ref: 4a408b2e2c76e424afc0527fbc4ba75b957be533
dir: /lib/sort.scm/
;;; "sort.scm" Defines: sorted?, merge, merge!, sort, sort! ;;; Author : Richard A. O'Keefe (based on Prolog code by D.H.D.Warren) ;;; ;;; This code is in the public domain. ;;; Updated: 11 June 1991 ;;; Modified for scheme library: Aubrey Jaffer 19 Sept. 1991 ;;; Updated: 19 June 1995 ;;; (sort, sort!, sorted?): Generalized to strings by jaffer: 2003-09-09 ;;; (sort, sort!, sorted?): Generalized to arrays by jaffer: 2003-10-04 ;;; jaffer: 2006-10-08: ;;; (sort, sort!, sorted?, merge, merge!): Added optional KEY argument. ;;; jaffer: 2006-11-05: ;;; (sorted?, merge, merge!, sort, sort!): Call KEY arg at most once ;;; per element. ;(require 'array) ;;; (sorted? sequence less?) ;;; is true when sequence is a list (x0 x1 ... xm) or a vector #(x0 ... xm) ;;; such that for all 1 <= i <= m, ;;; (not (less? (list-ref list i) (list-ref list (- i 1)))). ;@ (define (sorted? seq less? . opt-key) (define key (if (null? opt-key) identity (car opt-key))) (cond ((null? seq) #t) ((array? seq) (let ((dimax (+ -1 (car (array-dimensions seq))))) (or (<= dimax 1) (let loop ((idx (+ -1 dimax)) (last (key (array-ref seq dimax)))) (or (negative? idx) (let ((nxt (key (array-ref seq idx)))) (and (less? nxt last) (loop (+ -1 idx) nxt)))))))) ((null? (cdr seq)) #t) (else (let loop ((last (key (car seq))) (next (cdr seq))) (or (null? next) (let ((nxt (key (car next)))) (and (not (less? nxt last)) (loop nxt (cdr next))))))))) ;;; (merge a b less?) ;;; takes two lists a and b such that (sorted? a less?) and (sorted? b less?) ;;; and returns a new list in which the elements of a and b have been stably ;;; interleaved so that (sorted? (merge a b less?) less?). ;;; Note: this does _not_ accept arrays. See below. ;@ (define (merge a b less? . opt-key) (define key (if (null? opt-key) identity (car opt-key))) (cond ((null? a) b) ((null? b) a) (else (let loop ((x (car a)) (kx (key (car a))) (a (cdr a)) (y (car b)) (ky (key (car b))) (b (cdr b))) ;; The loop handles the merging of non-empty lists. It has ;; been written this way to save testing and car/cdring. (if (less? ky kx) (if (null? b) (cons y (cons x a)) (cons y (loop x kx a (car b) (key (car b)) (cdr b)))) ;; x <= y (if (null? a) (cons x (cons y b)) (cons x (loop (car a) (key (car a)) (cdr a) y ky b)))))))) (define (sort:merge! a b less? key) (define (loop r a kcara b kcarb) (cond ((less? kcarb kcara) (set-cdr! r b) (if (null? (cdr b)) (set-cdr! b a) (loop b a kcara (cdr b) (key (cadr b))))) (else ; (car a) <= (car b) (set-cdr! r a) (if (null? (cdr a)) (set-cdr! a b) (loop a (cdr a) (key (cadr a)) b kcarb))))) (cond ((null? a) b) ((null? b) a) (else (let ((kcara (key (car a))) (kcarb (key (car b)))) (cond ((less? kcarb kcara) (if (null? (cdr b)) (set-cdr! b a) (loop b a kcara (cdr b) (key (cadr b)))) b) (else ; (car a) <= (car b) (if (null? (cdr a)) (set-cdr! a b) (loop a (cdr a) (key (cadr a)) b kcarb)) a)))))) ;;; takes two sorted lists a and b and smashes their cdr fields to form a ;;; single sorted list including the elements of both. ;;; Note: this does _not_ accept arrays. ;@ (define (merge! a b less? . opt-key) (sort:merge! a b less? (if (null? opt-key) identity (car opt-key)))) (define (sort:sort-list! seq less? key) (define keyer (if key car identity)) (define (step n) (cond ((> n 2) (let* ((j (quotient n 2)) (a (step j)) (k (- n j)) (b (step k))) (sort:merge! a b less? keyer))) ((= n 2) (let ((x (car seq)) (y (cadr seq)) (p seq)) (set! seq (cddr seq)) (cond ((less? (keyer y) (keyer x)) (set-car! p y) (set-car! (cdr p) x))) (set-cdr! (cdr p) '()) p)) ((= n 1) (let ((p seq)) (set! seq (cdr seq)) (set-cdr! p '()) p)) (else '()))) (define (key-wrap! lst) (cond ((null? lst)) (else (set-car! lst (cons (key (car lst)) (car lst))) (key-wrap! (cdr lst))))) (define (key-unwrap! lst) (cond ((null? lst)) (else (set-car! lst (cdar lst)) (key-unwrap! (cdr lst))))) (cond (key (key-wrap! seq) (set! seq (step (length seq))) (key-unwrap! seq) seq) (else (step (length seq))))) (define (rank-1-array->list array) (define dimensions (array-dimensions array)) (do ((idx (+ -1 (car dimensions)) (+ -1 idx)) (lst '() (cons (array-ref array idx) lst))) ((< idx 0) lst))) ;;; (sort! sequence less?) ;;; sorts the list, array, or string sequence destructively. It uses ;;; a version of merge-sort invented, to the best of my knowledge, by ;;; David H. D. Warren, and first used in the DEC-10 Prolog system. ;;; R. A. O'Keefe adapted it to work destructively in Scheme. ;;; A. Jaffer modified to always return the original list. ;@ (define (sort! seq less? . opt-key) (define key (if (null? opt-key) #f (car opt-key))) (cond ((array? seq) (let ((dims (array-dimensions seq))) (do ((sorted (sort:sort-list! (rank-1-array->list seq) less? key) (cdr sorted)) (i 0 (+ i 1))) ((null? sorted) seq) (array-set! seq (car sorted) i)))) (else ; otherwise, assume it is a list (let ((ret (sort:sort-list! seq less? key))) (if (not (eq? ret seq)) (do ((crt ret (cdr crt))) ((eq? (cdr crt) seq) (set-cdr! crt ret) (let ((scar (car seq)) (scdr (cdr seq))) (set-car! seq (car ret)) (set-cdr! seq (cdr ret)) (set-car! ret scar) (set-cdr! ret scdr))))) seq)))) ;;; (sort sequence less?) ;;; sorts a array, string, or list non-destructively. It does this ;;; by sorting a copy of the sequence. My understanding is that the ;;; Standard says that the result of append is always "newly ;;; allocated" except for sharing structure with "the last argument", ;;; so (append x '()) ought to be a standard way of copying a list x. ;@ (define (sort seq less? . opt-key) (define key (if (null? opt-key) #f (car opt-key))) (cond ((array? seq) (let ((dims (array-dimensions seq))) (define newra (apply make-array seq dims)) (do ((sorted (sort:sort-list! (rank-1-array->list seq) less? key) (cdr sorted)) (i 0 (+ i 1))) ((null? sorted) newra) (array-set! newra (car sorted) i)))) (else (sort:sort-list! (append seq '()) less? key))))