ref: f16b43cdfa2f3f2d5af36185819bebf1ca9c806d
dir: /src/ppc/looprestoration_init_tmpl.c/
/* * Copyright © 2019, VideoLAN and dav1d authors * Copyright © 2019, Michail Alvanos * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "common/intops.h" #include "src/ppc/types.h" #include "src/cpu.h" #include "src/looprestoration.h" #if BITDEPTH == 8 #define REST_UNIT_STRIDE (400) static inline i32x4 iclip_vec(i32x4 v, const i32x4 minv, const i32x4 maxv) { v = vec_max(minv, v); v = vec_min(maxv, v); return v; } #define APPLY_FILTER_H(v, f, ssum1, ssum2) do { \ i16x8 ktmp_u16_high = (i16x8) u8h_to_u16(v); \ i16x8 ktmp_u16_low = (i16x8) u8l_to_u16(v); \ ssum1 = vec_madd(ktmp_u16_high, f, ssum1); \ ssum2 = vec_madd(ktmp_u16_low, f, ssum2); \ } while (0) static void wiener_filter_h_vsx(int32_t *hor_ptr, uint8_t *tmp_ptr, const int16_t filterh[7], const int w, const int h) { static const i32x4 zerov = vec_splats(0); static const i32x4 seven_vec = vec_splats(7); static const i32x4 bitdepth_added_vec = vec_splats(1 << 14); static const i32x4 round_bits_vec = vec_splats(3); static const i32x4 rounding_off_vec = vec_splats(1<<2); static const i32x4 clip_limit_v = vec_splats((1 << 13) - 1); i16x8 filterhvall = vec_vsx_ld(0, filterh); i16x8 filterhv0 = vec_splat( filterhvall, 0); i16x8 filterhv1 = vec_splat( filterhvall, 1); i16x8 filterhv2 = vec_splat( filterhvall, 2); i16x8 filterhv3 = vec_splat( filterhvall, 3); i16x8 filterhv4 = vec_splat( filterhvall, 4); i16x8 filterhv5 = vec_splat( filterhvall, 5); i16x8 filterhv6 = vec_splat( filterhvall, 6); for (int j = 0; j < h + 6; j++) { for (int i = 0; i < w; i+=16) { i32x4 sum1 = bitdepth_added_vec; i32x4 sum2 = bitdepth_added_vec; i32x4 sum3 = bitdepth_added_vec; i32x4 sum4 = bitdepth_added_vec; u8x16 tmp_v0 = vec_ld(0, &tmp_ptr[i]); u8x16 tmp_v7 = vec_ld(0, &tmp_ptr[i+16]); u8x16 tmp_v1 = vec_sld( tmp_v7, tmp_v0, 15); u8x16 tmp_v2 = vec_sld( tmp_v7, tmp_v0, 14); u8x16 tmp_v3 = vec_sld( tmp_v7, tmp_v0, 13); u8x16 tmp_v4 = vec_sld( tmp_v7, tmp_v0, 12); u8x16 tmp_v5 = vec_sld( tmp_v7, tmp_v0, 11); u8x16 tmp_v6 = vec_sld( tmp_v7, tmp_v0, 10); u16x8 tmp_u16_high = u8h_to_u16(tmp_v3); u16x8 tmp_u16_low = u8l_to_u16(tmp_v3); i32x4 tmp_expanded1 = i16h_to_i32(tmp_u16_high); i32x4 tmp_expanded2 = i16l_to_i32(tmp_u16_high); i32x4 tmp_expanded3 = i16h_to_i32(tmp_u16_low); i32x4 tmp_expanded4 = i16l_to_i32(tmp_u16_low); i16x8 ssum1 = (i16x8) zerov; i16x8 ssum2 = (i16x8) zerov; APPLY_FILTER_H(tmp_v0, filterhv0, ssum1, ssum2); APPLY_FILTER_H(tmp_v1, filterhv1, ssum1, ssum2); APPLY_FILTER_H(tmp_v2, filterhv2, ssum1, ssum2); APPLY_FILTER_H(tmp_v3, filterhv3, ssum1, ssum2); APPLY_FILTER_H(tmp_v4, filterhv4, ssum1, ssum2); APPLY_FILTER_H(tmp_v5, filterhv5, ssum1, ssum2); APPLY_FILTER_H(tmp_v6, filterhv6, ssum1, ssum2); sum1 += i16h_to_i32(ssum1) + (tmp_expanded1 << seven_vec); sum2 += i16l_to_i32(ssum1) + (tmp_expanded2 << seven_vec); sum3 += i16h_to_i32(ssum2) + (tmp_expanded3 << seven_vec); sum4 += i16l_to_i32(ssum2) + (tmp_expanded4 << seven_vec); sum1 = (sum1 + rounding_off_vec) >> round_bits_vec; sum2 = (sum2 + rounding_off_vec) >> round_bits_vec; sum3 = (sum3 + rounding_off_vec) >> round_bits_vec; sum4 = (sum4 + rounding_off_vec) >> round_bits_vec; sum1 = iclip_vec(sum1, zerov, clip_limit_v); sum2 = iclip_vec(sum2, zerov, clip_limit_v); sum3 = iclip_vec(sum3, zerov, clip_limit_v); sum4 = iclip_vec(sum4, zerov, clip_limit_v); vec_st(sum1, 0, &hor_ptr[i]); vec_st(sum2, 16, &hor_ptr[i]); vec_st(sum3, 32, &hor_ptr[i]); vec_st(sum4, 48, &hor_ptr[i]); } tmp_ptr += REST_UNIT_STRIDE; hor_ptr += REST_UNIT_STRIDE; } } static inline i16x8 iclip_u8_vec(i16x8 v) { static const i16x8 zerov = vec_splats((int16_t)0); static const i16x8 maxv = vec_splats((int16_t)255); v = vec_max(zerov, v); v = vec_min(maxv, v); return v; } #define APPLY_FILTER_V(index, f) do { \ i32x4 v1 = vec_ld( 0, &hor[(j + index) * REST_UNIT_STRIDE + i]); \ i32x4 v2 = vec_ld(16, &hor[(j + index) * REST_UNIT_STRIDE + i]); \ i32x4 v3 = vec_ld(32, &hor[(j + index) * REST_UNIT_STRIDE + i]); \ i32x4 v4 = vec_ld(48, &hor[(j + index) * REST_UNIT_STRIDE + i]); \ sum1 = sum1 + v1 * f; \ sum2 = sum2 + v2 * f; \ sum3 = sum3 + v3 * f; \ sum4 = sum4 + v4 * f; \ } while (0) #define LOAD_AND_APPLY_FILTER_V(sumpixelv, hor) do { \ i32x4 v_1 = (i32x4) vec_ld( 0, &hor[(j + 3) * REST_UNIT_STRIDE + i]); \ i32x4 v_2 = (i32x4) vec_ld(16, &hor[(j + 3) * REST_UNIT_STRIDE + i]); \ i32x4 v_3 = (i32x4) vec_ld(32, &hor[(j + 3) * REST_UNIT_STRIDE + i]); \ i32x4 v_4 = (i32x4) vec_ld(48, &hor[(j + 3) * REST_UNIT_STRIDE + i]); \ i32x4 sum1 = -round_offset_vec; \ i32x4 sum2 = -round_offset_vec; \ i32x4 sum3 = -round_offset_vec; \ i32x4 sum4 = -round_offset_vec; \ APPLY_FILTER_V(0, filterv0); \ APPLY_FILTER_V(1, filterv1); \ APPLY_FILTER_V(2, filterv2); \ APPLY_FILTER_V(3, filterv3); \ APPLY_FILTER_V(4, filterv4); \ APPLY_FILTER_V(5, filterv5); \ APPLY_FILTER_V(6, filterv6); \ sum1 = (v_1 << seven_vec) + sum1 + rounding_off_vec; \ sum2 = (v_2 << seven_vec) + sum2 + rounding_off_vec; \ sum3 = (v_3 << seven_vec) + sum3 + rounding_off_vec; \ sum4 = (v_4 << seven_vec) + sum4 + rounding_off_vec; \ sum1 = sum1 >> round_bits_vec; \ sum2 = sum2 >> round_bits_vec; \ sum3 = sum3 >> round_bits_vec; \ sum4 = sum4 >> round_bits_vec; \ i16x8 sum_short_packed_1 = (i16x8) vec_pack( sum1, sum2 ); \ i16x8 sum_short_packed_2 = (i16x8) vec_pack( sum3, sum4 ); \ sum_short_packed_1 = iclip_u8_vec(sum_short_packed_1); \ sum_short_packed_2 = iclip_u8_vec(sum_short_packed_2); \ sum_pixel = (u8x16) vec_pack(sum_short_packed_1, sum_short_packed_2 ); \ } while (0) static inline void wiener_filter_v_vsx(uint8_t *p, const ptrdiff_t p_stride, const int32_t *hor, const int16_t filterv[7], const int w, const int h) { static const i32x4 round_bits_vec = vec_splats(11); static const i32x4 rounding_off_vec = vec_splats(1 << 10); static const i32x4 round_offset_vec = vec_splats(1 << 18); static const i32x4 seven_vec = vec_splats(7); i32x4 filterv0 = vec_splats((int32_t) filterv[0]); i32x4 filterv1 = vec_splats((int32_t) filterv[1]); i32x4 filterv2 = vec_splats((int32_t) filterv[2]); i32x4 filterv3 = vec_splats((int32_t) filterv[3]); i32x4 filterv4 = vec_splats((int32_t) filterv[4]); i32x4 filterv5 = vec_splats((int32_t) filterv[5]); i32x4 filterv6 = vec_splats((int32_t) filterv[6]); for (int j = 0; j < h; j++) { for (int i = 0; i <(w-w%16); i += 16) { u8x16 sum_pixel; LOAD_AND_APPLY_FILTER_V(sum_pixel, hor); vec_vsx_st(sum_pixel, 0, &p[j * PXSTRIDE(p_stride) + i]); } // remaining loop if (w & 0xf){ int i=w-w%16; ALIGN_STK_16(uint8_t, tmp_out, 16,); u8x16 sum_pixel; LOAD_AND_APPLY_FILTER_V(sum_pixel, hor); vec_vsx_st(sum_pixel, 0, tmp_out); for (int k=0; i<w; i++, k++) { p[j * PXSTRIDE(p_stride) + i] = tmp_out[k]; } } } } static inline void padding(uint8_t *dst, const uint8_t *p, const ptrdiff_t p_stride, const uint8_t (*left)[4], const uint8_t *lpf, const ptrdiff_t lpf_stride, int unit_w, const int stripe_h, const enum LrEdgeFlags edges) { const int have_left = !!(edges & LR_HAVE_LEFT); const int have_right = !!(edges & LR_HAVE_RIGHT); // Copy more pixels if we don't have to pad them unit_w += 3 * have_left + 3 * have_right; uint8_t *dst_l = dst + 3 * !have_left; p -= 3 * have_left; lpf -= 3 * have_left; if (edges & LR_HAVE_TOP) { // Copy previous loop filtered rows const uint8_t *const above_1 = lpf; const uint8_t *const above_2 = above_1 + PXSTRIDE(lpf_stride); pixel_copy(dst_l, above_1, unit_w); pixel_copy(dst_l + REST_UNIT_STRIDE, above_1, unit_w); pixel_copy(dst_l + 2 * REST_UNIT_STRIDE, above_2, unit_w); } else { // Pad with first row pixel_copy(dst_l, p, unit_w); pixel_copy(dst_l + REST_UNIT_STRIDE, p, unit_w); pixel_copy(dst_l + 2 * REST_UNIT_STRIDE, p, unit_w); if (have_left) { pixel_copy(dst_l, &left[0][1], 3); pixel_copy(dst_l + REST_UNIT_STRIDE, &left[0][1], 3); pixel_copy(dst_l + 2 * REST_UNIT_STRIDE, &left[0][1], 3); } } uint8_t *dst_tl = dst_l + 3 * REST_UNIT_STRIDE; if (edges & LR_HAVE_BOTTOM) { // Copy next loop filtered rows const uint8_t *const below_1 = lpf + 6 * PXSTRIDE(lpf_stride); const uint8_t *const below_2 = below_1 + PXSTRIDE(lpf_stride); pixel_copy(dst_tl + stripe_h * REST_UNIT_STRIDE, below_1, unit_w); pixel_copy(dst_tl + (stripe_h + 1) * REST_UNIT_STRIDE, below_2, unit_w); pixel_copy(dst_tl + (stripe_h + 2) * REST_UNIT_STRIDE, below_2, unit_w); } else { // Pad with last row const uint8_t *const src = p + (stripe_h - 1) * PXSTRIDE(p_stride); pixel_copy(dst_tl + stripe_h * REST_UNIT_STRIDE, src, unit_w); pixel_copy(dst_tl + (stripe_h + 1) * REST_UNIT_STRIDE, src, unit_w); pixel_copy(dst_tl + (stripe_h + 2) * REST_UNIT_STRIDE, src, unit_w); if (have_left) { pixel_copy(dst_tl + stripe_h * REST_UNIT_STRIDE, &left[stripe_h - 1][1], 3); pixel_copy(dst_tl + (stripe_h + 1) * REST_UNIT_STRIDE, &left[stripe_h - 1][1], 3); pixel_copy(dst_tl + (stripe_h + 2) * REST_UNIT_STRIDE, &left[stripe_h - 1][1], 3); } } // Inner UNIT_WxSTRIPE_H for (int j = 0; j < stripe_h; j++) { pixel_copy(dst_tl + 3 * have_left, p + 3 * have_left, unit_w - 3 * have_left); dst_tl += REST_UNIT_STRIDE; p += PXSTRIDE(p_stride); } if (!have_right) { uint8_t *pad = dst_l + unit_w; uint8_t *row_last = &dst_l[unit_w - 1]; // Pad 3x(STRIPE_H+6) with last column for (int j = 0; j < stripe_h + 6; j++) { pixel_set(pad, *row_last, 3); pad += REST_UNIT_STRIDE; row_last += REST_UNIT_STRIDE; } } if (!have_left) { // Pad 3x(STRIPE_H+6) with first column for (int j = 0; j < stripe_h + 6; j++) { pixel_set(dst, *dst_l, 3); dst += REST_UNIT_STRIDE; dst_l += REST_UNIT_STRIDE; } } else { dst += 3 * REST_UNIT_STRIDE; for (int j = 0; j < stripe_h; j++) { pixel_copy(dst, &left[j][1], 3); dst += REST_UNIT_STRIDE; } } } // FIXME Could split into luma and chroma specific functions, // (since first and last tops are always 0 for chroma) // FIXME Could implement a version that requires less temporary memory // (should be possible to implement with only 6 rows of temp storage) static void wiener_filter_vsx(uint8_t *p, const ptrdiff_t p_stride, const uint8_t (*const left)[4], const uint8_t *lpf, const ptrdiff_t lpf_stride, const int w, const int h, const int16_t filterh[7], const int16_t filterv[7], const enum LrEdgeFlags edges HIGHBD_DECL_SUFFIX) { // Wiener filtering is applied to a maximum stripe height of 64 + 3 pixels // of padding above and below ALIGN_STK_16(uint8_t, tmp, 70 /*(64 + 3 + 3)*/ * REST_UNIT_STRIDE,); padding(tmp, p, p_stride, left, lpf, lpf_stride, w, h, edges); ALIGN_STK_16(int32_t, hor, 70 /*(64 + 3 + 3)*/ * REST_UNIT_STRIDE + 64,); wiener_filter_h_vsx(hor, tmp, filterh, w, h); wiener_filter_v_vsx(p, p_stride, hor, filterv, w, h); } #endif COLD void bitfn(dav1d_loop_restoration_dsp_init_ppc) (Dav1dLoopRestorationDSPContext *const c) { const unsigned flags = dav1d_get_cpu_flags(); if (!(flags & DAV1D_PPC_CPU_FLAG_VSX)) return; #if BITDEPTH == 8 c->wiener = wiener_filter_vsx; #endif }