bank] &= BCR_MBKEN_RESET; } } /** * @} */ /** @defgroup FMC_Group2 NAND Controller functions * @brief NAND Controller functions * @verbatim =============================================================================== ##### NAND Controller functions ##### =============================================================================== [..] The following sequence should be followed to configure the FMC to interface with 8-bit or 16-bit NAND memory connected to the NAND Bank: (#) Enable the clock for the FMC and associated GPIOs using the following functions: (++) RCC_AHB3PeriphClockCmd(RCC_AHB3Periph_FMC, ENABLE); (++) RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE); (#) FMC pins configuration (++) Connect the involved FMC pins to AF12 using the following function GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_FMC); (++) Configure these FMC pins in alternate function mode by calling the function GPIO_Init(); (#) Declare a FMC_NANDInitTypeDef structure, for example: FMC_NANDInitTypeDef FMC_NANDInitStructure; and fill the FMC_NANDInitStructure variable with the allowed values of the structure member. (#) Initialize the NAND Controller by calling the function FMC_NANDInit(&FMC_NANDInitStructure); (#) Then enable the NAND Bank, for example: FMC_NANDCmd(FMC_Bank3_NAND, ENABLE); (#) At this stage you can read/write from/to the memory connected to the NAND Bank. [..] (@) To enable the Error Correction Code (ECC), you have to use the function FMC_NANDECCCmd(FMC_Bank3_NAND, ENABLE); [..] (@) and to get the current ECC value you have to use the function ECCval = FMC_GetECC(FMC_Bank3_NAND); @endverbatim * @{ */ /** * @brief De-initializes the FMC NAND Banks registers to their default reset values. * @param FMC_Bank: specifies the FMC Bank to be used * This parameter can be one of the following values: * @arg FMC_Bank2_NAND: FMC Bank2 NAND * @arg FMC_Bank3_NAND: FMC Bank3 NAND * @retval None */ void FMC_NANDDeInit(uint32_t FMC_Bank) { /* Check the parameter */ assert_param(IS_FMC_NAND_BANK(FMC_Bank)); if(FMC_Bank == FMC_Bank2_NAND) { /* Set the FMC_Bank2 registers to their reset values */ FMC_Bank2->PCR2 = 0x00000018; FMC_Bank2->SR2 = 0x00000040; FMC_Bank2->PMEM2 = 0xFCFCFCFC; FMC_Bank2->PATT2 = 0xFCFCFCFC; } /* FMC_Bank3_NAND */ else { /* Set the FMC_Bank3 registers to their reset values */ FMC_Bank3->PCR3 = 0x00000018; FMC_Bank3->SR3 = 0x00000040; FMC_Bank3->PMEM3 = 0xFCFCFCFC; FMC_Bank3->PATT3 = 0xFCFCFCFC; } } /** * @brief Initializes the FMC NAND Banks according to the specified parameters * in the FMC_NANDInitStruct. * @param FMC_NANDInitStruct : pointer to a FMC_NANDInitTypeDef structure that * contains the configuration information for the FMC NAND specified Banks. * @retval None */ void FMC_NANDInit(FMC_NANDInitTypeDef* FMC_NANDInitStruct) { uint32_t tmppcr = 0x00000000, tmppmem = 0x00000000, tmppatt = 0x00000000; /* Check the parameters */ assert_param(IS_FMC_NAND_BANK(FMC_NANDInitStruct->FMC_Bank)); assert_param(IS_FMC_WAIT_FEATURE(FMC_NANDInitStruct->FMC_Waitfeature)); assert_param(IS_FMC_NAND_MEMORY_WIDTH(FMC_NANDInitStruct->FMC_MemoryDataWidth)); assert_param(IS_FMC_ECC_STATE(FMC_NANDInitStruct->FMC_ECC)); assert_param(IS_FMC_ECCPAGE_SIZE(FMC_NANDInitStruct->FMC_ECCPageSize)); assert_param(IS_FMC_TCLR_TIME(FMC_NANDInitStruct->FMC_TCLRSetupTime)); assert_param(IS_FMC_TAR_TIME(FMC_NANDInitStruct->FMC_TARSetupTime)); assert_param(IS_FMC_SETUP_TIME(FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_SetupTime)); assert_param(IS_FMC_WAIT_TIME(FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_WaitSetupTime)); assert_param(IS_FMC_HOLD_TIME(FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HoldSetupTime)); assert_param(IS_FMC_HIZ_TIME(FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HiZSetupTime)); assert_param(IS_FMC_SETUP_TIME(FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_SetupTime)); assert_param(IS_FMC_WAIT_TIME(FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_WaitSetupTime)); assert_param(IS_FMC_HOLD_TIME(FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HoldSetupTime)); assert_param(IS_FMC_HIZ_TIME(FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HiZSetupTime)); /* Set the tmppcr value according to FMC_NANDInitStruct parameters */ tmppcr = (uint32_t)FMC_NANDInitStruct->FMC_Waitfeature | PCR_MEMORYTYPE_NAND | FMC_NANDInitStruct->FMC_MemoryDataWidth | FMC_NANDInitStruct->FMC_ECC | FMC_NANDInitStruct->FMC_ECCPageSize | (FMC_NANDInitStruct->FMC_TCLRSetupTime << 9 )| (FMC_NANDInitStruct->FMC_TARSetupTime << 13); /* Set tmppmem value according to FMC_CommonSpaceTimingStructure parameters */ tmppmem = (uint32_t)FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_SetupTime | (FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_WaitSetupTime << 8) | (FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HoldSetupTime << 16)| (FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HiZSetupTime << 24); /* Set tmppatt value according to FMC_AttributeSpaceTimingStructure parameters */ tmppatt = (uint32_t)FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_SetupTime | (FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_WaitSetupTime << 8) | (FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HoldSetupTime << 16)| (FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HiZSetupTime << 24); if(FMC_NANDInitStruct->FMC_Bank == FMC_Bank2_NAND) { /* FMC_Bank2_NAND registers configuration */ FMC_Bank2->PCR2 = tmppcr; FMC_Bank2->PMEM2 = tmppmem; FMC_Bank2->PATT2 = tmppatt; } else { /* FMC_Bank3_NAND registers configuration */ FMC_Bank3->PCR3 = tmppcr; FMC_Bank3->PMEM3 = tmppmem; FMC_Bank3->PATT3 = tmppatt; } } /** * @brief Fills each FMC_NANDInitStruct member with its default value. * @param FMC_NANDInitStruct: pointer to a FMC_NANDInitTypeDef structure which * will be initialized. * @retval None */ void FMC_NANDStructInit(FMC_NANDInitTypeDef* FMC_NANDInitStruct) { /* Reset NAND Init structure parameters values */ FMC_NANDInitStruct->FMC_Bank = FMC_Bank2_NAND; FMC_NANDInitStruct->FMC_Waitfeature = FMC_Waitfeature_Disable; FMC_NANDInitStruct->FMC_MemoryDataWidth = FMC_NAND_MemoryDataWidth_16b; FMC_NANDInitStruct->FMC_ECC = FMC_ECC_Disable; FMC_NANDInitStruct->FMC_ECCPageSize = FMC_ECCPageSize_256Bytes; FMC_NANDInitStruct->FMC_TCLRSetupTime = 0x0; FMC_NANDInitStruct->FMC_TARSetupTime = 0x0; FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_SetupTime = 252; FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_WaitSetupTime = 252; FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HoldSetupTime = 252; FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HiZSetupTime = 252; FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_SetupTime = 252; FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_WaitSetupTime = 252; FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HoldSetupTime = 252; FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HiZSetupTime = 252; } /** * @brief Enables or disables the specified NAND Memory Bank. * @param FMC_Bank: specifies the FMC Bank to be used * This parameter can be one of the following values: * @arg FMC_Bank2_NAND: FMC Bank2 NAND * @arg FMC_Bank3_NAND: FMC Bank3 NAND * @param NewState: new state of the FMC_Bank. This parameter can be: ENABLE or DISABLE. * @retval None */ void FMC_NANDCmd(uint32_t FMC_Bank, FunctionalState NewState) { assert_param(IS_FMC_NAND_BANK(FMC_Bank)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the selected NAND Bank by setting the PBKEN bit in the PCRx register */ if(FMC_Bank == FMC_Bank2_NAND) { FMC_Bank2->PCR2 |= PCR_PBKEN_SET; } else { FMC_Bank3->PCR3 |= PCR_PBKEN_SET; } } else { /* Disable the selected NAND Bank by clearing the PBKEN bit in the PCRx register */ if(FMC_Bank == FMC_Bank2_NAND) { FMC_Bank2->PCR2 &= PCR_PBKEN_RESET; } else { FMC_Bank3->PCR3 &= PCR_PBKEN_RESET; } } } /** * @brief Enables or disables the FMC NAND ECC feature. * @param FMC_Bank: specifies the FMC Bank to be used * This parameter can be one of the following values: * @arg FMC_Bank2_NAND: FMC Bank2 NAND * @arg FMC_Bank3_NAND: FMC Bank3 NAND * @param NewState: new state of the FMC NAND ECC feature. * This parameter can be: ENABLE or DISABLE. * @retval None */ void FMC_NANDECCCmd(uint32_t FMC_Bank, FunctionalState NewState) { assert_param(IS_FMC_NAND_BANK(FMC_Bank)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the selected NAND Bank ECC function by setting the ECCEN bit in the PCRx register */ if(FMC_Bank == FMC_Bank2_NAND) { FMC_Bank2->PCR2 |= PCR_ECCEN_SET; } else { FMC_Bank3->PCR3 |= PCR_ECCEN_SET; } } else { /* Disable the selected NAND Bank ECC function by clearing the ECCEN bit in the PCRx register */ if(FMC_Bank == FMC_Bank2_NAND) { FMC_Bank2->PCR2 &= PCR_ECCEN_RESET; } else { FMC_Bank3->PCR3 &= PCR_ECCEN_RESET; } } } /** * @brief Returns the error correction code register value. * @param FMC_Bank: specifies the FMC Bank to be used * This parameter can be one of the following values: * @arg FMC_Bank2_NAND: FMC Bank2 NAND * @arg FMC_Bank3_NAND: FMC Bank3 NAND * @retval The Error Correction Code (ECC) value. */ uint32_t FMC_GetECC(uint32_t FMC_Bank) { uint32_t eccval = 0x00000000; if(FMC_Bank == FMC_Bank2_NAND) { /* Get the ECCR2 register value */ eccval = FMC_Bank2->ECCR2; } else { /* Get the ECCR3 register value */ eccval = FMC_Bank3->ECCR3; } /* Return the error correction code value */ return(eccval); } /** * @} */ /** @defgroup FMC_Group3 PCCARD Controller functions * @brief PCCARD Controller functions * @verbatim =============================================================================== ##### PCCARD Controller functions ##### =============================================================================== [..] he following sequence should be followed to configure the FMC to interface with 16-bit PC Card compatible memory connected to the PCCARD Bank: (#) Enable the clock for the FMC and associated GPIOs using the following functions: (++) RCC_AHB3PeriphClockCmd(RCC_AHB3Periph_FMC, ENABLE); (++) RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE); (#) FMC pins configuration (++) Connect the involved FMC pins to AF12 using the following function GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_FMC); (++) Configure these FMC pins in alternate function mode by calling the function GPIO_Init(); (#) Declare a FMC_PCCARDInitTypeDef structure, for example: FMC_PCCARDInitTypeDef FMC_PCCARDInitStructure; and fill the FMC_PCCARDInitStructure variable with the allowed values of the structure member. (#) Initialize the PCCARD Controller by calling the function FMC_PCCARDInit(&FMC_PCCARDInitStructure); (#) Then enable the PCCARD Bank: FMC_PCCARDCmd(ENABLE); (#) At this stage you can read/write from/to the memory connected to the PCCARD Bank. @endverbatim * @{ */ /** * @brief De-initializes the FMC PCCARD Bank registers to their default reset values. * @param None * @retval None */ void FMC_PCCARDDeInit(void) { /* Set the FMC_Bank4 registers to their reset values */ FMC_Bank4->PCR4 = 0x00000018; FMC_Bank4->SR4 = 0x00000000; FMC_Bank4->PMEM4 = 0xFCFCFCFC; FMC_Bank4->PATT4 = 0xFCFCFCFC; FMC_Bank4->PIO4 = 0xFCFCFCFC; } /** * @brief Initializes the FMC PCCARD Bank according to the specified parameters * in the FMC_PCCARDInitStruct. * @param FMC_PCCARDInitStruct : pointer to a FMC_PCCARDInitTypeDef structure * that contains the configuration information for the FMC PCCARD Bank. * @retval None */ void FMC_PCCARDInit(FMC_PCCARDInitTypeDef* FMC_PCCARDInitStruct) { /* Check the parameters */ assert_param(IS_FMC_WAIT_FEATURE(FMC_PCCARDInitStruct->FMC_Waitfeature)); assert_param(IS_FMC_TCLR_TIME(FMC_PCCARDInitStruct->FMC_TCLRSetupTime)); assert_param(IS_FMC_TAR_TIME(FMC_PCCARDInitStruct->FMC_TARSetupTime)); assert_param(IS_FMC_SETUP_TIME(FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_SetupTime)); assert_param(IS_FMC_WAIT_TIME(FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_WaitSetupTime)); assert_param(IS_FMC_HOLD_TIME(FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HoldSetupTime)); assert_param(IS_FMC_HIZ_TIME(FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HiZSetupTime)); assert_param(IS_FMC_SETUP_TIME(FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_SetupTime)); assert_param(IS_FMC_WAIT_TIME(FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_WaitSetupTime)); assert_param(IS_FMC_HOLD_TIME(FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HoldSetupTime)); assert_param(IS_FMC_HIZ_TIME(FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HiZSetupTime)); assert_param(IS_FMC_SETUP_TIME(FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_SetupTime)); assert_param(IS_FMC_WAIT_TIME(FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_WaitSetupTime)); assert_param(IS_FMC_HOLD_TIME(FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_HoldSetupTime)); assert_param(IS_FMC_HIZ_TIME(FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_HiZSetupTime)); /* Set the PCR4 register value according to FMC_PCCARDInitStruct parameters */ FMC_Bank4->PCR4 = (uint32_t)FMC_PCCARDInitStruct->FMC_Waitfeature | FMC_NAND_MemoryDataWidth_16b | (FMC_PCCARDInitStruct->FMC_TCLRSetupTime << 9) | (FMC_PCCARDInitStruct->FMC_TARSetupTime << 13); /* Set PMEM4 register value according to FMC_CommonSpaceTimingStructure parameters */ FMC_Bank4->PMEM4 = (uint32_t)FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_SetupTime | (FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_WaitSetupTime << 8) | (FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HoldSetupTime << 16)| (FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HiZSetupTime << 24); /* Set PATT4 register value according to FMC_AttributeSpaceTimingStructure parameters */ FMC_Bank4->PATT4 = (uint32_t)FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_SetupTime | (FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_WaitSetupTime << 8) | (FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HoldSetupTime << 16)| (FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HiZSetupTime << 24); /* Set PIO4 register value according to FMC_IOSpaceTimingStructure parameters */ FMC_Bank4->PIO4 = (uint32_t)FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_SetupTime | (FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_WaitSetupTime << 8) | (FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_HoldSetupTime << 16)| (FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_HiZSetupTime << 24); } /** * @brief Fills each FMC_PCCARDInitStruct member with its default value. * @param FMC_PCCARDInitStruct: pointer to a FMC_PCCARDInitTypeDef structure * which will be initialized. * @retval None */ void FMC_PCCARDStructInit(FMC_PCCARDInitTypeDef* FMC_PCCARDInitStruct) { /* Reset PCCARD Init structure parameters values */ FMC_PCCARDInitStruct->FMC_Waitfeature = FMC_Waitfeature_Disable; FMC_PCCARDInitStruct->FMC_TCLRSetupTime = 0; FMC_PCCARDInitStruct->FMC_TARSetupTime = 0; FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_SetupTime = 252; FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_WaitSetupTime = 252; FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HoldSetupTime = 252; FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HiZSetupTime = 252; FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_SetupTime = 252; FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_WaitSetupTime = 252; FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HoldSetupTime = 252; FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HiZSetupTime = 252; FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_SetupTime = 252; FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_WaitSetupTime = 252; FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_HoldSetupTime = 252; FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_HiZSetupTime = 252; } /** * @brief Enables or disables the PCCARD Memory Bank. * @param NewState: new state of the PCCARD Memory Bank. * This parameter can be: ENABLE or DISABLE. * @retval None */ void FMC_PCCARDCmd(FunctionalState NewState) { assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the PCCARD Bank by setting the PBKEN bit in the PCR4 register */ FMC_Bank4->PCR4 |= PCR_PBKEN_SET; } else { /* Disable the PCCARD Bank by clearing the PBKEN bit in the PCR4 register */ FMC_Bank4->PCR4 &= PCR_PBKEN_RESET; } } /** * @} */ /** @defgroup FMC_Group4 SDRAM Controller functions * @brief SDRAM Controller functions * @verbatim =============================================================================== ##### SDRAM Controller functions ##### =============================================================================== [..] The following sequence should be followed to configure the FMC to interface with SDRAM memory connected to the SDRAM Bank 1 or SDRAM bank 2: (#) Enable the clock for the FMC and associated GPIOs using the following functions: (++) RCC_AHB3PeriphClockCmd(RCC_AHB3Periph_FMC, ENABLE); (++) RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE); (#) FMC pins configuration (++) Connect the involved FMC pins to AF12 using the following function GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_FMC); (++) Configure these FMC pins in alternate function mode by calling the function GPIO_Init(); (#) Declare a FMC_SDRAMInitTypeDef structure, for example: FMC_SDRAMInitTypeDef FMC_SDRAMInitStructure; and fill the FMC_SDRAMInitStructure variable with the allowed values of the structure member. (#) Initialize the SDRAM Controller by calling the function FMC_SDRAMInit(&FMC_SDRAMInitStructure); (#) Declare a FMC_SDRAMCommandTypeDef structure, for example: FMC_SDRAMCommandTypeDef FMC_SDRAMCommandStructure; and fill the FMC_SDRAMCommandStructure variable with the allowed values of the structure member. (#) Configure the SDCMR register with the desired command parameters by calling the function FMC_SDRAMCmdConfig(&FMC_SDRAMCommandStructure); (#) At this stage, the SDRAM memory is ready for any valid command. @endverbatim * @{ */ /** * @brief De-initializes the FMC SDRAM Banks registers to their default * reset values. * @param FMC_Bank: specifies the FMC Bank to be used * This parameter can be one of the following values: * @arg FMC_Bank1_SDRAM: FMC Bank1 SDRAM * @arg FMC_Bank2_SDRAM: FMC Bank2 SDRAM * @retval None */ void FMC_SDRAMDeInit(uint32_t FMC_Bank) { /* Check the parameter */ assert_param(IS_FMC_SDRAM_BANK(FMC_Bank)); FMC_Bank5_6->SDCR[FMC_Bank] = 0x000002D0; FMC_Bank5_6->SDTR[FMC_Bank] = 0x0FFFFFFF; FMC_Bank5_6->SDCMR = 0x00000000; FMC_Bank5_6->SDRTR = 0x00000000; FMC_Bank5_6->SDSR = 0x00000000; } /** * @brief Initializes the FMC SDRAM Banks according to the specified * parameters in the FMC_SDRAMInitStruct. * @param FMC_SDRAMInitStruct : pointer to a FMC_SDRAMInitTypeDef structure * that contains the configuration information for the FMC SDRAM * specified Banks. * @retval None */ void FMC_SDRAMInit(FMC_SDRAMInitTypeDef* FMC_SDRAMInitStruct) { /* temporary registers */ uint32_t tmpr1 = 0; uint32_t tmpr2 = 0; uint32_t tmpr3 = 0; uint32_t tmpr4 = 0; /* Check the parameters */ /* Control parameters */ assert_param(IS_FMC_SDRAM_BANK(FMC_SDRAMInitStruct->FMC_Bank)); assert_param(IS_FMC_COLUMNBITS_NUMBER(FMC_SDRAMInitStruct->FMC_ColumnBitsNumber)); assert_param(IS_FMC_ROWBITS_NUMBER(FMC_SDRAMInitStruct->FMC_RowBitsNumber)); assert_param(IS_FMC_SDMEMORY_WIDTH(FMC_SDRAMInitStruct->FMC_SDMemoryDataWidth)); assert_param(IS_FMC_INTERNALBANK_NUMBER(FMC_SDRAMInitStruct->FMC_InternalBankNumber)); assert_param(IS_FMC_CAS_LATENCY(FMC_SDRAMInitStruct->FMC_CASLatency)); assert_param(IS_FMC_WRITE_PROTECTION(FMC_SDRAMInitStruct->FMC_WriteProtection)); assert_param(IS_FMC_SDCLOCK_PERIOD(FMC_SDRAMInitStruct->FMC_SDClockPeriod)); assert_param(IS_FMC_READ_BURST(FMC_SDRAMInitStruct->FMC_ReadBurst)); assert_param(IS_FMC_READPIPE_DELAY(FMC_SDRAMInitStruct->FMC_ReadPipeDelay)); /* Timing parameters */ assert_param(IS_FMC_LOADTOACTIVE_DELAY(FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_LoadToActiveDelay)); assert_param(IS_FMC_EXITSELFREFRESH_DELAY(FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_ExitSelfRefreshDelay)); assert_param(IS_FMC_SELFREFRESH_TIME(FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_SelfRefreshTime)); assert_param(IS_FMC_ROWCYCLE_DELAY(FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RowCycleDelay)); assert_param(IS_FMC_WRITE_RECOVERY_TIME(FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_WriteRecoveryTime)); assert_param(IS_FMC_RP_DELAY(FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RPDelay)); assert_param(IS_FMC_RCD_DELAY(FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RCDDelay)); /* SDRAM bank control register configuration */ tmpr1 = (uint32_t)FMC_SDRAMInitStruct->FMC_ColumnBitsNumber | FMC_SDRAMInitStruct->FMC_RowBitsNumber | FMC_SDRAMInitStruct->FMC_SDMemoryDataWidth | FMC_SDRAMInitStruct->FMC_InternalBankNumber | FMC_SDRAMInitStruct->FMC_CASLatency | FMC_SDRAMInitStruct->FMC_WriteProtection | FMC_SDRAMInitStruct->FMC_SDClockPeriod | FMC_SDRAMInitStruct->FMC_ReadBurst | FMC_SDRAMInitStruct->FMC_ReadPipeDelay; if(FMC_SDRAMInitStruct->FMC_Bank == FMC_Bank1_SDRAM ) { FMC_Bank5_6->SDCR[FMC_SDRAMInitStruct->FMC_Bank] = tmpr1; } else /* SDCR2 "don't care" bits configuration */ { tmpr3 = (uint32_t)FMC_SDRAMInitStruct->FMC_SDClockPeriod | FMC_SDRAMInitStruct->FMC_ReadBurst | FMC_SDRAMInitStruct->FMC_ReadPipeDelay; FMC_Bank5_6->SDCR[FMC_Bank1_SDRAM] = tmpr3; FMC_Bank5_6->SDCR[FMC_SDRAMInitStruct->FMC_Bank] = tmpr1; } /* SDRAM bank timing register configuration */ if(FMC_SDRAMInitStruct->FMC_Bank == FMC_Bank1_SDRAM ) { tmpr2 = (uint32_t)((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_LoadToActiveDelay)-1) | (((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_ExitSelfRefreshDelay)-1) << 4) | (((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_SelfRefreshTime)-1) << 8) | (((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RowCycleDelay)-1) << 12) | (((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_WriteRecoveryTime)-1) << 16) | (((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RPDelay)-1) << 20) | (((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RCDDelay)-1) << 24); FMC_Bank5_6->SDTR[FMC_SDRAMInitStruct->FMC_Bank] = tmpr2; } else /* SDTR "don't care bits configuration */ { tmpr2 = (uint32_t)((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_LoadToActiveDelay)-1) | (((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_ExitSelfRefreshDelay)-1) << 4) | (((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_SelfRefreshTime)-1) << 8) | (((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_WriteRecoveryTime)-1) << 16); tmpr4 = (uint32_t)(((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RowCycleDelay)-1) << 12) | (((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RPDelay)-1) << 20); FMC_Bank5_6->SDTR[FMC_Bank1_SDRAM] = tmpr4; FMC_Bank5_6->SDTR[FMC_SDRAMInitStruct->FMC_Bank] = tmpr2; } } /** * @brief Fills each FMC_SDRAMInitStruct member with its default value. * @param FMC_SDRAMInitStruct: pointer to a FMC_SDRAMInitTypeDef structure * which will be initialized. * @retval None */ void FMC_SDRAMStructInit(FMC_SDRAMInitTypeDef* FMC_SDRAMInitStruct) { /* Reset SDRAM Init structure parameters values */ FMC_SDRAMInitStruct->FMC_Bank = FMC_Bank1_SDRAM; FMC_SDRAMInitStruct->FMC_ColumnBitsNumber = FMC_ColumnBits_Number_8b; FMC_SDRAMInitStruct->FMC_RowBitsNumber = FMC_RowBits_Number_11b; FMC_SDRAMInitStruct->FMC_SDMemoryDataWidth = FMC_SDMemory_Width_16b; FMC_SDRAMInitStruct->FMC_InternalBankNumber = FMC_InternalBank_Number_4; FMC_SDRAMInitStruct->FMC_CASLatency = FMC_CAS_Latency_1; FMC_SDRAMInitStruct->FMC_WriteProtection = FMC_Write_Protection_Enable; FMC_SDRAMInitStruct->FMC_SDClockPeriod = FMC_SDClock_Disable; FMC_SDRAMInitStruct->FMC_ReadBurst = FMC_Read_Burst_Disable; FMC_SDRAMInitStruct->FMC_ReadPipeDelay = FMC_ReadPipe_Delay_0; FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_LoadToActiveDelay = 16; FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_ExitSelfRefreshDelay = 16; FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_SelfRefreshTime = 16; FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RowCycleDelay = 16; FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_WriteRecoveryTime = 16; FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RPDelay = 16; FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RCDDelay = 16; } /** * @brief Configures the SDRAM memory command issued when the device is accessed. * @param FMC_SDRAMCommandStruct: pointer to a FMC_SDRAMCommandTypeDef structure * which will be configured. * @retval None */ void FMC_SDRAMCmdConfig(FMC_SDRAMCommandTypeDef* FMC_SDRAMCommandStruct) { uint32_t tmpr = 0x0; /* check parameters */ assert_param(IS_FMC_COMMAND_MODE(FMC_SDRAMCommandStruct->FMC_CommandMode)); assert_param(IS_FMC_COMMAND_TARGET(FMC_SDRAMCommandStruct->FMC_CommandTarget)); assert_param(IS_FMC_AUTOREFRESH_NUMBER(FMC_SDRAMCommandStruct->FMC_AutoRefreshNumber)); assert_param(IS_FMC_MODE_REGISTER(FMC_SDRAMCommandStruct->FMC_ModeRegisterDefinition)); tmpr = (uint32_t)(FMC_SDRAMCommandStruct->FMC_CommandMode | FMC_SDRAMCommandStruct->FMC_CommandTarget | (((FMC_SDRAMCommandStruct->FMC_AutoRefreshNumber)-1)<<5) | ((FMC_SDRAMCommandStruct->FMC_ModeRegisterDefinition)<<9)); FMC_Bank5_6->SDCMR = tmpr; } /** * @brief Returns the indicated FMC SDRAM bank mode status. * @param SDRAM_Bank: Defines the FMC SDRAM bank. This parameter can be * FMC_Bank1_SDRAM or FMC_Bank2_SDRAM. * @retval The FMC SDRAM bank mode status */ uint32_t FMC_GetModeStatus(uint32_t SDRAM_Bank) { uint32_t tmpreg = 0; /* Check the parameter */ assert_param(IS_FMC_SDRAM_BANK(SDRAM_Bank)); /* Get the busy flag status */ if(SDRAM_Bank == FMC_Bank1_SDRAM) { tmpreg = (uint32_t)(FMC_Bank5_6->SDSR & FMC_SDSR_MODES1); } else { tmpreg = ((uint32_t)(FMC_Bank5_6->SDSR & FMC_SDSR_MODES2) >> 2); } /* Return the mode status */ return tmpreg; } /** * @brief defines the SDRAM Memory Refresh rate. * @param FMC_Count: specifies the Refresh timer count. * @retval None */ void FMC_SetRefreshCount(uint32_t FMC_Count) { /* check the parameters */ assert_param(IS_FMC_REFRESH_COUNT(FMC_Count)); FMC_Bank5_6->SDRTR |= (FMC_Count<<1); } /** * @brief Sets the Number of consecutive SDRAM Memory auto Refresh commands. * @param FMC_Number: specifies the auto Refresh number. * @retval None */ void FMC_SetAutoRefresh_Number(uint32_t FMC_Number) { /* check the parameters */ assert_param(IS_FMC_AUTOREFRESH_NUMBER(FMC_Number)); FMC_Bank5_6->SDCMR |= (FMC_Number << 5); } /** * @brief Enables or disables write protection to the specified FMC SDRAM Bank. * @param SDRAM_Bank: Defines the FMC SDRAM bank. This parameter can be * FMC_Bank1_SDRAM or FMC_Bank2_SDRAM. * @param NewState: new state of the write protection flag. * This parameter can be: ENABLE or DISABLE. * @retval None */ void FMC_SDRAMWriteProtectionConfig(uint32_t SDRAM_Bank, FunctionalState NewState) { /* Check the parameter */ assert_param(IS_FUNCTIONAL_STATE(NewState)); assert_param(IS_FMC_SDRAM_BANK(SDRAM_Bank)); if (NewState != DISABLE) { FMC_Bank5_6->SDCR[SDRAM_Bank] |= FMC_Write_Protection_Enable; } else { FMC_Bank5_6->SDCR[SDRAM_Bank] &= SDCR_WriteProtection_RESET; } } /** * @} */ /** @defgroup FMC_Group5 Interrupts and flags management functions * @brief Interrupts and flags management functions * @verbatim =============================================================================== ##### Interrupts and flags management functions ##### =============================================================================== @endverbatim * @{ */ /** * @brief Enables or disables the specified FMC interrupts. * @param FMC_Bank: specifies the FMC Bank to be used * This parameter can be one of the following values: * @arg FMC_Bank2_NAND: FMC Bank2 NAND * @arg FMC_Bank3_NAND: FMC Bank3 NAND * @arg FMC_Bank4_PCCARD: FMC Bank4 PCCARD * @arg FMC_Bank1_SDRAM: FMC Bank1 SDRAM * @arg FMC_Bank2_SDRAM: FMC Bank2 SDRAM * @param FMC_IT: specifies the FMC interrupt sources to be enabled or disabled. * This parameter can be any combination of the following values: * @arg FMC_IT_RisingEdge: Rising edge detection interrupt. * @arg FMC_IT_Level: Level edge detection interrupt. * @arg FMC_IT_FallingEdge: Falling edge detection interrupt. * @arg FMC_IT_Refresh: Refresh error detection interrupt. * @param NewState: new state of the specified FMC interrupts. * This parameter can be: ENABLE or DISABLE. * @retval None */ void FMC_ITConfig(uint32_t FMC_Bank, uint32_t FMC_IT, FunctionalState NewState) { assert_param(IS_FMC_IT_BANK(FMC_Bank)); assert_param(IS_FMC_IT(FMC_IT)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the selected FMC_Bank2 interrupts */ if(FMC_Bank == FMC_Bank2_NAND) { FMC_Bank2->SR2 |= FMC_IT; } /* Enable the selected FMC_Bank3 interrupts */ else if (FMC_Bank == FMC_Bank3_NAND) { FMC_Bank3->SR3 |= FMC_IT; } /* Enable the selected FMC_Bank4 interrupts */ else if (FMC_Bank == FMC_Bank4_PCCARD) { FMC_Bank4->SR4 |= FMC_IT; } /* Enable the selected FMC_Bank5_6 interrupt */ else { /* Enables the interrupt if the refresh error flag is set */ FMC_Bank5_6->SDRTR |= FMC_IT; } } else { /* Disable the selected FMC_Bank2 interrupts */ if(FMC_Bank == FMC_Bank2_NAND) { FMC_Bank2->SR2 &= (uint32_t)~FMC_IT; } /* Disable the selected FMC_Bank3 interrupts */ else if (FMC_Bank == FMC_Bank3_NAND) { FMC_Bank3->SR3 &= (uint32_t)~FMC_IT; } /* Disable the selected FMC_Bank4 interrupts */ else if(FMC_Bank == FMC_Bank4_PCCARD) { FMC_Bank4->SR4 &= (uint32_t)~FMC_IT; } /* Disable the selected FMC_Bank5_6 interrupt */ else { /* Disables the interrupt if the refresh error flag is not set */ FMC_Bank5_6->SDRTR &= (uint32_t)~FMC_IT; } } } /** * @brief Checks whether the specified FMC flag is set or not. * @param FMC_Bank: specifies the FMC Bank to be used * This parameter can be one of the following values: * @arg FMC_Bank2_NAND: FMC Bank2 NAND * @arg FMC_Bank3_NAND: FMC Bank3 NAND * @arg FMC_Bank4_PCCARD: FMC Bank4 PCCARD * @arg FMC_Bank1_SDRAM: FMC Bank1 SDRAM * @arg FMC_Bank2_SDRAM: FMC Bank2 SDRAM * @arg FMC_Bank1_SDRAM | FMC_Bank2_SDRAM: FMC Bank1 or Bank2 SDRAM * @param FMC_FLAG: specifies the flag to check. * This parameter can be one of the following values: * @arg FMC_FLAG_RisingEdge: Rising edge detection Flag. * @arg FMC_FLAG_Level: Level detection Flag. * @arg FMC_FLAG_FallingEdge: Falling edge detection Flag. * @arg FMC_FLAG_FEMPT: Fifo empty Flag. * @arg FMC_FLAG_Refresh: Refresh error Flag. * @arg FMC_FLAG_Busy: Busy status Flag. * @retval The new state of FMC_FLAG (SET or RESET). */ FlagStatus FMC_GetFlagStatus(uint32_t FMC_Bank, uint32_t FMC_FLAG) { FlagStatus bitstatus = RESET; uint32_t tmpsr = 0x00000000; /* Check the parameters */ assert_param(IS_FMC_GETFLAG_BANK(FMC_Bank)); assert_param(IS_FMC_GET_FLAG(FMC_FLAG)); if(FMC_Bank == FMC_Bank2_NAND) { tmpsr = FMC_Bank2->SR2; } else if(FMC_Bank == FMC_Bank3_NAND) { tmpsr = FMC_Bank3->SR3; } else if(FMC_Bank == FMC_Bank4_PCCARD) { tmpsr = FMC_Bank4->SR4; } else { tmpsr = FMC_Bank5_6->SDSR; } /* Get the flag status */ if ((tmpsr & FMC_FLAG) != FMC_FLAG ) { bitstatus = RESET; } else { bitstatus = SET; } /* Return the flag status */ return bitstatus; } /** * @brief Clears the FMC's pending flags. * @param FMC_Bank: specifies the FMC Bank to be used * This parameter can be one of the following values: * @arg FMC_Bank2_NAND: FMC Bank2 NAND * @arg FMC_Bank3_NAND: FMC Bank3 NAND * @arg FMC_Bank4_PCCARD: FMC Bank4 PCCARD * @arg FMC_Bank1_SDRAM: FMC Bank1 SDRAM * @arg FMC_Bank2_SDRAM: FMC Bank2 SDRAM * @param FMC_FLAG: specifies the flag to clear. * This parameter can be any combination of the following values: * @arg FMC_FLAG_RisingEdge: Rising edge detection Flag. * @arg FMC_FLAG_Level: Level detection Flag. * @arg FMC_FLAG_FallingEdge: Falling edge detection Flag. * @arg FMC_FLAG_Refresh: Refresh error Flag. * @retval None */ void FMC_ClearFlag(uint32_t FMC_Bank, uint32_t FMC_FLAG) { /* Check the parameters */ assert_param(IS_FMC_GETFLAG_BANK(FMC_Bank)); assert_param(IS_FMC_CLEAR_FLAG(FMC_FLAG)) ; if(FMC_Bank == FMC_Bank2_NAND) { FMC_Bank2->SR2 &= (~FMC_FLAG); } else if(FMC_Bank == FMC_Bank3_NAND) { FMC_Bank3->SR3 &= (~FMC_FLAG); } else if(FMC_Bank == FMC_Bank4_PCCARD) { FMC_Bank4->SR4 &= (~FMC_FLAG); } /* FMC_Bank5_6 SDRAM*/ else { FMC_Bank5_6->SDRTR &= (~FMC_FLAG); } } /** * @brief Checks whether the specified FMC interrupt has occurred or not. * @param FMC_Bank: specifies the FMC Bank to be used * This parameter can be one of the following values: * @arg FMC_Bank2_NAND: FMC Bank2 NAND * @arg FMC_Bank3_NAND: FMC Bank3 NAND * @arg FMC_Bank4_PCCARD: FMC Bank4 PCCARD * @arg FMC_Bank1_SDRAM: FMC Bank1 SDRAM * @arg FMC_Bank2_SDRAM: FMC Bank2 SDRAM * @param FMC_IT: specifies the FMC interrupt source to check. * This parameter can be one of the following values: * @arg FMC_IT_RisingEdge: Rising edge detection interrupt. * @arg FMC_IT_Level: Level edge detection interrupt. * @arg FMC_IT_FallingEdge: Falling edge detection interrupt. * @arg FMC_IT_Refresh: Refresh error detection interrupt. * @retval The new state of FMC_IT (SET or RESET). */ ITStatus FMC_GetITStatus(uint32_t FMC_Bank, uint32_t FMC_IT) { ITStatus bitstatus = RESET; uint32_t tmpsr = 0x0; uint32_t tmpsr2 = 0x0; uint32_t itstatus = 0x0; uint32_t itenable = 0x0; /* Check the parameters */ assert_param(IS_FMC_IT_BANK(FMC_Bank)); assert_param(IS_FMC_GET_IT(FMC_IT)); if(FMC_Bank == FMC_Bank2_NAND) { tmpsr = FMC_Bank2->SR2; } else if(FMC_Bank == FMC_Bank3_NAND) { tmpsr = FMC_Bank3->SR3; } else if(FMC_Bank == FMC_Bank4_PCCARD) { tmpsr = FMC_Bank4->SR4; } /* FMC_Bank5_6 SDRAM*/ else { tmpsr = FMC_Bank5_6->SDRTR; tmpsr2 = FMC_Bank5_6->SDSR; } /* get the IT enable bit status*/ itenable = tmpsr & FMC_IT; /* get the corresponding IT Flag status*/ if((FMC_Bank == FMC_Bank1_SDRAM) || (FMC_Bank == FMC_Bank2_SDRAM)) { itstatus = tmpsr2 & FMC_SDSR_RE; } else { itstatus = tmpsr & (FMC_IT >> 3); } if ((itstatus != (uint32_t)RESET) && (itenable != (uint32_t)RESET)) { bitstatus = SET; } else { bitstatus = RESET; } return bitstatus; } /** * @brief Clears the FMC's interrupt pending bits. * @param FMC_Bank: specifies the FMC Bank to be used * This parameter can be one of the following values: * @arg FMC_Bank2_NAND: FMC Bank2 NAND * @arg FMC_Bank3_NAND: FMC Bank3 NAND * @arg FMC_Bank4_PCCARD: FMC Bank4 PCCARD * @arg FMC_Bank1_SDRAM: FMC Bank1 SDRAM * @arg FMC_Bank2_SDRAM: FMC Bank2 SDRAM * @param FMC_IT: specifies the interrupt pending bit to clear. * This parameter can be any combination of the following values: * @arg FMC_IT_RisingEdge: Rising edge detection interrupt. * @arg FMC_IT_Level: Level edge detection interrupt. * @arg FMC_IT_FallingEdge: Falling edge detection interrupt. * @arg FMC_IT_Refresh: Refresh error detection interrupt. * @retval None */ void FMC_ClearITPendingBit(uint32_t FMC_Bank, uint32_t FMC_IT) { /* Check the parameters */ assert_param(IS_FMC_IT_BANK(FMC_Bank)); assert_param(IS_FMC_IT(FMC_IT)); if(FMC_Bank == FMC_Bank2_NAND) { FMC_Bank2->SR2 &= ~(FMC_IT >> 3); } else if(FMC_Bank == FMC_Bank3_NAND) { FMC_Bank3->SR3 &= ~(FMC_IT >> 3); } else if(FMC_Bank == FMC_Bank4_PCCARD) { FMC_Bank4->SR4 &= ~(FMC_IT >> 3); } /* FMC_Bank5_6 SDRAM*/ else { FMC_Bank5_6->SDRTR |= FMC_SDRTR_CRE; } } /** * @} */ /** * @} */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/