ref: 991160b28f27849a616f39059f79cde0b312e01a
dir: /3rd/brieflz/brieflz_hashchain.h/
// // BriefLZ - small fast Lempel-Ziv // // Lazy parsing with chains of previous positions // // Copyright (c) 2016-2020 Joergen Ibsen // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must // not claim that you wrote the original software. If you use this // software in a product, an acknowledgment in the product // documentation would be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, and must // not be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source // distribution. // #ifndef BRIEFLZ_HASHCHAIN_H_INCLUDED #define BRIEFLZ_HASHCHAIN_H_INCLUDED static size_t blz_hashchain_workmem_size(size_t src_size) { return (LOOKUP_SIZE + src_size) * sizeof(blz_word); } // Lazy parsing with chains of previous positions. // // Use the lookup table to create chains of previous positions for a given // hash. This version uses an array of previous positions the size of the // input. // // Since the same four bytes may occur many times, it is often required to // limit the number of positions checked. The search is limited to following // max_depth positions down each chain. // static unsigned long blz_pack_hashchain(const void *src, void *dst, unsigned long src_size, void *workmem, const unsigned long max_depth, const unsigned long accept_len) { struct blz_state bs; blz_word *const lookup = (blz_word *) workmem; blz_word *const prev = lookup + LOOKUP_SIZE; const unsigned char *const in = (const unsigned char *) src; const unsigned long last_match_pos = src_size > 4 ? src_size - 4 : 0; unsigned long cur = 0; assert(src_size < BLZ_WORD_MAX); // Check for empty input if (src_size == 0) { return 0; } bs.next_out = (unsigned char *) dst; // First byte verbatim *bs.next_out++ = in[0]; // Check for 1 byte input if (src_size == 1) { return 1; } // Initialize first tag bs.tag_out = bs.next_out; bs.next_out += 2; bs.tag = 0; bs.bits_left = 16; // Initialize lookup for (unsigned long i = 0; i < LOOKUP_SIZE; ++i) { lookup[i] = NO_MATCH_POS; } // Build hash chains in prev if (last_match_pos > 0) { for (unsigned long i = 0; i <= last_match_pos; ++i) { const unsigned long hash = blz_hash4(&in[i]); prev[i] = lookup[hash]; lookup[hash] = i; } } // Main compression loop for (cur = 1; cur <= last_match_pos; ) { unsigned long best_pos = NO_MATCH_POS; unsigned long best_len = 0; // Look up first match for current position unsigned long pos = prev[cur]; const unsigned long len_limit = src_size - cur; unsigned long num_chain = max_depth; // Check matches while (pos != NO_MATCH_POS && num_chain--) { unsigned long len = 0; // If next byte matches, so this has a chance to be a longer match if (best_len < len_limit && in[pos + best_len] == in[cur + best_len]) { // Find match len while (len < len_limit && in[pos + len] == in[cur + len]) { ++len; } } // Update best match if (blz_match_better(cur, pos, len, best_pos, best_len)) { best_pos = pos; best_len = len; if (best_len >= accept_len) { break; } } // Go to previous match pos = prev[pos]; } // Check if match at next position is better if (best_len > 3 && best_len < accept_len && cur < last_match_pos) { // Look up first match for next position unsigned long next_pos = prev[cur + 1]; const unsigned long next_len_limit = src_size - (cur + 1); num_chain = max_depth; // Check matches while (next_pos != NO_MATCH_POS && num_chain--) { unsigned long next_len = 0; // Check match if (best_len - 1 < next_len_limit && in[next_pos + best_len - 1] == in[cur + 1 + best_len - 1]) { while (next_len < next_len_limit && in[next_pos + next_len] == in[cur + 1 + next_len]) { ++next_len; } } if (next_len >= best_len) { // Replace with next match if it extends backwards if (next_pos > 0 && in[next_pos - 1] == in[cur]) { if (blz_match_better(cur, next_pos - 1, next_len + 1, best_pos, best_len)) { best_pos = next_pos - 1; best_len = next_len + 1; } } else { // Drop current match if next match is better if (blz_next_match_better(cur, next_pos, next_len, best_pos, best_len)) { best_len = 0; break; } } } // Go to previous match next_pos = prev[next_pos]; } } // Output match or literal if (best_len > 4 || (best_len == 4 && cur - best_pos - 1 < 0x3FE00UL)) { const unsigned long offs = cur - best_pos - 1; // Output match tag blz_putbit(&bs, 1); // Output match length blz_putgamma(&bs, best_len - 2); // Output match offset blz_putgamma(&bs, (offs >> 8) + 2); *bs.next_out++ = offs & 0x00FF; cur += best_len; } else { // Output literal tag blz_putbit(&bs, 0); // Copy literal *bs.next_out++ = in[cur++]; } } // Output any remaining literals while (cur < src_size) { // Output literal tag blz_putbit(&bs, 0); // Copy literal *bs.next_out++ = in[cur++]; } // Trailing one bit to delimit any literal tags blz_putbit(&bs, 1); // Shift last tag into position and store bs.tag <<= bs.bits_left; bs.tag_out[0] = bs.tag & 0x00FF; bs.tag_out[1] = (bs.tag >> 8) & 0x00FF; // Return compressed size return (unsigned long) (bs.next_out - (unsigned char *) dst); } #endif /* BRIEFLZ_HASHCHAIN_H_INCLUDED */