ref: 93ab93dedcbe17fa9a5d4342d5ed6ec31bfd2bfc
dir: /src/ext/x86/x86inc.asm/
;***************************************************************************** ;* x86inc.asm: x264asm abstraction layer ;***************************************************************************** ;* Copyright (C) 2005-2018 x264 project ;* ;* Authors: Loren Merritt <[email protected]> ;* Henrik Gramner <[email protected]> ;* Anton Mitrofanov <[email protected]> ;* Fiona Glaser <[email protected]> ;* ;* Permission to use, copy, modify, and/or distribute this software for any ;* purpose with or without fee is hereby granted, provided that the above ;* copyright notice and this permission notice appear in all copies. ;* ;* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES ;* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF ;* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ;* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES ;* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ;* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF ;* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ;***************************************************************************** ; This is a header file for the x264ASM assembly language, which uses ; NASM/YASM syntax combined with a large number of macros to provide easy ; abstraction between different calling conventions (x86_32, win64, linux64). ; It also has various other useful features to simplify writing the kind of ; DSP functions that are most often used in x264. ; Unlike the rest of x264, this file is available under an ISC license, as it ; has significant usefulness outside of x264 and we want it to be available ; to the largest audience possible. Of course, if you modify it for your own ; purposes to add a new feature, we strongly encourage contributing a patch ; as this feature might be useful for others as well. Send patches or ideas ; to [email protected] . %ifndef private_prefix %define private_prefix dav1d %endif %ifndef public_prefix %define public_prefix private_prefix %endif %ifndef STACK_ALIGNMENT %if ARCH_X86_64 %define STACK_ALIGNMENT 16 %else %define STACK_ALIGNMENT 4 %endif %endif %define WIN64 0 %define UNIX64 0 %if ARCH_X86_64 %ifidn __OUTPUT_FORMAT__,win32 %define WIN64 1 %elifidn __OUTPUT_FORMAT__,win64 %define WIN64 1 %elifidn __OUTPUT_FORMAT__,x64 %define WIN64 1 %else %define UNIX64 1 %endif %endif %define FORMAT_ELF 0 %define FORMAT_MACHO 0 %ifidn __OUTPUT_FORMAT__,elf %define FORMAT_ELF 1 %elifidn __OUTPUT_FORMAT__,elf32 %define FORMAT_ELF 1 %elifidn __OUTPUT_FORMAT__,elf64 %define FORMAT_ELF 1 %elifidn __OUTPUT_FORMAT__,macho %define FORMAT_MACHO 1 %elifidn __OUTPUT_FORMAT__,macho32 %define FORMAT_MACHO 1 %elifidn __OUTPUT_FORMAT__,macho64 %define FORMAT_MACHO 1 %endif %ifdef PREFIX %define mangle(x) _ %+ x %else %define mangle(x) x %endif %macro SECTION_RODATA 0-1 16 %ifidn __OUTPUT_FORMAT__,win32 SECTION .rdata align=%1 %elif WIN64 SECTION .rdata align=%1 %else SECTION .rodata align=%1 %endif %endmacro %if ARCH_X86_64 %define PIC 1 ; always use PIC on x86-64 default rel %elifidn __OUTPUT_FORMAT__,win32 %define PIC 0 ; PIC isn't used on 32-bit Windows %elifndef PIC %define PIC 0 %endif %define HAVE_PRIVATE_EXTERN 1 %ifdef __NASM_VER__ %use smartalign %if __NASM_VERSION_ID__ < 0x020e0000 ; 2.14 %define HAVE_PRIVATE_EXTERN 0 %endif %endif ; Macros to eliminate most code duplication between x86_32 and x86_64: ; Currently this works only for leaf functions which load all their arguments ; into registers at the start, and make no other use of the stack. Luckily that ; covers most of x264's asm. ; PROLOGUE: ; %1 = number of arguments. loads them from stack if needed. ; %2 = number of registers used. pushes callee-saved regs if needed. ; %3 = number of xmm registers used. pushes callee-saved xmm regs if needed. ; %4 = (optional) stack size to be allocated. The stack will be aligned before ; allocating the specified stack size. If the required stack alignment is ; larger than the known stack alignment the stack will be manually aligned ; and an extra register will be allocated to hold the original stack ; pointer (to not invalidate r0m etc.). To prevent the use of an extra ; register as stack pointer, request a negative stack size. ; %4+/%5+ = list of names to define to registers ; PROLOGUE can also be invoked by adding the same options to cglobal ; e.g. ; cglobal foo, 2,3,7,0x40, dst, src, tmp ; declares a function (foo) that automatically loads two arguments (dst and ; src) into registers, uses one additional register (tmp) plus 7 vector ; registers (m0-m6) and allocates 0x40 bytes of stack space. ; TODO Some functions can use some args directly from the stack. If they're the ; last args then you can just not declare them, but if they're in the middle ; we need more flexible macro. ; RET: ; Pops anything that was pushed by PROLOGUE, and returns. ; REP_RET: ; Use this instead of RET if it's a branch target. ; registers: ; rN and rNq are the native-size register holding function argument N ; rNd, rNw, rNb are dword, word, and byte size ; rNh is the high 8 bits of the word size ; rNm is the original location of arg N (a register or on the stack), dword ; rNmp is native size %macro DECLARE_REG 2-3 %define r%1q %2 %define r%1d %2d %define r%1w %2w %define r%1b %2b %define r%1h %2h %define %2q %2 %if %0 == 2 %define r%1m %2d %define r%1mp %2 %elif ARCH_X86_64 ; memory %define r%1m [rstk + stack_offset + %3] %define r%1mp qword r %+ %1 %+ m %else %define r%1m [rstk + stack_offset + %3] %define r%1mp dword r %+ %1 %+ m %endif %define r%1 %2 %endmacro %macro DECLARE_REG_SIZE 3 %define r%1q r%1 %define e%1q r%1 %define r%1d e%1 %define e%1d e%1 %define r%1w %1 %define e%1w %1 %define r%1h %3 %define e%1h %3 %define r%1b %2 %define e%1b %2 %if ARCH_X86_64 == 0 %define r%1 e%1 %endif %endmacro DECLARE_REG_SIZE ax, al, ah DECLARE_REG_SIZE bx, bl, bh DECLARE_REG_SIZE cx, cl, ch DECLARE_REG_SIZE dx, dl, dh DECLARE_REG_SIZE si, sil, null DECLARE_REG_SIZE di, dil, null DECLARE_REG_SIZE bp, bpl, null ; t# defines for when per-arch register allocation is more complex than just function arguments %macro DECLARE_REG_TMP 1-* %assign %%i 0 %rep %0 CAT_XDEFINE t, %%i, r%1 %assign %%i %%i+1 %rotate 1 %endrep %endmacro %macro DECLARE_REG_TMP_SIZE 0-* %rep %0 %define t%1q t%1 %+ q %define t%1d t%1 %+ d %define t%1w t%1 %+ w %define t%1h t%1 %+ h %define t%1b t%1 %+ b %rotate 1 %endrep %endmacro DECLARE_REG_TMP_SIZE 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14 %if ARCH_X86_64 %define gprsize 8 %else %define gprsize 4 %endif %macro LEA 2 %if ARCH_X86_64 lea %1, [%2] %elif PIC call $+5 ; special-cased to not affect the RSB on most CPU:s pop %1 add %1, (%2)-$+1 %else mov %1, %2 %endif %endmacro %macro PUSH 1 push %1 %ifidn rstk, rsp %assign stack_offset stack_offset+gprsize %endif %endmacro %macro POP 1 pop %1 %ifidn rstk, rsp %assign stack_offset stack_offset-gprsize %endif %endmacro %macro PUSH_IF_USED 1-* %rep %0 %if %1 < regs_used PUSH r%1 %endif %rotate 1 %endrep %endmacro %macro POP_IF_USED 1-* %rep %0 %if %1 < regs_used pop r%1 %endif %rotate 1 %endrep %endmacro %macro LOAD_IF_USED 1-* %rep %0 %if %1 < num_args mov r%1, r %+ %1 %+ mp %endif %rotate 1 %endrep %endmacro %macro SUB 2 sub %1, %2 %ifidn %1, rstk %assign stack_offset stack_offset+(%2) %endif %endmacro %macro ADD 2 add %1, %2 %ifidn %1, rstk %assign stack_offset stack_offset-(%2) %endif %endmacro %macro movifnidn 2 %ifnidn %1, %2 mov %1, %2 %endif %endmacro %if ARCH_X86_64 == 0 %define movsxd movifnidn %endif %macro movsxdifnidn 2 %ifnidn %1, %2 movsxd %1, %2 %endif %endmacro %macro ASSERT 1 %if (%1) == 0 %error assertion ``%1'' failed %endif %endmacro %macro DEFINE_ARGS 0-* %ifdef n_arg_names %assign %%i 0 %rep n_arg_names CAT_UNDEF arg_name %+ %%i, q CAT_UNDEF arg_name %+ %%i, d CAT_UNDEF arg_name %+ %%i, w CAT_UNDEF arg_name %+ %%i, h CAT_UNDEF arg_name %+ %%i, b CAT_UNDEF arg_name %+ %%i, m CAT_UNDEF arg_name %+ %%i, mp CAT_UNDEF arg_name, %%i %assign %%i %%i+1 %endrep %endif %xdefine %%stack_offset stack_offset %undef stack_offset ; so that the current value of stack_offset doesn't get baked in by xdefine %assign %%i 0 %rep %0 %xdefine %1q r %+ %%i %+ q %xdefine %1d r %+ %%i %+ d %xdefine %1w r %+ %%i %+ w %xdefine %1h r %+ %%i %+ h %xdefine %1b r %+ %%i %+ b %xdefine %1m r %+ %%i %+ m %xdefine %1mp r %+ %%i %+ mp CAT_XDEFINE arg_name, %%i, %1 %assign %%i %%i+1 %rotate 1 %endrep %xdefine stack_offset %%stack_offset %assign n_arg_names %0 %endmacro %define required_stack_alignment ((mmsize + 15) & ~15) %define vzeroupper_required (mmsize > 16 && (ARCH_X86_64 == 0 || xmm_regs_used > 16 || notcpuflag(avx512))) %define high_mm_regs (16*cpuflag(avx512)) %macro ALLOC_STACK 1-2 0 ; stack_size, n_xmm_regs (for win64 only) %ifnum %1 %if %1 != 0 %assign %%pad 0 %assign stack_size %1 %if stack_size < 0 %assign stack_size -stack_size %endif %if WIN64 %assign %%pad %%pad + 32 ; shadow space %if mmsize != 8 %assign xmm_regs_used %2 %if xmm_regs_used > 8 %assign %%pad %%pad + (xmm_regs_used-8)*16 ; callee-saved xmm registers %endif %endif %endif %if required_stack_alignment <= STACK_ALIGNMENT ; maintain the current stack alignment %assign stack_size_padded stack_size + %%pad + ((-%%pad-stack_offset-gprsize) & (STACK_ALIGNMENT-1)) SUB rsp, stack_size_padded %else %assign %%reg_num (regs_used - 1) %xdefine rstk r %+ %%reg_num ; align stack, and save original stack location directly above ; it, i.e. in [rsp+stack_size_padded], so we can restore the ; stack in a single instruction (i.e. mov rsp, rstk or mov ; rsp, [rsp+stack_size_padded]) %if %1 < 0 ; need to store rsp on stack %xdefine rstkm [rsp + stack_size + %%pad] %assign %%pad %%pad + gprsize %else ; can keep rsp in rstk during whole function %xdefine rstkm rstk %endif %assign stack_size_padded stack_size + ((%%pad + required_stack_alignment-1) & ~(required_stack_alignment-1)) mov rstk, rsp and rsp, ~(required_stack_alignment-1) sub rsp, stack_size_padded movifnidn rstkm, rstk %endif WIN64_PUSH_XMM %endif %endif %endmacro %macro SETUP_STACK_POINTER 1 %ifnum %1 %if %1 != 0 && required_stack_alignment > STACK_ALIGNMENT %if %1 > 0 ; Reserve an additional register for storing the original stack pointer, but avoid using ; eax/rax for this purpose since it can potentially get overwritten as a return value. %assign regs_used (regs_used + 1) %if ARCH_X86_64 && regs_used == 7 %assign regs_used 8 %elif ARCH_X86_64 == 0 && regs_used == 1 %assign regs_used 2 %endif %endif %if ARCH_X86_64 && regs_used < 5 + UNIX64 * 3 ; Ensure that we don't clobber any registers containing arguments. For UNIX64 we also preserve r6 (rax) ; since it's used as a hidden argument in vararg functions to specify the number of vector registers used. %assign regs_used 5 + UNIX64 * 3 %endif %endif %endif %endmacro %macro DEFINE_ARGS_INTERNAL 3+ %ifnum %2 DEFINE_ARGS %3 %elif %1 == 4 DEFINE_ARGS %2 %elif %1 > 4 DEFINE_ARGS %2, %3 %endif %endmacro %if WIN64 ; Windows x64 ;================================================= DECLARE_REG 0, rcx DECLARE_REG 1, rdx DECLARE_REG 2, R8 DECLARE_REG 3, R9 DECLARE_REG 4, R10, 40 DECLARE_REG 5, R11, 48 DECLARE_REG 6, rax, 56 DECLARE_REG 7, rdi, 64 DECLARE_REG 8, rsi, 72 DECLARE_REG 9, rbx, 80 DECLARE_REG 10, rbp, 88 DECLARE_REG 11, R14, 96 DECLARE_REG 12, R15, 104 DECLARE_REG 13, R12, 112 DECLARE_REG 14, R13, 120 %macro PROLOGUE 2-5+ 0 ; #args, #regs, #xmm_regs, [stack_size,] arg_names... %assign num_args %1 %assign regs_used %2 ASSERT regs_used >= num_args SETUP_STACK_POINTER %4 ASSERT regs_used <= 15 PUSH_IF_USED 7, 8, 9, 10, 11, 12, 13, 14 ALLOC_STACK %4, %3 %if mmsize != 8 && stack_size == 0 WIN64_SPILL_XMM %3 %endif LOAD_IF_USED 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 DEFINE_ARGS_INTERNAL %0, %4, %5 %endmacro %macro WIN64_PUSH_XMM 0 ; Use the shadow space to store XMM6 and XMM7, the rest needs stack space allocated. %if xmm_regs_used > 6 + high_mm_regs movaps [rstk + stack_offset + 8], xmm6 %endif %if xmm_regs_used > 7 + high_mm_regs movaps [rstk + stack_offset + 24], xmm7 %endif %assign %%xmm_regs_on_stack xmm_regs_used - high_mm_regs - 8 %if %%xmm_regs_on_stack > 0 %assign %%i 8 %rep %%xmm_regs_on_stack movaps [rsp + (%%i-8)*16 + stack_size + 32], xmm %+ %%i %assign %%i %%i+1 %endrep %endif %endmacro %macro WIN64_SPILL_XMM 1 %assign xmm_regs_used %1 ASSERT xmm_regs_used <= 16 + high_mm_regs %assign %%xmm_regs_on_stack xmm_regs_used - high_mm_regs - 8 %if %%xmm_regs_on_stack > 0 ; Allocate stack space for callee-saved xmm registers plus shadow space and align the stack. %assign %%pad %%xmm_regs_on_stack*16 + 32 %assign stack_size_padded %%pad + ((-%%pad-stack_offset-gprsize) & (STACK_ALIGNMENT-1)) SUB rsp, stack_size_padded %endif WIN64_PUSH_XMM %endmacro %macro WIN64_RESTORE_XMM_INTERNAL 0 %assign %%pad_size 0 %assign %%xmm_regs_on_stack xmm_regs_used - high_mm_regs - 8 %if %%xmm_regs_on_stack > 0 %assign %%i xmm_regs_used - high_mm_regs %rep %%xmm_regs_on_stack %assign %%i %%i-1 movaps xmm %+ %%i, [rsp + (%%i-8)*16 + stack_size + 32] %endrep %endif %if stack_size_padded > 0 %if stack_size > 0 && required_stack_alignment > STACK_ALIGNMENT mov rsp, rstkm %else add rsp, stack_size_padded %assign %%pad_size stack_size_padded %endif %endif %if xmm_regs_used > 7 + high_mm_regs movaps xmm7, [rsp + stack_offset - %%pad_size + 24] %endif %if xmm_regs_used > 6 + high_mm_regs movaps xmm6, [rsp + stack_offset - %%pad_size + 8] %endif %endmacro %macro WIN64_RESTORE_XMM 0 WIN64_RESTORE_XMM_INTERNAL %assign stack_offset (stack_offset-stack_size_padded) %assign stack_size_padded 0 %assign xmm_regs_used 0 %endmacro %define has_epilogue regs_used > 7 || stack_size > 0 || vzeroupper_required || xmm_regs_used > 6+high_mm_regs %macro RET 0 WIN64_RESTORE_XMM_INTERNAL POP_IF_USED 14, 13, 12, 11, 10, 9, 8, 7 %if vzeroupper_required vzeroupper %endif AUTO_REP_RET %endmacro %elif ARCH_X86_64 ; *nix x64 ;============================================= DECLARE_REG 0, rdi DECLARE_REG 1, rsi DECLARE_REG 2, rdx DECLARE_REG 3, rcx DECLARE_REG 4, R8 DECLARE_REG 5, R9 DECLARE_REG 6, rax, 8 DECLARE_REG 7, R10, 16 DECLARE_REG 8, R11, 24 DECLARE_REG 9, rbx, 32 DECLARE_REG 10, rbp, 40 DECLARE_REG 11, R14, 48 DECLARE_REG 12, R15, 56 DECLARE_REG 13, R12, 64 DECLARE_REG 14, R13, 72 %macro PROLOGUE 2-5+ 0 ; #args, #regs, #xmm_regs, [stack_size,] arg_names... %assign num_args %1 %assign regs_used %2 %assign xmm_regs_used %3 ASSERT regs_used >= num_args SETUP_STACK_POINTER %4 ASSERT regs_used <= 15 PUSH_IF_USED 9, 10, 11, 12, 13, 14 ALLOC_STACK %4 LOAD_IF_USED 6, 7, 8, 9, 10, 11, 12, 13, 14 DEFINE_ARGS_INTERNAL %0, %4, %5 %endmacro %define has_epilogue regs_used > 9 || stack_size > 0 || vzeroupper_required %macro RET 0 %if stack_size_padded > 0 %if required_stack_alignment > STACK_ALIGNMENT mov rsp, rstkm %else add rsp, stack_size_padded %endif %endif POP_IF_USED 14, 13, 12, 11, 10, 9 %if vzeroupper_required vzeroupper %endif AUTO_REP_RET %endmacro %else ; X86_32 ;============================================================== DECLARE_REG 0, eax, 4 DECLARE_REG 1, ecx, 8 DECLARE_REG 2, edx, 12 DECLARE_REG 3, ebx, 16 DECLARE_REG 4, esi, 20 DECLARE_REG 5, edi, 24 DECLARE_REG 6, ebp, 28 %define rsp esp %macro DECLARE_ARG 1-* %rep %0 %define r%1m [rstk + stack_offset + 4*%1 + 4] %define r%1mp dword r%1m %rotate 1 %endrep %endmacro DECLARE_ARG 7, 8, 9, 10, 11, 12, 13, 14 %macro PROLOGUE 2-5+ ; #args, #regs, #xmm_regs, [stack_size,] arg_names... %assign num_args %1 %assign regs_used %2 ASSERT regs_used >= num_args %if num_args > 7 %assign num_args 7 %endif %if regs_used > 7 %assign regs_used 7 %endif SETUP_STACK_POINTER %4 ASSERT regs_used <= 7 PUSH_IF_USED 3, 4, 5, 6 ALLOC_STACK %4 LOAD_IF_USED 0, 1, 2, 3, 4, 5, 6 DEFINE_ARGS_INTERNAL %0, %4, %5 %endmacro %define has_epilogue regs_used > 3 || stack_size > 0 || vzeroupper_required %macro RET 0 %if stack_size_padded > 0 %if required_stack_alignment > STACK_ALIGNMENT mov rsp, rstkm %else add rsp, stack_size_padded %endif %endif POP_IF_USED 6, 5, 4, 3 %if vzeroupper_required vzeroupper %endif AUTO_REP_RET %endmacro %endif ;====================================================================== %if WIN64 == 0 %macro WIN64_SPILL_XMM 1 %endmacro %macro WIN64_RESTORE_XMM 0 %endmacro %macro WIN64_PUSH_XMM 0 %endmacro %endif ; On AMD cpus <=K10, an ordinary ret is slow if it immediately follows either ; a branch or a branch target. So switch to a 2-byte form of ret in that case. ; We can automatically detect "follows a branch", but not a branch target. ; (SSSE3 is a sufficient condition to know that your cpu doesn't have this problem.) %macro REP_RET 0 %if has_epilogue || cpuflag(ssse3) RET %else rep ret %endif annotate_function_size %endmacro %define last_branch_adr $$ %macro AUTO_REP_RET 0 %if notcpuflag(ssse3) times ((last_branch_adr-$)>>31)+1 rep ; times 1 iff $ == last_branch_adr. %endif ret annotate_function_size %endmacro %macro BRANCH_INSTR 0-* %rep %0 %macro %1 1-2 %1 %2 %1 %if notcpuflag(ssse3) %%branch_instr equ $ %xdefine last_branch_adr %%branch_instr %endif %endmacro %rotate 1 %endrep %endmacro BRANCH_INSTR jz, je, jnz, jne, jl, jle, jnl, jnle, jg, jge, jng, jnge, ja, jae, jna, jnae, jb, jbe, jnb, jnbe, jc, jnc, js, jns, jo, jno, jp, jnp %macro TAIL_CALL 1-2 1 ; callee, is_nonadjacent %if has_epilogue call %1 RET %elif %2 jmp %1 %endif annotate_function_size %endmacro ;============================================================================= ; arch-independent part ;============================================================================= %assign function_align 16 ; Begin a function. ; Applies any symbol mangling needed for C linkage, and sets up a define such that ; subsequent uses of the function name automatically refer to the mangled version. ; Appends cpuflags to the function name if cpuflags has been specified. ; The "" empty default parameter is a workaround for nasm, which fails if SUFFIX ; is empty and we call cglobal_internal with just %1 %+ SUFFIX (without %2). %macro cglobal 1-2+ "" ; name, [PROLOGUE args] cglobal_internal 1, %1 %+ SUFFIX, %2 %endmacro %macro cvisible 1-2+ "" ; name, [PROLOGUE args] cglobal_internal 0, %1 %+ SUFFIX, %2 %endmacro %macro cglobal_internal 2-3+ annotate_function_size %ifndef cglobaled_%2 %if %1 %xdefine %2 mangle(private_prefix %+ _ %+ %2) %else %xdefine %2 mangle(public_prefix %+ _ %+ %2) %endif %xdefine %2.skip_prologue %2 %+ .skip_prologue CAT_XDEFINE cglobaled_, %2, 1 %endif %xdefine current_function %2 %xdefine current_function_section __SECT__ %if FORMAT_ELF %if %1 global %2:function hidden %else global %2:function %endif %elif FORMAT_MACHO && HAVE_PRIVATE_EXTERN && %1 global %2:private_extern %else global %2 %endif align function_align %2: RESET_MM_PERMUTATION ; needed for x86-64, also makes disassembly somewhat nicer %xdefine rstk rsp ; copy of the original stack pointer, used when greater alignment than the known stack alignment is required %assign stack_offset 0 ; stack pointer offset relative to the return address %assign stack_size 0 ; amount of stack space that can be freely used inside a function %assign stack_size_padded 0 ; total amount of allocated stack space, including space for callee-saved xmm registers on WIN64 and alignment padding %assign xmm_regs_used 0 ; number of XMM registers requested, used for dealing with callee-saved registers on WIN64 and vzeroupper %ifnidn %3, "" PROLOGUE %3 %endif %endmacro ; Create a global symbol from a local label with the correct name mangling and type %macro cglobal_label 1 %if FORMAT_ELF global current_function %+ %1:function hidden %elif FORMAT_MACHO && HAVE_PRIVATE_EXTERN global current_function %+ %1:private_extern %else global current_function %+ %1 %endif %1: %endmacro %macro cextern 1 %xdefine %1 mangle(private_prefix %+ _ %+ %1) CAT_XDEFINE cglobaled_, %1, 1 extern %1 %endmacro ; like cextern, but without the prefix %macro cextern_naked 1 %ifdef PREFIX %xdefine %1 mangle(%1) %endif CAT_XDEFINE cglobaled_, %1, 1 extern %1 %endmacro %macro const 1-2+ %xdefine %1 mangle(private_prefix %+ _ %+ %1) %if FORMAT_ELF global %1:data hidden %elif FORMAT_MACHO && HAVE_PRIVATE_EXTERN global %1:private_extern %else global %1 %endif %1: %2 %endmacro ; This is needed for ELF, otherwise the GNU linker assumes the stack is executable by default. %if FORMAT_ELF [SECTION .note.GNU-stack noalloc noexec nowrite progbits] %endif ; Tell debuggers how large the function was. ; This may be invoked multiple times per function; we rely on later instances overriding earlier ones. ; This is invoked by RET and similar macros, and also cglobal does it for the previous function, ; but if the last function in a source file doesn't use any of the standard macros for its epilogue, ; then its size might be unspecified. %macro annotate_function_size 0 %ifdef __YASM_VER__ %ifdef current_function %if FORMAT_ELF current_function_section %%ecf equ $ size current_function %%ecf - current_function __SECT__ %endif %endif %endif %endmacro ; cpuflags %assign cpuflags_mmx (1<<0) %assign cpuflags_mmx2 (1<<1) | cpuflags_mmx %assign cpuflags_3dnow (1<<2) | cpuflags_mmx %assign cpuflags_3dnowext (1<<3) | cpuflags_3dnow %assign cpuflags_sse (1<<4) | cpuflags_mmx2 %assign cpuflags_sse2 (1<<5) | cpuflags_sse %assign cpuflags_sse2slow (1<<6) | cpuflags_sse2 %assign cpuflags_lzcnt (1<<7) | cpuflags_sse2 %assign cpuflags_sse3 (1<<8) | cpuflags_sse2 %assign cpuflags_ssse3 (1<<9) | cpuflags_sse3 %assign cpuflags_sse4 (1<<10)| cpuflags_ssse3 %assign cpuflags_sse42 (1<<11)| cpuflags_sse4 %assign cpuflags_aesni (1<<12)| cpuflags_sse42 %assign cpuflags_avx (1<<13)| cpuflags_sse42 %assign cpuflags_xop (1<<14)| cpuflags_avx %assign cpuflags_fma4 (1<<15)| cpuflags_avx %assign cpuflags_fma3 (1<<16)| cpuflags_avx %assign cpuflags_bmi1 (1<<17)| cpuflags_avx|cpuflags_lzcnt %assign cpuflags_bmi2 (1<<18)| cpuflags_bmi1 %assign cpuflags_avx2 (1<<19)| cpuflags_fma3|cpuflags_bmi2 %assign cpuflags_avx512 (1<<20)| cpuflags_avx2 ; F, CD, BW, DQ, VL %assign cpuflags_cache32 (1<<21) %assign cpuflags_cache64 (1<<22) %assign cpuflags_aligned (1<<23) ; not a cpu feature, but a function variant %assign cpuflags_atom (1<<24) ; Returns a boolean value expressing whether or not the specified cpuflag is enabled. %define cpuflag(x) (((((cpuflags & (cpuflags_ %+ x)) ^ (cpuflags_ %+ x)) - 1) >> 31) & 1) %define notcpuflag(x) (cpuflag(x) ^ 1) ; Takes an arbitrary number of cpuflags from the above list. ; All subsequent functions (up to the next INIT_CPUFLAGS) is built for the specified cpu. ; You shouldn't need to invoke this macro directly, it's a subroutine for INIT_MMX &co. %macro INIT_CPUFLAGS 0-* %xdefine SUFFIX %undef cpuname %assign cpuflags 0 %if %0 >= 1 %rep %0 %ifdef cpuname %xdefine cpuname cpuname %+ _%1 %else %xdefine cpuname %1 %endif %assign cpuflags cpuflags | cpuflags_%1 %rotate 1 %endrep %xdefine SUFFIX _ %+ cpuname %if cpuflag(avx) %assign avx_enabled 1 %endif %if (mmsize == 16 && notcpuflag(sse2)) || (mmsize == 32 && notcpuflag(avx2)) %define mova movaps %define movu movups %define movnta movntps %endif %if cpuflag(aligned) %define movu mova %elif cpuflag(sse3) && notcpuflag(ssse3) %define movu lddqu %endif %endif %if ARCH_X86_64 || cpuflag(sse2) %ifdef __NASM_VER__ ALIGNMODE p6 %else CPU amdnop %endif %else %ifdef __NASM_VER__ ALIGNMODE nop %else CPU basicnop %endif %endif %endmacro ; Merge mmx, sse*, and avx* ; m# is a simd register of the currently selected size ; xm# is the corresponding xmm register if mmsize >= 16, otherwise the same as m# ; ym# is the corresponding ymm register if mmsize >= 32, otherwise the same as m# ; zm# is the corresponding zmm register if mmsize >= 64, otherwise the same as m# ; (All 4 remain in sync through SWAP.) %macro CAT_XDEFINE 3 %xdefine %1%2 %3 %endmacro %macro CAT_UNDEF 2 %undef %1%2 %endmacro %macro DEFINE_MMREGS 1 ; mmtype %assign %%prev_mmregs 0 %ifdef num_mmregs %assign %%prev_mmregs num_mmregs %endif %assign num_mmregs 8 %if ARCH_X86_64 && mmsize >= 16 %assign num_mmregs 16 %if cpuflag(avx512) || mmsize == 64 %assign num_mmregs 32 %endif %endif %assign %%i 0 %rep num_mmregs CAT_XDEFINE m, %%i, %1 %+ %%i CAT_XDEFINE nn%1, %%i, %%i %assign %%i %%i+1 %endrep %if %%prev_mmregs > num_mmregs %rep %%prev_mmregs - num_mmregs CAT_UNDEF m, %%i CAT_UNDEF nn %+ mmtype, %%i %assign %%i %%i+1 %endrep %endif %xdefine mmtype %1 %endmacro ; Prefer registers 16-31 over 0-15 to avoid having to use vzeroupper %macro AVX512_MM_PERMUTATION 0-1 0 ; start_reg %if ARCH_X86_64 && cpuflag(avx512) %assign %%i %1 %rep 16-%1 %assign %%i_high %%i+16 SWAP %%i, %%i_high %assign %%i %%i+1 %endrep %endif %endmacro %macro INIT_MMX 0-1+ %assign avx_enabled 0 %define RESET_MM_PERMUTATION INIT_MMX %1 %define mmsize 8 %define mova movq %define movu movq %define movh movd %define movnta movntq INIT_CPUFLAGS %1 DEFINE_MMREGS mm %endmacro %macro INIT_XMM 0-1+ %assign avx_enabled 0 %define RESET_MM_PERMUTATION INIT_XMM %1 %define mmsize 16 %define mova movdqa %define movu movdqu %define movh movq %define movnta movntdq INIT_CPUFLAGS %1 DEFINE_MMREGS xmm %if WIN64 AVX512_MM_PERMUTATION 6 ; Swap callee-saved registers with volatile registers %endif %endmacro %macro INIT_YMM 0-1+ %assign avx_enabled 1 %define RESET_MM_PERMUTATION INIT_YMM %1 %define mmsize 32 %define mova movdqa %define movu movdqu %undef movh %define movnta movntdq INIT_CPUFLAGS %1 DEFINE_MMREGS ymm AVX512_MM_PERMUTATION %endmacro %macro INIT_ZMM 0-1+ %assign avx_enabled 1 %define RESET_MM_PERMUTATION INIT_ZMM %1 %define mmsize 64 %define mova movdqa %define movu movdqu %undef movh %define movnta movntdq INIT_CPUFLAGS %1 DEFINE_MMREGS zmm AVX512_MM_PERMUTATION %endmacro INIT_XMM %macro DECLARE_MMCAST 1 %define mmmm%1 mm%1 %define mmxmm%1 mm%1 %define mmymm%1 mm%1 %define mmzmm%1 mm%1 %define xmmmm%1 mm%1 %define xmmxmm%1 xmm%1 %define xmmymm%1 xmm%1 %define xmmzmm%1 xmm%1 %define ymmmm%1 mm%1 %define ymmxmm%1 xmm%1 %define ymmymm%1 ymm%1 %define ymmzmm%1 ymm%1 %define zmmmm%1 mm%1 %define zmmxmm%1 xmm%1 %define zmmymm%1 ymm%1 %define zmmzmm%1 zmm%1 %define xm%1 xmm %+ m%1 %define ym%1 ymm %+ m%1 %define zm%1 zmm %+ m%1 %endmacro %assign i 0 %rep 32 DECLARE_MMCAST i %assign i i+1 %endrep ; I often want to use macros that permute their arguments. e.g. there's no ; efficient way to implement butterfly or transpose or dct without swapping some ; arguments. ; ; I would like to not have to manually keep track of the permutations: ; If I insert a permutation in the middle of a function, it should automatically ; change everything that follows. For more complex macros I may also have multiple ; implementations, e.g. the SSE2 and SSSE3 versions may have different permutations. ; ; Hence these macros. Insert a PERMUTE or some SWAPs at the end of a macro that ; permutes its arguments. It's equivalent to exchanging the contents of the ; registers, except that this way you exchange the register names instead, so it ; doesn't cost any cycles. %macro PERMUTE 2-* ; takes a list of pairs to swap %rep %0/2 %xdefine %%tmp%2 m%2 %rotate 2 %endrep %rep %0/2 %xdefine m%1 %%tmp%2 CAT_XDEFINE nn, m%1, %1 %rotate 2 %endrep %endmacro %macro SWAP 2+ ; swaps a single chain (sometimes more concise than pairs) %ifnum %1 ; SWAP 0, 1, ... SWAP_INTERNAL_NUM %1, %2 %else ; SWAP m0, m1, ... SWAP_INTERNAL_NAME %1, %2 %endif %endmacro %macro SWAP_INTERNAL_NUM 2-* %rep %0-1 %xdefine %%tmp m%1 %xdefine m%1 m%2 %xdefine m%2 %%tmp CAT_XDEFINE nn, m%1, %1 CAT_XDEFINE nn, m%2, %2 %rotate 1 %endrep %endmacro %macro SWAP_INTERNAL_NAME 2-* %xdefine %%args nn %+ %1 %rep %0-1 %xdefine %%args %%args, nn %+ %2 %rotate 1 %endrep SWAP_INTERNAL_NUM %%args %endmacro ; If SAVE_MM_PERMUTATION is placed at the end of a function, then any later ; calls to that function will automatically load the permutation, so values can ; be returned in mmregs. %macro SAVE_MM_PERMUTATION 0-1 %if %0 %xdefine %%f %1_m %else %xdefine %%f current_function %+ _m %endif %assign %%i 0 %rep num_mmregs %xdefine %%tmp m %+ %%i CAT_XDEFINE %%f, %%i, regnumof %+ %%tmp %assign %%i %%i+1 %endrep %endmacro %macro LOAD_MM_PERMUTATION 0-1 ; name to load from %if %0 %xdefine %%f %1_m %else %xdefine %%f current_function %+ _m %endif %xdefine %%tmp %%f %+ 0 %ifnum %%tmp RESET_MM_PERMUTATION %assign %%i 0 %rep num_mmregs %xdefine %%tmp %%f %+ %%i CAT_XDEFINE %%m, %%i, m %+ %%tmp %assign %%i %%i+1 %endrep %rep num_mmregs %assign %%i %%i-1 CAT_XDEFINE m, %%i, %%m %+ %%i CAT_XDEFINE nn, m %+ %%i, %%i %endrep %endif %endmacro ; Append cpuflags to the callee's name iff the appended name is known and the plain name isn't %macro call 1 %ifid %1 call_internal %1 %+ SUFFIX, %1 %else call %1 %endif %endmacro %macro call_internal 2 %xdefine %%i %2 %ifndef cglobaled_%2 %ifdef cglobaled_%1 %xdefine %%i %1 %endif %endif call %%i LOAD_MM_PERMUTATION %%i %endmacro ; Substitutions that reduce instruction size but are functionally equivalent %macro add 2 %ifnum %2 %if %2==128 sub %1, -128 %else add %1, %2 %endif %else add %1, %2 %endif %endmacro %macro sub 2 %ifnum %2 %if %2==128 add %1, -128 %else sub %1, %2 %endif %else sub %1, %2 %endif %endmacro ;============================================================================= ; AVX abstraction layer ;============================================================================= %assign i 0 %rep 32 %if i < 8 CAT_XDEFINE sizeofmm, i, 8 CAT_XDEFINE regnumofmm, i, i %endif CAT_XDEFINE sizeofxmm, i, 16 CAT_XDEFINE sizeofymm, i, 32 CAT_XDEFINE sizeofzmm, i, 64 CAT_XDEFINE regnumofxmm, i, i CAT_XDEFINE regnumofymm, i, i CAT_XDEFINE regnumofzmm, i, i %assign i i+1 %endrep %undef i %macro CHECK_AVX_INSTR_EMU 3-* %xdefine %%opcode %1 %xdefine %%dst %2 %rep %0-2 %ifidn %%dst, %3 %error non-avx emulation of ``%%opcode'' is not supported %endif %rotate 1 %endrep %endmacro ;%1 == instruction ;%2 == minimal instruction set ;%3 == 1 if float, 0 if int ;%4 == 1 if 4-operand emulation, 0 if 3-operand emulation, 255 otherwise (no emulation) ;%5 == 1 if commutative (i.e. doesn't matter which src arg is which), 0 if not ;%6+: operands %macro RUN_AVX_INSTR 6-9+ %ifnum sizeof%7 %assign __sizeofreg sizeof%7 %elifnum sizeof%6 %assign __sizeofreg sizeof%6 %else %assign __sizeofreg mmsize %endif %assign __emulate_avx 0 %if avx_enabled && __sizeofreg >= 16 %xdefine __instr v%1 %else %xdefine __instr %1 %if %0 >= 8+%4 %assign __emulate_avx 1 %endif %endif %ifnidn %2, fnord %ifdef cpuname %if notcpuflag(%2) %error use of ``%1'' %2 instruction in cpuname function: current_function %elif cpuflags_%2 < cpuflags_sse && notcpuflag(sse2) && __sizeofreg > 8 %error use of ``%1'' sse2 instruction in cpuname function: current_function %endif %endif %endif %if __emulate_avx %xdefine __src1 %7 %xdefine __src2 %8 %if %5 && %4 == 0 %ifnidn %6, %7 %ifidn %6, %8 %xdefine __src1 %8 %xdefine __src2 %7 %elifnnum sizeof%8 ; 3-operand AVX instructions with a memory arg can only have it in src2, ; whereas SSE emulation prefers to have it in src1 (i.e. the mov). ; So, if the instruction is commutative with a memory arg, swap them. %xdefine __src1 %8 %xdefine __src2 %7 %endif %endif %endif %ifnidn %6, __src1 %if %0 >= 9 CHECK_AVX_INSTR_EMU {%1 %6, %7, %8, %9}, %6, __src2, %9 %else CHECK_AVX_INSTR_EMU {%1 %6, %7, %8}, %6, __src2 %endif %if __sizeofreg == 8 MOVQ %6, __src1 %elif %3 MOVAPS %6, __src1 %else MOVDQA %6, __src1 %endif %endif %if %0 >= 9 %1 %6, __src2, %9 %else %1 %6, __src2 %endif %elif %0 >= 9 __instr %6, %7, %8, %9 %elif %0 == 8 %if avx_enabled && %5 %xdefine __src1 %7 %xdefine __src2 %8 %ifnum regnumof%7 %ifnum regnumof%8 %if regnumof%7 < 8 && regnumof%8 >= 8 && regnumof%8 < 16 && sizeof%8 <= 32 ; Most VEX-encoded instructions require an additional byte to encode when ; src2 is a high register (e.g. m8..15). If the instruction is commutative ; we can swap src1 and src2 when doing so reduces the instruction length. %xdefine __src1 %8 %xdefine __src2 %7 %endif %endif %endif __instr %6, __src1, __src2 %else __instr %6, %7, %8 %endif %elif %0 == 7 %if avx_enabled && %5 %xdefine __src1 %6 %xdefine __src2 %7 %ifnum regnumof%6 %ifnum regnumof%7 %if regnumof%6 < 8 && regnumof%7 >= 8 && regnumof%7 < 16 && sizeof%7 <= 32 %xdefine __src1 %7 %xdefine __src2 %6 %endif %endif %endif __instr %6, __src1, __src2 %else __instr %6, %7 %endif %else __instr %6 %endif %endmacro ;%1 == instruction ;%2 == minimal instruction set ;%3 == 1 if float, 0 if int ;%4 == 1 if 4-operand emulation, 0 if 3-operand emulation, 255 otherwise (no emulation) ;%5 == 1 if commutative (i.e. doesn't matter which src arg is which), 0 if not %macro AVX_INSTR 1-5 fnord, 0, 255, 0 %macro %1 1-10 fnord, fnord, fnord, fnord, %1, %2, %3, %4, %5 %ifidn %2, fnord RUN_AVX_INSTR %6, %7, %8, %9, %10, %1 %elifidn %3, fnord RUN_AVX_INSTR %6, %7, %8, %9, %10, %1, %2 %elifidn %4, fnord RUN_AVX_INSTR %6, %7, %8, %9, %10, %1, %2, %3 %elifidn %5, fnord RUN_AVX_INSTR %6, %7, %8, %9, %10, %1, %2, %3, %4 %else RUN_AVX_INSTR %6, %7, %8, %9, %10, %1, %2, %3, %4, %5 %endif %endmacro %endmacro ; Instructions with both VEX/EVEX and legacy encodings ; Non-destructive instructions are written without parameters AVX_INSTR addpd, sse2, 1, 0, 1 AVX_INSTR addps, sse, 1, 0, 1 AVX_INSTR addsd, sse2, 1, 0, 0 AVX_INSTR addss, sse, 1, 0, 0 AVX_INSTR addsubpd, sse3, 1, 0, 0 AVX_INSTR addsubps, sse3, 1, 0, 0 AVX_INSTR aesdec, aesni, 0, 0, 0 AVX_INSTR aesdeclast, aesni, 0, 0, 0 AVX_INSTR aesenc, aesni, 0, 0, 0 AVX_INSTR aesenclast, aesni, 0, 0, 0 AVX_INSTR aesimc, aesni AVX_INSTR aeskeygenassist, aesni AVX_INSTR andnpd, sse2, 1, 0, 0 AVX_INSTR andnps, sse, 1, 0, 0 AVX_INSTR andpd, sse2, 1, 0, 1 AVX_INSTR andps, sse, 1, 0, 1 AVX_INSTR blendpd, sse4, 1, 1, 0 AVX_INSTR blendps, sse4, 1, 1, 0 AVX_INSTR blendvpd, sse4 ; can't be emulated AVX_INSTR blendvps, sse4 ; can't be emulated AVX_INSTR cmpeqpd, sse2, 1, 0, 1 AVX_INSTR cmpeqps, sse, 1, 0, 1 AVX_INSTR cmpeqsd, sse2, 1, 0, 0 AVX_INSTR cmpeqss, sse, 1, 0, 0 AVX_INSTR cmplepd, sse2, 1, 0, 0 AVX_INSTR cmpleps, sse, 1, 0, 0 AVX_INSTR cmplesd, sse2, 1, 0, 0 AVX_INSTR cmpless, sse, 1, 0, 0 AVX_INSTR cmpltpd, sse2, 1, 0, 0 AVX_INSTR cmpltps, sse, 1, 0, 0 AVX_INSTR cmpltsd, sse2, 1, 0, 0 AVX_INSTR cmpltss, sse, 1, 0, 0 AVX_INSTR cmpneqpd, sse2, 1, 0, 1 AVX_INSTR cmpneqps, sse, 1, 0, 1 AVX_INSTR cmpneqsd, sse2, 1, 0, 0 AVX_INSTR cmpneqss, sse, 1, 0, 0 AVX_INSTR cmpnlepd, sse2, 1, 0, 0 AVX_INSTR cmpnleps, sse, 1, 0, 0 AVX_INSTR cmpnlesd, sse2, 1, 0, 0 AVX_INSTR cmpnless, sse, 1, 0, 0 AVX_INSTR cmpnltpd, sse2, 1, 0, 0 AVX_INSTR cmpnltps, sse, 1, 0, 0 AVX_INSTR cmpnltsd, sse2, 1, 0, 0 AVX_INSTR cmpnltss, sse, 1, 0, 0 AVX_INSTR cmpordpd, sse2 1, 0, 1 AVX_INSTR cmpordps, sse 1, 0, 1 AVX_INSTR cmpordsd, sse2 1, 0, 0 AVX_INSTR cmpordss, sse 1, 0, 0 AVX_INSTR cmppd, sse2, 1, 1, 0 AVX_INSTR cmpps, sse, 1, 1, 0 AVX_INSTR cmpsd, sse2, 1, 1, 0 AVX_INSTR cmpss, sse, 1, 1, 0 AVX_INSTR cmpunordpd, sse2, 1, 0, 1 AVX_INSTR cmpunordps, sse, 1, 0, 1 AVX_INSTR cmpunordsd, sse2, 1, 0, 0 AVX_INSTR cmpunordss, sse, 1, 0, 0 AVX_INSTR comisd, sse2 AVX_INSTR comiss, sse AVX_INSTR cvtdq2pd, sse2 AVX_INSTR cvtdq2ps, sse2 AVX_INSTR cvtpd2dq, sse2 AVX_INSTR cvtpd2ps, sse2 AVX_INSTR cvtps2dq, sse2 AVX_INSTR cvtps2pd, sse2 AVX_INSTR cvtsd2si, sse2 AVX_INSTR cvtsd2ss, sse2, 1, 0, 0 AVX_INSTR cvtsi2sd, sse2, 1, 0, 0 AVX_INSTR cvtsi2ss, sse, 1, 0, 0 AVX_INSTR cvtss2sd, sse2, 1, 0, 0 AVX_INSTR cvtss2si, sse AVX_INSTR cvttpd2dq, sse2 AVX_INSTR cvttps2dq, sse2 AVX_INSTR cvttsd2si, sse2 AVX_INSTR cvttss2si, sse AVX_INSTR divpd, sse2, 1, 0, 0 AVX_INSTR divps, sse, 1, 0, 0 AVX_INSTR divsd, sse2, 1, 0, 0 AVX_INSTR divss, sse, 1, 0, 0 AVX_INSTR dppd, sse4, 1, 1, 0 AVX_INSTR dpps, sse4, 1, 1, 0 AVX_INSTR extractps, sse4 AVX_INSTR haddpd, sse3, 1, 0, 0 AVX_INSTR haddps, sse3, 1, 0, 0 AVX_INSTR hsubpd, sse3, 1, 0, 0 AVX_INSTR hsubps, sse3, 1, 0, 0 AVX_INSTR insertps, sse4, 1, 1, 0 AVX_INSTR lddqu, sse3 AVX_INSTR ldmxcsr, sse AVX_INSTR maskmovdqu, sse2 AVX_INSTR maxpd, sse2, 1, 0, 1 AVX_INSTR maxps, sse, 1, 0, 1 AVX_INSTR maxsd, sse2, 1, 0, 0 AVX_INSTR maxss, sse, 1, 0, 0 AVX_INSTR minpd, sse2, 1, 0, 1 AVX_INSTR minps, sse, 1, 0, 1 AVX_INSTR minsd, sse2, 1, 0, 0 AVX_INSTR minss, sse, 1, 0, 0 AVX_INSTR movapd, sse2 AVX_INSTR movaps, sse AVX_INSTR movd, mmx AVX_INSTR movddup, sse3 AVX_INSTR movdqa, sse2 AVX_INSTR movdqu, sse2 AVX_INSTR movhlps, sse, 1, 0, 0 AVX_INSTR movhpd, sse2, 1, 0, 0 AVX_INSTR movhps, sse, 1, 0, 0 AVX_INSTR movlhps, sse, 1, 0, 0 AVX_INSTR movlpd, sse2, 1, 0, 0 AVX_INSTR movlps, sse, 1, 0, 0 AVX_INSTR movmskpd, sse2 AVX_INSTR movmskps, sse AVX_INSTR movntdq, sse2 AVX_INSTR movntdqa, sse4 AVX_INSTR movntpd, sse2 AVX_INSTR movntps, sse AVX_INSTR movq, mmx AVX_INSTR movsd, sse2, 1, 0, 0 AVX_INSTR movshdup, sse3 AVX_INSTR movsldup, sse3 AVX_INSTR movss, sse, 1, 0, 0 AVX_INSTR movupd, sse2 AVX_INSTR movups, sse AVX_INSTR mpsadbw, sse4, 0, 1, 0 AVX_INSTR mulpd, sse2, 1, 0, 1 AVX_INSTR mulps, sse, 1, 0, 1 AVX_INSTR mulsd, sse2, 1, 0, 0 AVX_INSTR mulss, sse, 1, 0, 0 AVX_INSTR orpd, sse2, 1, 0, 1 AVX_INSTR orps, sse, 1, 0, 1 AVX_INSTR pabsb, ssse3 AVX_INSTR pabsd, ssse3 AVX_INSTR pabsw, ssse3 AVX_INSTR packsswb, mmx, 0, 0, 0 AVX_INSTR packssdw, mmx, 0, 0, 0 AVX_INSTR packuswb, mmx, 0, 0, 0 AVX_INSTR packusdw, sse4, 0, 0, 0 AVX_INSTR paddb, mmx, 0, 0, 1 AVX_INSTR paddw, mmx, 0, 0, 1 AVX_INSTR paddd, mmx, 0, 0, 1 AVX_INSTR paddq, sse2, 0, 0, 1 AVX_INSTR paddsb, mmx, 0, 0, 1 AVX_INSTR paddsw, mmx, 0, 0, 1 AVX_INSTR paddusb, mmx, 0, 0, 1 AVX_INSTR paddusw, mmx, 0, 0, 1 AVX_INSTR palignr, ssse3, 0, 1, 0 AVX_INSTR pand, mmx, 0, 0, 1 AVX_INSTR pandn, mmx, 0, 0, 0 AVX_INSTR pavgb, mmx2, 0, 0, 1 AVX_INSTR pavgw, mmx2, 0, 0, 1 AVX_INSTR pblendvb, sse4 ; can't be emulated AVX_INSTR pblendw, sse4, 0, 1, 0 AVX_INSTR pclmulqdq, fnord, 0, 1, 0 AVX_INSTR pclmulhqhqdq, fnord, 0, 0, 0 AVX_INSTR pclmulhqlqdq, fnord, 0, 0, 0 AVX_INSTR pclmullqhqdq, fnord, 0, 0, 0 AVX_INSTR pclmullqlqdq, fnord, 0, 0, 0 AVX_INSTR pcmpestri, sse42 AVX_INSTR pcmpestrm, sse42 AVX_INSTR pcmpistri, sse42 AVX_INSTR pcmpistrm, sse42 AVX_INSTR pcmpeqb, mmx, 0, 0, 1 AVX_INSTR pcmpeqw, mmx, 0, 0, 1 AVX_INSTR pcmpeqd, mmx, 0, 0, 1 AVX_INSTR pcmpeqq, sse4, 0, 0, 1 AVX_INSTR pcmpgtb, mmx, 0, 0, 0 AVX_INSTR pcmpgtw, mmx, 0, 0, 0 AVX_INSTR pcmpgtd, mmx, 0, 0, 0 AVX_INSTR pcmpgtq, sse42, 0, 0, 0 AVX_INSTR pextrb, sse4 AVX_INSTR pextrd, sse4 AVX_INSTR pextrq, sse4 AVX_INSTR pextrw, mmx2 AVX_INSTR phaddw, ssse3, 0, 0, 0 AVX_INSTR phaddd, ssse3, 0, 0, 0 AVX_INSTR phaddsw, ssse3, 0, 0, 0 AVX_INSTR phminposuw, sse4 AVX_INSTR phsubw, ssse3, 0, 0, 0 AVX_INSTR phsubd, ssse3, 0, 0, 0 AVX_INSTR phsubsw, ssse3, 0, 0, 0 AVX_INSTR pinsrb, sse4, 0, 1, 0 AVX_INSTR pinsrd, sse4, 0, 1, 0 AVX_INSTR pinsrq, sse4, 0, 1, 0 AVX_INSTR pinsrw, mmx2, 0, 1, 0 AVX_INSTR pmaddwd, mmx, 0, 0, 1 AVX_INSTR pmaddubsw, ssse3, 0, 0, 0 AVX_INSTR pmaxsb, sse4, 0, 0, 1 AVX_INSTR pmaxsw, mmx2, 0, 0, 1 AVX_INSTR pmaxsd, sse4, 0, 0, 1 AVX_INSTR pmaxub, mmx2, 0, 0, 1 AVX_INSTR pmaxuw, sse4, 0, 0, 1 AVX_INSTR pmaxud, sse4, 0, 0, 1 AVX_INSTR pminsb, sse4, 0, 0, 1 AVX_INSTR pminsw, mmx2, 0, 0, 1 AVX_INSTR pminsd, sse4, 0, 0, 1 AVX_INSTR pminub, mmx2, 0, 0, 1 AVX_INSTR pminuw, sse4, 0, 0, 1 AVX_INSTR pminud, sse4, 0, 0, 1 AVX_INSTR pmovmskb, mmx2 AVX_INSTR pmovsxbw, sse4 AVX_INSTR pmovsxbd, sse4 AVX_INSTR pmovsxbq, sse4 AVX_INSTR pmovsxwd, sse4 AVX_INSTR pmovsxwq, sse4 AVX_INSTR pmovsxdq, sse4 AVX_INSTR pmovzxbw, sse4 AVX_INSTR pmovzxbd, sse4 AVX_INSTR pmovzxbq, sse4 AVX_INSTR pmovzxwd, sse4 AVX_INSTR pmovzxwq, sse4 AVX_INSTR pmovzxdq, sse4 AVX_INSTR pmuldq, sse4, 0, 0, 1 AVX_INSTR pmulhrsw, ssse3, 0, 0, 1 AVX_INSTR pmulhuw, mmx2, 0, 0, 1 AVX_INSTR pmulhw, mmx, 0, 0, 1 AVX_INSTR pmullw, mmx, 0, 0, 1 AVX_INSTR pmulld, sse4, 0, 0, 1 AVX_INSTR pmuludq, sse2, 0, 0, 1 AVX_INSTR por, mmx, 0, 0, 1 AVX_INSTR psadbw, mmx2, 0, 0, 1 AVX_INSTR pshufb, ssse3, 0, 0, 0 AVX_INSTR pshufd, sse2 AVX_INSTR pshufhw, sse2 AVX_INSTR pshuflw, sse2 AVX_INSTR psignb, ssse3, 0, 0, 0 AVX_INSTR psignw, ssse3, 0, 0, 0 AVX_INSTR psignd, ssse3, 0, 0, 0 AVX_INSTR psllw, mmx, 0, 0, 0 AVX_INSTR pslld, mmx, 0, 0, 0 AVX_INSTR psllq, mmx, 0, 0, 0 AVX_INSTR pslldq, sse2, 0, 0, 0 AVX_INSTR psraw, mmx, 0, 0, 0 AVX_INSTR psrad, mmx, 0, 0, 0 AVX_INSTR psrlw, mmx, 0, 0, 0 AVX_INSTR psrld, mmx, 0, 0, 0 AVX_INSTR psrlq, mmx, 0, 0, 0 AVX_INSTR psrldq, sse2, 0, 0, 0 AVX_INSTR psubb, mmx, 0, 0, 0 AVX_INSTR psubw, mmx, 0, 0, 0 AVX_INSTR psubd, mmx, 0, 0, 0 AVX_INSTR psubq, sse2, 0, 0, 0 AVX_INSTR psubsb, mmx, 0, 0, 0 AVX_INSTR psubsw, mmx, 0, 0, 0 AVX_INSTR psubusb, mmx, 0, 0, 0 AVX_INSTR psubusw, mmx, 0, 0, 0 AVX_INSTR ptest, sse4 AVX_INSTR punpckhbw, mmx, 0, 0, 0 AVX_INSTR punpckhwd, mmx, 0, 0, 0 AVX_INSTR punpckhdq, mmx, 0, 0, 0 AVX_INSTR punpckhqdq, sse2, 0, 0, 0 AVX_INSTR punpcklbw, mmx, 0, 0, 0 AVX_INSTR punpcklwd, mmx, 0, 0, 0 AVX_INSTR punpckldq, mmx, 0, 0, 0 AVX_INSTR punpcklqdq, sse2, 0, 0, 0 AVX_INSTR pxor, mmx, 0, 0, 1 AVX_INSTR rcpps, sse AVX_INSTR rcpss, sse, 1, 0, 0 AVX_INSTR roundpd, sse4 AVX_INSTR roundps, sse4 AVX_INSTR roundsd, sse4, 1, 1, 0 AVX_INSTR roundss, sse4, 1, 1, 0 AVX_INSTR rsqrtps, sse AVX_INSTR rsqrtss, sse, 1, 0, 0 AVX_INSTR shufpd, sse2, 1, 1, 0 AVX_INSTR shufps, sse, 1, 1, 0 AVX_INSTR sqrtpd, sse2 AVX_INSTR sqrtps, sse AVX_INSTR sqrtsd, sse2, 1, 0, 0 AVX_INSTR sqrtss, sse, 1, 0, 0 AVX_INSTR stmxcsr, sse AVX_INSTR subpd, sse2, 1, 0, 0 AVX_INSTR subps, sse, 1, 0, 0 AVX_INSTR subsd, sse2, 1, 0, 0 AVX_INSTR subss, sse, 1, 0, 0 AVX_INSTR ucomisd, sse2 AVX_INSTR ucomiss, sse AVX_INSTR unpckhpd, sse2, 1, 0, 0 AVX_INSTR unpckhps, sse, 1, 0, 0 AVX_INSTR unpcklpd, sse2, 1, 0, 0 AVX_INSTR unpcklps, sse, 1, 0, 0 AVX_INSTR xorpd, sse2, 1, 0, 1 AVX_INSTR xorps, sse, 1, 0, 1 ; 3DNow instructions, for sharing code between AVX, SSE and 3DN AVX_INSTR pfadd, 3dnow, 1, 0, 1 AVX_INSTR pfsub, 3dnow, 1, 0, 0 AVX_INSTR pfmul, 3dnow, 1, 0, 1 ; base-4 constants for shuffles %assign i 0 %rep 256 %assign j ((i>>6)&3)*1000 + ((i>>4)&3)*100 + ((i>>2)&3)*10 + (i&3) %if j < 10 CAT_XDEFINE q000, j, i %elif j < 100 CAT_XDEFINE q00, j, i %elif j < 1000 CAT_XDEFINE q0, j, i %else CAT_XDEFINE q, j, i %endif %assign i i+1 %endrep %undef i %undef j %macro FMA_INSTR 3 %macro %1 4-7 %1, %2, %3 %if cpuflag(xop) v%5 %1, %2, %3, %4 %elifnidn %1, %4 %6 %1, %2, %3 %7 %1, %4 %else %error non-xop emulation of ``%5 %1, %2, %3, %4'' is not supported %endif %endmacro %endmacro FMA_INSTR pmacsww, pmullw, paddw FMA_INSTR pmacsdd, pmulld, paddd ; sse4 emulation FMA_INSTR pmacsdql, pmuldq, paddq ; sse4 emulation FMA_INSTR pmadcswd, pmaddwd, paddd ; Macros for consolidating FMA3 and FMA4 using 4-operand (dst, src1, src2, src3) syntax. ; FMA3 is only possible if dst is the same as one of the src registers. ; Either src2 or src3 can be a memory operand. %macro FMA4_INSTR 2-* %push fma4_instr %xdefine %$prefix %1 %rep %0 - 1 %macro %$prefix%2 4-6 %$prefix, %2 %if notcpuflag(fma3) && notcpuflag(fma4) %error use of ``%5%6'' fma instruction in cpuname function: current_function %elif cpuflag(fma4) v%5%6 %1, %2, %3, %4 %elifidn %1, %2 ; If %3 or %4 is a memory operand it needs to be encoded as the last operand. %ifnum sizeof%3 v%{5}213%6 %2, %3, %4 %else v%{5}132%6 %2, %4, %3 %endif %elifidn %1, %3 v%{5}213%6 %3, %2, %4 %elifidn %1, %4 v%{5}231%6 %4, %2, %3 %else %error fma3 emulation of ``%5%6 %1, %2, %3, %4'' is not supported %endif %endmacro %rotate 1 %endrep %pop %endmacro FMA4_INSTR fmadd, pd, ps, sd, ss FMA4_INSTR fmaddsub, pd, ps FMA4_INSTR fmsub, pd, ps, sd, ss FMA4_INSTR fmsubadd, pd, ps FMA4_INSTR fnmadd, pd, ps, sd, ss FMA4_INSTR fnmsub, pd, ps, sd, ss ; Macros for converting VEX instructions to equivalent EVEX ones. %macro EVEX_INSTR 2-3 0 ; vex, evex, prefer_evex %macro %1 2-7 fnord, fnord, %1, %2, %3 %ifidn %3, fnord %define %%args %1, %2 %elifidn %4, fnord %define %%args %1, %2, %3 %else %define %%args %1, %2, %3, %4 %endif %assign %%evex_required cpuflag(avx512) & %7 %ifnum regnumof%1 %if regnumof%1 >= 16 || sizeof%1 > 32 %assign %%evex_required 1 %endif %endif %ifnum regnumof%2 %if regnumof%2 >= 16 || sizeof%2 > 32 %assign %%evex_required 1 %endif %endif %ifnum regnumof%3 %if regnumof%3 >= 16 || sizeof%3 > 32 %assign %%evex_required 1 %endif %endif %if %%evex_required %6 %%args %else %5 %%args ; Prefer VEX over EVEX due to shorter instruction length %endif %endmacro %endmacro EVEX_INSTR vbroadcastf128, vbroadcastf32x4 EVEX_INSTR vbroadcasti128, vbroadcasti32x4 EVEX_INSTR vextractf128, vextractf32x4 EVEX_INSTR vextracti128, vextracti32x4 EVEX_INSTR vinsertf128, vinsertf32x4 EVEX_INSTR vinserti128, vinserti32x4 EVEX_INSTR vmovdqa, vmovdqa32 EVEX_INSTR vmovdqu, vmovdqu32 EVEX_INSTR vpand, vpandd EVEX_INSTR vpandn, vpandnd EVEX_INSTR vpor, vpord EVEX_INSTR vpxor, vpxord EVEX_INSTR vrcpps, vrcp14ps, 1 ; EVEX versions have higher precision EVEX_INSTR vrcpss, vrcp14ss, 1 EVEX_INSTR vrsqrtps, vrsqrt14ps, 1 EVEX_INSTR vrsqrtss, vrsqrt14ss, 1