ref: 550fe5d2fb8ca91993cb4f015f23946774b86ffc
dir: /src/ref_mvs.c/
/* * Copyright (c) 2001-2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ /* * Changes made compared to libaom version: * - we disable TMV and enable MV_COMPRESS so that the * input array for prev_frames can be at 4x4 instead of * 8x8 resolution, and therefore shared between cur_frame * and prev_frame. To make enc/dec behave consistent, we * also make this change around line 2580: #if 0 AOMMIN(((mi_row >> 1) << 1) + 1 + (((xd->n8_h - 1) >> 1) << 1), mi_row_end - 1) * prev_frame_mvs_stride + AOMMIN(((mi_col >> 1) << 1) + 1 + (((xd->n8_w - 1) >> 1) << 1), mi_col_end - 1) #else (((mi_row >> 1) << 1) + 1) * prev_frame_mvs_stride + (((mi_col >> 1) << 1) + 1) #endif * and the same change (swap mi_cols from prev_frame.mv_stride) on line 2407 * - we disable rect-block overhanging edge inclusion (see * line 2642): if (num_8x8_blocks_wide == num_8x8_blocks_high || 1) { mv_ref_search[5].row = -1; mv_ref_search[5].col = 0; mv_ref_search[6].row = 0; mv_ref_search[6].col = -1; } else { mv_ref_search[5].row = -1; mv_ref_search[5].col = num_8x8_blocks_wide; mv_ref_search[6].row = num_8x8_blocks_high; mv_ref_search[6].col = -1; } * Note that this is a bitstream change and needs the same * change on the decoder side also. * - we change xd->mi to be a pointer instead of a double ptr. */ #include "config.h" #include <assert.h> #include <errno.h> #include <limits.h> #include <stddef.h> #include <stdint.h> #include <stdlib.h> #include <string.h> #include "common/intops.h" #define av1_zero(a) memset(a, 0, sizeof(a)) #define ATTRIBUTE_PACKED #define INLINE inline #define IMPLIES(a, b) (!(a) || (b)) // Logical 'a implies b' (or 'a -> b') #define ROUND_POWER_OF_TWO(value, n) (((value) + (((1 << (n)) >> 1))) >> (n)) #define ROUND_POWER_OF_TWO_SIGNED(value, n) \ (((value) < 0) ? -ROUND_POWER_OF_TWO(-(value), (n)) \ : ROUND_POWER_OF_TWO((value), (n))) #define NELEMENTS(x) (int)(sizeof(x) / sizeof(x[0])) #define MAX_MV_REF_CANDIDATES 2 #define MAX_REF_MV_STACK_SIZE 8 #define REF_CAT_LEVEL 640 #define FRAME_OFFSET_BITS 5 #define MAX_FRAME_DISTANCE ((1 << FRAME_OFFSET_BITS) - 1) #define INVALID_MV 0x80008000 #define COMP_NEWMV_CTXS 5 #define REFMV_OFFSET 4 #define REFMV_CTX_MASK ((1 << (8 - REFMV_OFFSET)) - 1) #define MV_IN_USE_BITS 14 #define MV_UPP (1 << MV_IN_USE_BITS) #define MV_LOW (-(1 << MV_IN_USE_BITS)) typedef struct MV { int16_t row; int16_t col; } MV; typedef union int_mv { uint32_t as_int; MV as_mv; } int_mv; typedef int8_t MV_REFERENCE_FRAME; #define MFMV_STACK_SIZE 3 typedef struct { int_mv mfmv0; uint8_t ref_frame_offset; } TPL_MV_REF; typedef struct { int_mv mv[2]; MV_REFERENCE_FRAME ref_frame[2]; int8_t mode, sb_type; } MV_REF; #define MB_MODE_INFO MV_REF #define AOMMAX(a,b) ((a)>(b)?(a):(b)) #define AOMMIN(a,b) ((a)<(b)?(a):(b)) typedef struct candidate_mv { int_mv this_mv; int_mv comp_mv; int weight; } CANDIDATE_MV; #define NONE_FRAME -1 #define INTRA_FRAME 0 #define LAST_FRAME 1 #define LAST2_FRAME 2 #define LAST3_FRAME 3 #define GOLDEN_FRAME 4 #define BWDREF_FRAME 5 #define ALTREF2_FRAME 6 #define ALTREF_FRAME 7 #define LAST_REF_FRAMES (LAST3_FRAME - LAST_FRAME + 1) #define INTER_REFS_PER_FRAME (ALTREF_FRAME - LAST_FRAME + 1) #define TOTAL_REFS_PER_FRAME (ALTREF_FRAME - INTRA_FRAME + 1) #define FWD_REFS (GOLDEN_FRAME - LAST_FRAME + 1) #define FWD_RF_OFFSET(ref) (ref - LAST_FRAME) #define BWD_REFS (ALTREF_FRAME - BWDREF_FRAME + 1) #define BWD_RF_OFFSET(ref) (ref - BWDREF_FRAME) #define FWD_REFS (GOLDEN_FRAME - LAST_FRAME + 1) #define SINGLE_REFS (FWD_REFS + BWD_REFS) typedef enum ATTRIBUTE_PACKED { LAST_LAST2_FRAMES, // { LAST_FRAME, LAST2_FRAME } LAST_LAST3_FRAMES, // { LAST_FRAME, LAST3_FRAME } LAST_GOLDEN_FRAMES, // { LAST_FRAME, GOLDEN_FRAME } BWDREF_ALTREF_FRAMES, // { BWDREF_FRAME, ALTREF_FRAME } LAST2_LAST3_FRAMES, // { LAST2_FRAME, LAST3_FRAME } LAST2_GOLDEN_FRAMES, // { LAST2_FRAME, GOLDEN_FRAME } LAST3_GOLDEN_FRAMES, // { LAST3_FRAME, GOLDEN_FRAME } BWDREF_ALTREF2_FRAMES, // { BWDREF_FRAME, ALTREF2_FRAME } ALTREF2_ALTREF_FRAMES, // { ALTREF2_FRAME, ALTREF_FRAME } TOTAL_UNIDIR_COMP_REFS, // NOTE: UNIDIR_COMP_REFS is the number of uni-directional reference pairs // that are explicitly signaled. UNIDIR_COMP_REFS = BWDREF_ALTREF_FRAMES + 1, } UNIDIR_COMP_REF; #define TOTAL_COMP_REFS (FWD_REFS * BWD_REFS + TOTAL_UNIDIR_COMP_REFS) #define MODE_CTX_REF_FRAMES (TOTAL_REFS_PER_FRAME + TOTAL_COMP_REFS) #define GLOBALMV_OFFSET 3 #define NEWMV_CTX_MASK ((1 << GLOBALMV_OFFSET) - 1) #define GLOBALMV_CTX_MASK ((1 << (REFMV_OFFSET - GLOBALMV_OFFSET)) - 1) #define MI_SIZE_LOG2 2 #define MI_SIZE (1 << MI_SIZE_LOG2) #define MAX_SB_SIZE_LOG2 7 #define MAX_MIB_SIZE_LOG2 (MAX_SB_SIZE_LOG2 - MI_SIZE_LOG2) #define MIN_MIB_SIZE_LOG2 (MIN_SB_SIZE_LOG2 - MI_SIZE_LOG2) #define MAX_MIB_SIZE (1 << MAX_MIB_SIZE_LOG2) #define MI_SIZE_64X64 (64 >> MI_SIZE_LOG2) #define MI_SIZE_128X128 (128 >> MI_SIZE_LOG2) #define REFMV_OFFSET 4 typedef enum ATTRIBUTE_PACKED { BLOCK_4X4, BLOCK_4X8, BLOCK_8X4, BLOCK_8X8, BLOCK_8X16, BLOCK_16X8, BLOCK_16X16, BLOCK_16X32, BLOCK_32X16, BLOCK_32X32, BLOCK_32X64, BLOCK_64X32, BLOCK_64X64, BLOCK_64X128, BLOCK_128X64, BLOCK_128X128, BLOCK_4X16, BLOCK_16X4, BLOCK_8X32, BLOCK_32X8, BLOCK_16X64, BLOCK_64X16, BLOCK_32X128, BLOCK_128X32, BLOCK_SIZES_ALL, BLOCK_SIZES = BLOCK_4X16, BLOCK_INVALID = 255, BLOCK_LARGEST = (BLOCK_SIZES - 1) } BLOCK_SIZE; typedef enum ATTRIBUTE_PACKED { PARTITION_NONE, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT, PARTITION_HORZ_A, // HORZ split and the top partition is split again PARTITION_HORZ_B, // HORZ split and the bottom partition is split again PARTITION_VERT_A, // VERT split and the left partition is split again PARTITION_VERT_B, // VERT split and the right partition is split again PARTITION_HORZ_4, // 4:1 horizontal partition PARTITION_VERT_4, // 4:1 vertical partition EXT_PARTITION_TYPES, PARTITION_TYPES = PARTITION_SPLIT + 1, PARTITION_INVALID = 255 } PARTITION_TYPE; typedef struct CUR_MODE_INFO { PARTITION_TYPE partition; } CUR_MODE_INFO ; typedef enum ATTRIBUTE_PACKED { DC_PRED, // Average of above and left pixels V_PRED, // Vertical H_PRED, // Horizontal D45_PRED, // Directional 45 deg = round(arctan(1/1) * 180/pi) D135_PRED, // Directional 135 deg = 180 - 45 D117_PRED, // Directional 117 deg = 180 - 63 D153_PRED, // Directional 153 deg = 180 - 27 D207_PRED, // Directional 207 deg = 180 + 27 D63_PRED, // Directional 63 deg = round(arctan(2/1) * 180/pi) SMOOTH_PRED, // Combination of horizontal and vertical interpolation SMOOTH_V_PRED, // Vertical interpolation SMOOTH_H_PRED, // Horizontal interpolation PAETH_PRED, // Predict from the direction of smallest gradient NEARESTMV, NEARMV, GLOBALMV, NEWMV, // Compound ref compound modes NEAREST_NEARESTMV, NEAR_NEARMV, NEAREST_NEWMV, NEW_NEARESTMV, NEAR_NEWMV, NEW_NEARMV, GLOBAL_GLOBALMV, NEW_NEWMV, MB_MODE_COUNT, INTRA_MODES = PAETH_PRED + 1, // PAETH_PRED has to be the last intra mode. INTRA_INVALID = MB_MODE_COUNT // For uv_mode in inter blocks } PREDICTION_MODE; typedef enum { IDENTITY = 0, // identity transformation, 0-parameter TRANSLATION = 1, // translational motion 2-parameter ROTZOOM = 2, // simplified affine with rotation + zoom only, 4-parameter AFFINE = 3, // affine, 6-parameter TRANS_TYPES, } TransformationType; #if 0 typedef enum { KEY_FRAME = 0, INTER_FRAME = 1, #if CONFIG_OBU INTRA_ONLY_FRAME = 2, // replaces intra-only S_FRAME = 3, #endif FRAME_TYPES, } FRAME_TYPE; #endif #define LEAST_SQUARES_SAMPLES_MAX_BITS 3 #define LEAST_SQUARES_SAMPLES_MAX (1 << LEAST_SQUARES_SAMPLES_MAX_BITS) #define SAMPLES_ARRAY_SIZE (LEAST_SQUARES_SAMPLES_MAX * 2) static const uint8_t mi_size_wide[BLOCK_SIZES_ALL] = { 1, 1, 2, 2, 2, 4, 4, 4, 8, 8, 8, 16, 16, 16, 32, 32, 1, 4, 2, 8, 4, 16, 8, 32 }; static const uint8_t mi_size_high[BLOCK_SIZES_ALL] = { 1, 2, 1, 2, 4, 2, 4, 8, 4, 8, 16, 8, 16, 32, 16, 32, 4, 1, 8, 2, 16, 4, 32, 8 }; static const uint8_t block_size_wide[BLOCK_SIZES_ALL] = { 4, 4, 8, 8, 8, 16, 16, 16, 32, 32, 32, 64, 64, 64, 128, 128, 4, 16, 8, 32, 16, 64, 32, 128 }; static const uint8_t block_size_high[BLOCK_SIZES_ALL] = { 4, 8, 4, 8, 16, 8, 16, 32, 16, 32, 64, 32, 64, 128, 64, 128, 16, 4, 32, 8, 64, 16, 128, 32 }; static const uint8_t num_8x8_blocks_wide_lookup[BLOCK_SIZES_ALL] = { 1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 4, 8, 8, 8, 16, 16, 1, 2, 1, 4, 2, 8, 4, 16 }; static const uint8_t num_8x8_blocks_high_lookup[BLOCK_SIZES_ALL] = { 1, 1, 1, 1, 2, 1, 2, 4, 2, 4, 8, 4, 8, 16, 8, 16, 2, 1, 4, 1, 8, 2, 16, 4 }; static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi, TransformationType type) { const PREDICTION_MODE mode = mbmi->mode; const BLOCK_SIZE bsize = mbmi->sb_type; const int block_size_allowed = AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8; return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION && block_size_allowed; } typedef struct { TransformationType wmtype; int32_t wmmat[6]; int16_t alpha, beta, gamma, delta; } WarpedMotionParams; #define WARPEDMODEL_PREC_BITS 16 static const WarpedMotionParams default_warp_params = { IDENTITY, { 0, 0, (1 << WARPEDMODEL_PREC_BITS), 0, 0, (1 << WARPEDMODEL_PREC_BITS) }, 0, 0, 0, 0, }; #define REF_FRAMES_LOG2 3 #define REF_FRAMES (1 << REF_FRAMES_LOG2) #define FRAME_BUFFERS (REF_FRAMES + 7) typedef struct { #if 0 int ref_count; #endif unsigned int cur_frame_offset; unsigned int ref_frame_offset[INTER_REFS_PER_FRAME]; MV_REF *mvs; ptrdiff_t mv_stride; #if 0 #if CONFIG_SEGMENT_PRED_LAST uint8_t *seg_map; #endif #endif int mi_rows; int mi_cols; #if 0 // Width and height give the size of the buffer (before any upscaling, unlike // the sizes that can be derived from the buf structure) int width; int height; WarpedMotionParams global_motion[TOTAL_REFS_PER_FRAME]; #if CONFIG_FILM_GRAIN_SHOWEX int showable_frame; // frame can be used as show existing frame in future #endif #if CONFIG_FILM_GRAIN int film_grain_params_present; aom_film_grain_t film_grain_params; #endif aom_codec_frame_buffer_t raw_frame_buffer; YV12_BUFFER_CONFIG buf; #if CONFIG_HASH_ME hash_table hash_table; #endif #endif uint8_t intra_only; #if 0 FRAME_TYPE frame_type; // The Following variables will only be used in frame parallel decode. // frame_worker_owner indicates which FrameWorker owns this buffer. NULL means // that no FrameWorker owns, or is decoding, this buffer. AVxWorker *frame_worker_owner; // row and col indicate which position frame has been decoded to in real // pixel unit. They are reset to -1 when decoding begins and set to INT_MAX // when the frame is fully decoded. int row; int col; #endif } RefCntBuffer; #define INVALID_IDX -1 // Invalid buffer index. typedef struct TileInfo { int mi_row_start, mi_row_end; int mi_col_start, mi_col_end; int tg_horz_boundary; } TileInfo; typedef struct macroblockd { #if 0 struct macroblockd_plane plane[MAX_MB_PLANE]; uint8_t bmode_blocks_wl; uint8_t bmode_blocks_hl; FRAME_COUNTS *counts; #endif TileInfo tile; int mi_stride; CUR_MODE_INFO cur_mi; MB_MODE_INFO *mi; #if 0 MODE_INFO *left_mi; MODE_INFO *above_mi; MB_MODE_INFO *left_mbmi; MB_MODE_INFO *above_mbmi; MB_MODE_INFO *chroma_left_mbmi; MB_MODE_INFO *chroma_above_mbmi; #endif int up_available; int left_available; #if 0 int chroma_up_available; int chroma_left_available; #endif /* Distance of MB away from frame edges in subpixels (1/8th pixel) */ int mb_to_left_edge; int mb_to_right_edge; int mb_to_top_edge; int mb_to_bottom_edge; #if 0 FRAME_CONTEXT *fc; /* pointers to reference frames */ const RefBuffer *block_refs[2]; /* pointer to current frame */ const YV12_BUFFER_CONFIG *cur_buf; ENTROPY_CONTEXT *above_context[MAX_MB_PLANE]; ENTROPY_CONTEXT left_context[MAX_MB_PLANE][2 * MAX_MIB_SIZE]; PARTITION_CONTEXT *above_seg_context; PARTITION_CONTEXT left_seg_context[MAX_MIB_SIZE]; TXFM_CONTEXT *above_txfm_context; TXFM_CONTEXT *left_txfm_context; TXFM_CONTEXT left_txfm_context_buffer[2 * MAX_MIB_SIZE]; #if CONFIG_LOOP_RESTORATION WienerInfo wiener_info[MAX_MB_PLANE]; SgrprojInfo sgrproj_info[MAX_MB_PLANE]; #endif // CONFIG_LOOP_RESTORATION #endif // block dimension in the unit of mode_info. uint8_t n8_w, n8_h; #if 0 uint8_t ref_mv_count[MODE_CTX_REF_FRAMES]; CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]; #endif uint8_t is_sec_rect; #if 0 // Counts of each reference frame in the above and left neighboring blocks. // NOTE: Take into account both single and comp references. uint8_t neighbors_ref_counts[TOTAL_REFS_PER_FRAME]; FRAME_CONTEXT *tile_ctx; /* Bit depth: 8, 10, 12 */ int bd; int qindex[MAX_SEGMENTS]; int lossless[MAX_SEGMENTS]; int corrupted; int cur_frame_force_integer_mv; // same with that in AV1_COMMON struct aom_internal_error_info *error_info; const WarpedMotionParams *global_motion; int prev_qindex; int delta_qindex; int current_qindex; #if CONFIG_EXT_DELTA_Q // Since actual frame level loop filtering level value is not available // at the beginning of the tile (only available during actual filtering) // at encoder side.we record the delta_lf (against the frame level loop // filtering level) and code the delta between previous superblock's delta // lf and current delta lf. It is equivalent to the delta between previous // superblock's actual lf and current lf. int prev_delta_lf_from_base; int current_delta_lf_from_base; // For this experiment, we have four frame filter levels for different plane // and direction. So, to support the per superblock update, we need to add // a few more params as below. // 0: delta loop filter level for y plane vertical // 1: delta loop filter level for y plane horizontal // 2: delta loop filter level for u plane // 3: delta loop filter level for v plane // To make it consistent with the reference to each filter level in segment, // we need to -1, since // SEG_LVL_ALT_LF_Y_V = 1; // SEG_LVL_ALT_LF_Y_H = 2; // SEG_LVL_ALT_LF_U = 3; // SEG_LVL_ALT_LF_V = 4; int prev_delta_lf[FRAME_LF_COUNT]; int curr_delta_lf[FRAME_LF_COUNT]; #endif DECLARE_ALIGNED(16, uint8_t, seg_mask[2 * MAX_SB_SQUARE]); CFL_CTX cfl; JNT_COMP_PARAMS jcp_param; int all_one_sided_refs; #endif } MACROBLOCKD; typedef struct RefBuffer { int idx; // frame buf idx #if 0 int map_idx; // frame map idx YV12_BUFFER_CONFIG *buf; struct scale_factors sf; #endif } RefBuffer; typedef struct BufferPool { #if 0 // Protect BufferPool from being accessed by several FrameWorkers at // the same time during frame parallel decode. // TODO(hkuang): Try to use atomic variable instead of locking the whole pool. #if CONFIG_MULTITHREAD pthread_mutex_t pool_mutex; #endif // Private data associated with the frame buffer callbacks. void *cb_priv; aom_get_frame_buffer_cb_fn_t get_fb_cb; aom_release_frame_buffer_cb_fn_t release_fb_cb; #endif RefCntBuffer frame_bufs[FRAME_BUFFERS]; #if 0 // Frame buffers allocated internally by the codec. InternalFrameBufferList int_frame_buffers; #endif } BufferPool; typedef struct AV1Common { #if 0 struct aom_internal_error_info error; aom_color_primaries_t color_primaries; aom_transfer_characteristics_t transfer_characteristics; aom_matrix_coefficients_t matrix_coefficients; int color_range; int width; int height; int render_width; int render_height; int last_width; int last_height; int timing_info_present; uint32_t num_units_in_tick; uint32_t time_scale; int equal_picture_interval; uint32_t num_ticks_per_picture; // TODO(jkoleszar): this implies chroma ss right now, but could vary per // plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to // support additional planes. int subsampling_x; int subsampling_y; int largest_tile_id; size_t largest_tile_size; // Scale of the current frame with respect to itself. struct scale_factors sf_identity; // Marks if we need to use 16bit frame buffers (1: yes, 0: no). int use_highbitdepth; YV12_BUFFER_CONFIG *frame_to_show; #endif // TODO(hkuang): Combine this with cur_buf in macroblockd. RefCntBuffer cur_frame; #if 0 int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */ // Prepare ref_frame_map for the next frame. // Only used in frame parallel decode. int next_ref_frame_map[REF_FRAMES]; // TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and // roll new_fb_idx into it. #endif // Each Inter frame can reference INTER_REFS_PER_FRAME buffers RefBuffer frame_refs[INTER_REFS_PER_FRAME]; #if 0 int is_skip_mode_allowed; int skip_mode_flag; int ref_frame_idx_0; int ref_frame_idx_1; int new_fb_idx; FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/ FRAME_TYPE frame_type; int show_frame; #if CONFIG_FILM_GRAIN_SHOWEX int showable_frame; // frame can be used as show existing frame in future #endif int last_show_frame; int show_existing_frame; // Flag for a frame used as a reference - not written to the bitstream int is_reference_frame; #if CONFIG_FWD_KF int reset_decoder_state; #endif // CONFIG_FWD_KF // Flag signaling that the frame is encoded using only INTRA modes. uint8_t intra_only; uint8_t last_intra_only; #if CONFIG_CDF_UPDATE_MODE uint8_t disable_cdf_update; #endif // CONFIG_CDF_UPDATE_MODE #endif int allow_high_precision_mv; int cur_frame_force_integer_mv; // 0 the default in AOM, 1 only integer #if 0 int disable_intra_edge_filter; // 1 - disable corner/edge/upsampling int allow_screen_content_tools; int allow_intrabc; int allow_interintra_compound; int allow_masked_compound; #if !CONFIG_NO_FRAME_CONTEXT_SIGNALING // Flag signaling which frame contexts should be reset to default values. RESET_FRAME_CONTEXT_MODE reset_frame_context; #endif // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in // MODE_INFO (8-pixel) units. int MBs; int mb_rows, mi_rows; int mb_cols, mi_cols; #endif int mi_rows; int mi_cols; int mi_stride; #if 0 /* profile settings */ TX_MODE tx_mode; int base_qindex; int y_dc_delta_q; int u_dc_delta_q; int v_dc_delta_q; int u_ac_delta_q; int v_ac_delta_q; int separate_uv_delta_q; // The dequantizers below are true dequntizers used only in the // dequantization process. They have the same coefficient // shift/scale as TX. int16_t y_dequant_QTX[MAX_SEGMENTS][2]; int16_t u_dequant_QTX[MAX_SEGMENTS][2]; int16_t v_dequant_QTX[MAX_SEGMENTS][2]; // Global quant matrix tables const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL]; const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL]; // Local quant matrix tables for each frame const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; // Encoder int using_qmatrix; #if CONFIG_AOM_QM_EXT int qm_y; int qm_u; int qm_v; #endif // CONFIG_AOM_QM_EXT int min_qmlevel; int max_qmlevel; /* We allocate a MODE_INFO struct for each macroblock, together with an extra row on top and column on the left to simplify prediction. */ int mi_alloc_size; MODE_INFO *mip; /* Base of allocated array */ MODE_INFO *mi; /* Corresponds to upper left visible macroblock */ // TODO(agrange): Move prev_mi into encoder structure. // prev_mip and prev_mi will only be allocated in encoder. MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */ MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */ // Separate mi functions between encoder and decoder. int (*alloc_mi)(struct AV1Common *cm, int mi_size); void (*free_mi)(struct AV1Common *cm); void (*setup_mi)(struct AV1Common *cm); // Grid of pointers to 8x8 MODE_INFO structs. Any 8x8 not in the visible // area will be NULL. MODE_INFO **mi_grid_base; MODE_INFO **mi_grid_visible; MODE_INFO **prev_mi_grid_base; MODE_INFO **prev_mi_grid_visible; #endif // Whether to use previous frame's motion vectors for prediction. int allow_ref_frame_mvs; #if 0 #if !CONFIG_SEGMENT_PRED_LAST // Persistent mb segment id map used in prediction. int seg_map_idx; int prev_seg_map_idx; uint8_t *seg_map_array[NUM_PING_PONG_BUFFERS]; #endif uint8_t *last_frame_seg_map; uint8_t *current_frame_seg_map; int seg_map_alloc_size; InterpFilter interp_filter; int switchable_motion_mode; loop_filter_info_n lf_info; // The denominator of the superres scale; the numerator is fixed. uint8_t superres_scale_denominator; int superres_upscaled_width; int superres_upscaled_height; RestorationInfo rst_info[MAX_MB_PLANE]; // rst_end_stripe[i] is one more than the index of the bottom stripe // for tile row i. int rst_end_stripe[MAX_TILE_ROWS]; // Pointer to a scratch buffer used by self-guided restoration int32_t *rst_tmpbuf; // Flag signaling how frame contexts should be updated at the end of // a frame decode REFRESH_FRAME_CONTEXT_MODE refresh_frame_context; #endif int ref_frame_sign_bias[TOTAL_REFS_PER_FRAME]; /* Two state 0, 1 */ #if 0 struct loopfilter lf; struct segmentation seg; int all_lossless; #endif int frame_parallel_decode; // frame-based threading. #if 0 int reduced_tx_set_used; // Context probabilities for reference frame prediction MV_REFERENCE_FRAME comp_fwd_ref[FWD_REFS]; MV_REFERENCE_FRAME comp_bwd_ref[BWD_REFS]; REFERENCE_MODE reference_mode; FRAME_CONTEXT *fc; /* this frame entropy */ FRAME_CONTEXT *frame_contexts; // FRAME_CONTEXTS FRAME_CONTEXT *pre_fc; // Context referenced in this frame unsigned int frame_context_idx; /* Context to use/update */ #if CONFIG_NO_FRAME_CONTEXT_SIGNALING int fb_of_context_type[REF_FRAMES]; int primary_ref_frame; #endif FRAME_COUNTS counts; #endif unsigned int frame_offset; #if 0 unsigned int current_video_frame; BITSTREAM_PROFILE profile; // AOM_BITS_8 in profile 0 or 1, AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3. aom_bit_depth_t bit_depth; aom_bit_depth_t dequant_bit_depth; // bit_depth of current dequantizer int error_resilient_mode; int tile_cols, tile_rows; int last_tile_cols, last_tile_rows; BOUNDARY_TYPE *boundary_info; int boundary_info_alloc_size; #if CONFIG_MAX_TILE int min_log2_tile_cols; int max_log2_tile_cols; int max_log2_tile_rows; int min_log2_tile_rows; int min_log2_tiles; int max_tile_width_sb; int max_tile_height_sb; int uniform_tile_spacing_flag; int log2_tile_cols; // only valid for uniform tiles int log2_tile_rows; // only valid for uniform tiles int tile_col_start_sb[MAX_TILE_COLS + 1]; // valid for 0 <= i <= tile_cols int tile_row_start_sb[MAX_TILE_ROWS + 1]; // valid for 0 <= i <= tile_rows #if CONFIG_DEPENDENT_HORZTILES int tile_row_independent[MAX_TILE_ROWS]; // valid for 0 <= i < tile_rows #endif int tile_width, tile_height; // In MI units #else int log2_tile_cols, log2_tile_rows; // Used in non-large_scale_tile_coding. int tile_width, tile_height; // In MI units #endif // CONFIG_MAX_TILE #if CONFIG_EXT_TILE unsigned int large_scale_tile; unsigned int single_tile_decoding; #endif // CONFIG_EXT_TILE #if CONFIG_DEPENDENT_HORZTILES int dependent_horz_tiles; int tile_group_start_row[MAX_TILE_ROWS][MAX_TILE_COLS]; int tile_group_start_col[MAX_TILE_ROWS][MAX_TILE_COLS]; #endif #if CONFIG_LOOPFILTERING_ACROSS_TILES #if CONFIG_LOOPFILTERING_ACROSS_TILES_EXT int loop_filter_across_tiles_v_enabled; int loop_filter_across_tiles_h_enabled; #else int loop_filter_across_tiles_enabled; #endif // CONFIG_LOOPFILTERING_ACROSS_TILES_EXT #endif // CONFIG_LOOPFILTERING_ACROSS_TILES int byte_alignment; int skip_loop_filter; // Private data associated with the frame buffer callbacks. void *cb_priv; aom_get_frame_buffer_cb_fn_t get_fb_cb; aom_release_frame_buffer_cb_fn_t release_fb_cb; // Handles memory for the codec. InternalFrameBufferList int_frame_buffers; #endif // External BufferPool passed from outside. BufferPool buffer_pool; #if 0 PARTITION_CONTEXT *above_seg_context; ENTROPY_CONTEXT *above_context[MAX_MB_PLANE]; TXFM_CONTEXT *above_txfm_context; TXFM_CONTEXT *top_txfm_context[MAX_MB_PLANE]; TXFM_CONTEXT left_txfm_context[MAX_MB_PLANE][2 * MAX_MIB_SIZE]; int above_context_alloc_cols; #endif WarpedMotionParams global_motion[TOTAL_REFS_PER_FRAME]; #if 0 #if CONFIG_FILM_GRAIN int film_grain_params_present; aom_film_grain_t film_grain_params; #endif int cdef_pri_damping; int cdef_sec_damping; int nb_cdef_strengths; int cdef_strengths[CDEF_MAX_STRENGTHS]; int cdef_uv_strengths[CDEF_MAX_STRENGTHS]; int cdef_bits; int cdef_preset[4]; int delta_q_present_flag; // Resolution of delta quant int delta_q_res; #if CONFIG_EXT_DELTA_Q int delta_lf_present_flag; // Resolution of delta lf level int delta_lf_res; // This is a flag for number of deltas of loop filter level // 0: use 1 delta, for y_vertical, y_horizontal, u, and v // 1: use separate deltas for each filter level int delta_lf_multi; #endif int num_tg; #endif struct { BLOCK_SIZE sb_size; int enable_order_hint; int order_hint_bits_minus1; } seq_params; #if 0 SequenceHeader seq_params; int current_frame_id; int ref_frame_id[REF_FRAMES]; int valid_for_referencing[REF_FRAMES]; int refresh_mask; int invalid_delta_frame_id_minus1; LV_MAP_CTX_TABLE coeff_ctx_table; #endif TPL_MV_REF *tpl_mvs; #if 0 int tpl_mvs_mem_size; #endif // TODO(jingning): This can be combined with sign_bias later. int8_t ref_frame_side[TOTAL_REFS_PER_FRAME]; #if 0 int frame_refs_short_signaling; #if CONFIG_SCALABILITY int temporal_layer_id; int enhancement_layer_id; int enhancement_layers_cnt; #endif #if TXCOEFF_TIMER int64_t cum_txcoeff_timer; int64_t txcoeff_timer; int txb_count; #endif #if TXCOEFF_COST_TIMER int64_t cum_txcoeff_cost_timer; int64_t txcoeff_cost_timer; int64_t txcoeff_cost_count; #endif const cfg_options_t *options; #endif int ref_buf_idx[INTER_REFS_PER_FRAME]; int ref_order_hint[INTER_REFS_PER_FRAME]; } AV1_COMMON; static INLINE void integer_mv_precision(MV *mv) { int mod = (mv->row % 8); if (mod != 0) { mv->row -= mod; if (abs(mod) > 4) { if (mod > 0) { mv->row += 8; } else { mv->row -= 8; } } } mod = (mv->col % 8); if (mod != 0) { mv->col -= mod; if (abs(mod) > 4) { if (mod > 0) { mv->col += 8; } else { mv->col -= 8; } } } } static INLINE int clamp(int value, int low, int high) { return value < low ? low : (value > high ? high : value); } static INLINE void clamp_mv(MV *mv, int min_col, int max_col, int min_row, int max_row) { mv->col = clamp(mv->col, min_col, max_col); mv->row = clamp(mv->row, min_row, max_row); } #if 0 static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) { return cm->frame_type == KEY_FRAME || cm->intra_only; } #endif static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) { return mbmi->ref_frame[0] == INTRA_FRAME && mbmi->mv[0].as_mv.row != -0x8000; //return mbmi->use_intrabc; } static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) { if (is_intrabc_block(mbmi)) return 1; return mbmi->ref_frame[0] > INTRA_FRAME; } static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) { return mbmi->ref_frame[1] > INTRA_FRAME; } static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) { static const MV_REFERENCE_FRAME lut[] = { LAST_FRAME, // LAST_LAST2_FRAMES, LAST_FRAME, // LAST_LAST3_FRAMES, LAST_FRAME, // LAST_GOLDEN_FRAMES, BWDREF_FRAME, // BWDREF_ALTREF_FRAMES, LAST2_FRAME, // LAST2_LAST3_FRAMES LAST2_FRAME, // LAST2_GOLDEN_FRAMES, LAST3_FRAME, // LAST3_GOLDEN_FRAMES, BWDREF_FRAME, // BWDREF_ALTREF2_FRAMES, ALTREF2_FRAME, // ALTREF2_ALTREF_FRAMES, }; assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS); return lut[ref_idx]; } static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) { static const MV_REFERENCE_FRAME lut[] = { LAST2_FRAME, // LAST_LAST2_FRAMES, LAST3_FRAME, // LAST_LAST3_FRAMES, GOLDEN_FRAME, // LAST_GOLDEN_FRAMES, ALTREF_FRAME, // BWDREF_ALTREF_FRAMES, LAST3_FRAME, // LAST2_LAST3_FRAMES GOLDEN_FRAME, // LAST2_GOLDEN_FRAMES, GOLDEN_FRAME, // LAST3_GOLDEN_FRAMES, ALTREF2_FRAME, // BWDREF_ALTREF2_FRAMES, ALTREF_FRAME, // ALTREF2_ALTREF_FRAMES, }; assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS); return lut[ref_idx]; } #define WARPEDMODEL_PREC_BITS 16 #define GM_TRANS_ONLY_PREC_DIFF (WARPEDMODEL_PREC_BITS - 3) #define WARPEDMODEL_ROW3HOMO_PREC_BITS 16 static INLINE int convert_to_trans_prec(int allow_hp, int coor) { if (allow_hp) return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 3); else return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 2) * 2; } static INLINE int block_center_x(int mi_col, BLOCK_SIZE bs) { const int bw = block_size_wide[bs]; return mi_col * MI_SIZE + bw / 2 - 1; } static INLINE int block_center_y(int mi_row, BLOCK_SIZE bs) { const int bh = block_size_high[bs]; return mi_row * MI_SIZE + bh / 2 - 1; } #if 0 static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) { static const MV_REFERENCE_FRAME lut[] = { LAST_FRAME, // LAST_LAST2_FRAMES, LAST_FRAME, // LAST_LAST3_FRAMES, LAST_FRAME, // LAST_GOLDEN_FRAMES, BWDREF_FRAME, // BWDREF_ALTREF_FRAMES, }; assert(NELEMENTS(lut) == UNIDIR_COMP_REFS); return lut[ref_idx]; } static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) { static const MV_REFERENCE_FRAME lut[] = { LAST2_FRAME, // LAST_LAST2_FRAMES, LAST3_FRAME, // LAST_LAST3_FRAMES, GOLDEN_FRAME, // LAST_GOLDEN_FRAMES, ALTREF_FRAME, // BWDREF_ALTREF_FRAMES, }; assert(NELEMENTS(lut) == UNIDIR_COMP_REFS); return lut[ref_idx]; } #endif // Convert a global motion vector into a motion vector at the centre of the // given block. // // The resulting motion vector will have three fractional bits of precision. If // allow_hp is zero, the bottom bit will always be zero. If CONFIG_AMVR and // is_integer is true, the bottom three bits will be zero (so the motion vector // represents an integer) static INLINE int_mv gm_get_motion_vector(const WarpedMotionParams *gm, int allow_hp, BLOCK_SIZE bsize, int mi_col, int mi_row, int is_integer) { int_mv res; const int32_t *mat = gm->wmmat; int x, y, tx, ty; if (gm->wmtype == TRANSLATION) { // All global motion vectors are stored with WARPEDMODEL_PREC_BITS (16) // bits of fractional precision. The offset for a translation is stored in // entries 0 and 1. For translations, all but the top three (two if // cm->allow_high_precision_mv is false) fractional bits are always zero. // // After the right shifts, there are 3 fractional bits of precision. If // allow_hp is false, the bottom bit is always zero (so we don't need a // call to convert_to_trans_prec here) res.as_mv.row = gm->wmmat[0] >> GM_TRANS_ONLY_PREC_DIFF; res.as_mv.col = gm->wmmat[1] >> GM_TRANS_ONLY_PREC_DIFF; assert(IMPLIES(1 & (res.as_mv.row | res.as_mv.col), allow_hp)); if (is_integer) { integer_mv_precision(&res.as_mv); } return res; } x = block_center_x(mi_col, bsize); y = block_center_y(mi_row, bsize); if (gm->wmtype == ROTZOOM) { assert(gm->wmmat[5] == gm->wmmat[2]); assert(gm->wmmat[4] == -gm->wmmat[3]); } if (gm->wmtype > AFFINE) { int xc = (int)((int64_t)mat[2] * x + (int64_t)mat[3] * y + mat[0]); int yc = (int)((int64_t)mat[4] * x + (int64_t)mat[5] * y + mat[1]); const int Z = (int)((int64_t)mat[6] * x + (int64_t)mat[7] * y + (1 << WARPEDMODEL_ROW3HOMO_PREC_BITS)); xc *= 1 << (WARPEDMODEL_ROW3HOMO_PREC_BITS - WARPEDMODEL_PREC_BITS); yc *= 1 << (WARPEDMODEL_ROW3HOMO_PREC_BITS - WARPEDMODEL_PREC_BITS); xc = (int)(xc > 0 ? ((int64_t)xc + Z / 2) / Z : ((int64_t)xc - Z / 2) / Z); yc = (int)(yc > 0 ? ((int64_t)yc + Z / 2) / Z : ((int64_t)yc - Z / 2) / Z); tx = convert_to_trans_prec(allow_hp, xc) - (x << 3); ty = convert_to_trans_prec(allow_hp, yc) - (y << 3); } else { const int xc = (mat[2] - (1 << WARPEDMODEL_PREC_BITS)) * x + mat[3] * y + mat[0]; const int yc = mat[4] * x + (mat[5] - (1 << WARPEDMODEL_PREC_BITS)) * y + mat[1]; tx = convert_to_trans_prec(allow_hp, xc); ty = convert_to_trans_prec(allow_hp, yc); } res.as_mv.row = ty; res.as_mv.col = tx; if (is_integer) { integer_mv_precision(&res.as_mv); } return res; } static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) { return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV || mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV); } /* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AV1_COMMON_MVREF_COMMON_H_ #define AV1_COMMON_MVREF_COMMON_H_ //#include "av1/common/onyxc_int.h" //#include "av1/common/blockd.h" #ifdef __cplusplus extern "C" { #endif #define MVREF_ROW_COLS 3 // Set the upper limit of the motion vector component magnitude. // This would make a motion vector fit in 26 bits. Plus 3 bits for the // reference frame index. A tuple of motion vector can hence be stored within // 32 bit range for efficient load/store operations. #define REFMVS_LIMIT ((1 << 12) - 1) typedef struct position { int row; int col; } POSITION; // clamp_mv_ref #define MV_BORDER (16 << 3) // Allow 16 pels in 1/8th pel units static INLINE int get_relative_dist(const AV1_COMMON *cm, int a, int b) { if (!cm->seq_params.enable_order_hint) return 0; const int bits = cm->seq_params.order_hint_bits_minus1 + 1; assert(bits >= 1); assert(a >= 0 && a < (1 << bits)); assert(b >= 0 && b < (1 << bits)); int diff = a - b; int m = 1 << (bits - 1); diff = (diff & (m - 1)) - (diff & m); return diff; } static INLINE void clamp_mv_ref(MV *mv, int bw, int bh, const MACROBLOCKD *xd) { clamp_mv(mv, xd->mb_to_left_edge - bw * 8 - MV_BORDER, xd->mb_to_right_edge + bw * 8 + MV_BORDER, xd->mb_to_top_edge - bh * 8 - MV_BORDER, xd->mb_to_bottom_edge + bh * 8 + MV_BORDER); } // This function returns either the appropriate sub block or block's mv // on whether the block_size < 8x8 and we have check_sub_blocks set. static INLINE int_mv get_sub_block_mv(const MB_MODE_INFO *candidate, int which_mv, int search_col) { (void)search_col; return candidate->mv[which_mv]; } static INLINE int_mv get_sub_block_pred_mv(const MB_MODE_INFO *candidate, int which_mv, int search_col) { (void)search_col; return candidate->mv[which_mv]; } // Performs mv sign inversion if indicated by the reference frame combination. static INLINE int_mv scale_mv(const MB_MODE_INFO *mbmi, int ref, const MV_REFERENCE_FRAME this_ref_frame, const int *ref_sign_bias) { int_mv mv = mbmi->mv[ref]; if (ref_sign_bias[mbmi->ref_frame[ref]] != ref_sign_bias[this_ref_frame]) { mv.as_mv.row *= -1; mv.as_mv.col *= -1; } return mv; } // Checks that the given mi_row, mi_col and search point // are inside the borders of the tile. static INLINE int is_inside(const TileInfo *const tile, int mi_col, int mi_row, int mi_rows, const POSITION *mi_pos) { const int dependent_horz_tile_flag = 0; if (dependent_horz_tile_flag && !tile->tg_horz_boundary) { return !(mi_row + mi_pos->row < 0 || mi_col + mi_pos->col < tile->mi_col_start || mi_row + mi_pos->row >= mi_rows || mi_col + mi_pos->col >= tile->mi_col_end); } else { return !(mi_row + mi_pos->row < tile->mi_row_start || mi_col + mi_pos->col < tile->mi_col_start || mi_row + mi_pos->row >= tile->mi_row_end || mi_col + mi_pos->col >= tile->mi_col_end); } } static INLINE int find_valid_row_offset(const TileInfo *const tile, int mi_row, int mi_rows, int row_offset) { const int dependent_horz_tile_flag = 0; if (dependent_horz_tile_flag && !tile->tg_horz_boundary) return clamp(row_offset, -mi_row, mi_rows - mi_row - 1); else return clamp(row_offset, tile->mi_row_start - mi_row, tile->mi_row_end - mi_row - 1); } static INLINE int find_valid_col_offset(const TileInfo *const tile, int mi_col, int col_offset) { return clamp(col_offset, tile->mi_col_start - mi_col, tile->mi_col_end - mi_col - 1); } static INLINE void lower_mv_precision(MV *mv, int allow_hp, int is_integer) { if (is_integer) { integer_mv_precision(mv); } else { if (!allow_hp) { if (mv->row & 1) mv->row += (mv->row > 0 ? -1 : 1); if (mv->col & 1) mv->col += (mv->col > 0 ? -1 : 1); } } } static INLINE int8_t get_uni_comp_ref_idx(const MV_REFERENCE_FRAME *const rf) { // Single ref pred if (rf[1] <= INTRA_FRAME) return -1; // Bi-directional comp ref pred if ((rf[0] < BWDREF_FRAME) && (rf[1] >= BWDREF_FRAME)) return -1; for (int8_t ref_idx = 0; ref_idx < TOTAL_UNIDIR_COMP_REFS; ++ref_idx) { if (rf[0] == comp_ref0(ref_idx) && rf[1] == comp_ref1(ref_idx)) return ref_idx; } return -1; } static INLINE int8_t av1_ref_frame_type(const MV_REFERENCE_FRAME *const rf) { if (rf[1] > INTRA_FRAME) { const int8_t uni_comp_ref_idx = get_uni_comp_ref_idx(rf); if (uni_comp_ref_idx >= 0) { assert((REF_FRAMES + FWD_REFS * BWD_REFS + uni_comp_ref_idx) < MODE_CTX_REF_FRAMES); return REF_FRAMES + FWD_REFS * BWD_REFS + uni_comp_ref_idx; } else { return REF_FRAMES + FWD_RF_OFFSET(rf[0]) + BWD_RF_OFFSET(rf[1]) * FWD_REFS; } } return rf[0]; } // clang-format off static MV_REFERENCE_FRAME ref_frame_map[TOTAL_COMP_REFS][2] = { { LAST_FRAME, BWDREF_FRAME }, { LAST2_FRAME, BWDREF_FRAME }, { LAST3_FRAME, BWDREF_FRAME }, { GOLDEN_FRAME, BWDREF_FRAME }, { LAST_FRAME, ALTREF2_FRAME }, { LAST2_FRAME, ALTREF2_FRAME }, { LAST3_FRAME, ALTREF2_FRAME }, { GOLDEN_FRAME, ALTREF2_FRAME }, { LAST_FRAME, ALTREF_FRAME }, { LAST2_FRAME, ALTREF_FRAME }, { LAST3_FRAME, ALTREF_FRAME }, { GOLDEN_FRAME, ALTREF_FRAME }, { LAST_FRAME, LAST2_FRAME }, { LAST_FRAME, LAST3_FRAME }, { LAST_FRAME, GOLDEN_FRAME }, { BWDREF_FRAME, ALTREF_FRAME }, // NOTE: Following reference frame pairs are not supported to be explicitly // signalled, but they are possibly chosen by the use of skip_mode, // which may use the most recent one-sided reference frame pair. { LAST2_FRAME, LAST3_FRAME }, { LAST2_FRAME, GOLDEN_FRAME }, { LAST3_FRAME, GOLDEN_FRAME }, {BWDREF_FRAME, ALTREF2_FRAME}, { ALTREF2_FRAME, ALTREF_FRAME } }; // clang-format on static INLINE void av1_set_ref_frame(MV_REFERENCE_FRAME *rf, int8_t ref_frame_type) { if (ref_frame_type >= REF_FRAMES) { rf[0] = ref_frame_map[ref_frame_type - REF_FRAMES][0]; rf[1] = ref_frame_map[ref_frame_type - REF_FRAMES][1]; } else { rf[0] = ref_frame_type; rf[1] = NONE_FRAME; assert(ref_frame_type > NONE_FRAME); } } static uint16_t compound_mode_ctx_map[3][COMP_NEWMV_CTXS] = { { 0, 1, 1, 1, 1 }, { 1, 2, 3, 4, 4 }, { 4, 4, 5, 6, 7 }, }; static INLINE int16_t av1_mode_context_analyzer( const int16_t *const mode_context, const MV_REFERENCE_FRAME *const rf) { const int8_t ref_frame = av1_ref_frame_type(rf); if (rf[1] <= INTRA_FRAME) return mode_context[ref_frame]; const int16_t newmv_ctx = mode_context[ref_frame] & NEWMV_CTX_MASK; const int16_t refmv_ctx = (mode_context[ref_frame] >> REFMV_OFFSET) & REFMV_CTX_MASK; const int16_t comp_ctx = compound_mode_ctx_map[refmv_ctx >> 1][AOMMIN( newmv_ctx, COMP_NEWMV_CTXS - 1)]; return comp_ctx; } static INLINE uint8_t av1_drl_ctx(const CANDIDATE_MV *ref_mv_stack, int ref_idx) { if (ref_mv_stack[ref_idx].weight >= REF_CAT_LEVEL && ref_mv_stack[ref_idx + 1].weight >= REF_CAT_LEVEL) return 0; if (ref_mv_stack[ref_idx].weight >= REF_CAT_LEVEL && ref_mv_stack[ref_idx + 1].weight < REF_CAT_LEVEL) return 1; if (ref_mv_stack[ref_idx].weight < REF_CAT_LEVEL && ref_mv_stack[ref_idx + 1].weight < REF_CAT_LEVEL) return 2; return 0; } void av1_setup_frame_buf_refs(AV1_COMMON *cm); void av1_setup_frame_sign_bias(AV1_COMMON *cm); void av1_setup_skip_mode_allowed(AV1_COMMON *cm); #if 0 void av1_setup_motion_field(AV1_COMMON *cm); void av1_set_frame_refs(AV1_COMMON *const cm, int lst_map_idx, int gld_map_idx); #endif // CONFIG_FRAME_REFS_SIGNALING #if 0 static INLINE void av1_collect_neighbors_ref_counts(MACROBLOCKD *const xd) { av1_zero(xd->neighbors_ref_counts); uint8_t *const ref_counts = xd->neighbors_ref_counts; const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int above_in_image = xd->up_available; const int left_in_image = xd->left_available; // Above neighbor if (above_in_image && is_inter_block(above_mbmi)) { ref_counts[above_mbmi->ref_frame[0]]++; if (has_second_ref(above_mbmi)) { ref_counts[above_mbmi->ref_frame[1]]++; } } // Left neighbor if (left_in_image && is_inter_block(left_mbmi)) { ref_counts[left_mbmi->ref_frame[0]]++; if (has_second_ref(left_mbmi)) { ref_counts[left_mbmi->ref_frame[1]]++; } } } #endif void av1_copy_frame_mvs(const AV1_COMMON *const cm, MB_MODE_INFO *mi, int mi_row, int mi_col, int x_mis, int y_mis); void av1_find_mv_refs(const AV1_COMMON *cm, const MACROBLOCKD *xd, MB_MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame, uint8_t ref_mv_count[MODE_CTX_REF_FRAMES], CANDIDATE_MV ref_mv_stack[][MAX_REF_MV_STACK_SIZE], int_mv mv_ref_list[][MAX_MV_REF_CANDIDATES], int_mv *global_mvs, int mi_row, int mi_col, int16_t *mode_context); // check a list of motion vectors by sad score using a number rows of pixels // above and a number cols of pixels in the left to select the one with best // score to use as ref motion vector void av1_find_best_ref_mvs(int allow_hp, int_mv *mvlist, int_mv *nearest_mv, int_mv *near_mv, int is_integer); int selectSamples(MV *mv, int *pts, int *pts_inref, int len, BLOCK_SIZE bsize); int findSamples(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, int *pts, int *pts_inref); #define INTRABC_DELAY_PIXELS 256 // Delay of 256 pixels #define INTRABC_DELAY_SB64 (INTRABC_DELAY_PIXELS / 64) #define USE_WAVE_FRONT 1 // Use only top left area of frame for reference. static INLINE void av1_find_ref_dv(int_mv *ref_dv, const TileInfo *const tile, int mib_size, int mi_row, int mi_col) { (void)mi_col; if (mi_row - mib_size < tile->mi_row_start) { ref_dv->as_mv.row = 0; ref_dv->as_mv.col = -MI_SIZE * mib_size - INTRABC_DELAY_PIXELS; } else { ref_dv->as_mv.row = -MI_SIZE * mib_size; ref_dv->as_mv.col = 0; } ref_dv->as_mv.row *= 8; ref_dv->as_mv.col *= 8; } static INLINE int av1_is_dv_valid(const MV dv, const AV1_COMMON *cm, const MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize, int mib_size_log2) { const int bw = block_size_wide[bsize]; const int bh = block_size_high[bsize]; const int SCALE_PX_TO_MV = 8; // Disallow subpixel for now // SUBPEL_MASK is not the correct scale if (((dv.row & (SCALE_PX_TO_MV - 1)) || (dv.col & (SCALE_PX_TO_MV - 1)))) return 0; const TileInfo *const tile = &xd->tile; // Is the source top-left inside the current tile? const int src_top_edge = mi_row * MI_SIZE * SCALE_PX_TO_MV + dv.row; const int tile_top_edge = tile->mi_row_start * MI_SIZE * SCALE_PX_TO_MV; if (src_top_edge < tile_top_edge) return 0; const int src_left_edge = mi_col * MI_SIZE * SCALE_PX_TO_MV + dv.col; const int tile_left_edge = tile->mi_col_start * MI_SIZE * SCALE_PX_TO_MV; if (src_left_edge < tile_left_edge) return 0; // Is the bottom right inside the current tile? const int src_bottom_edge = (mi_row * MI_SIZE + bh) * SCALE_PX_TO_MV + dv.row; const int tile_bottom_edge = tile->mi_row_end * MI_SIZE * SCALE_PX_TO_MV; if (src_bottom_edge > tile_bottom_edge) return 0; const int src_right_edge = (mi_col * MI_SIZE + bw) * SCALE_PX_TO_MV + dv.col; const int tile_right_edge = tile->mi_col_end * MI_SIZE * SCALE_PX_TO_MV; if (src_right_edge > tile_right_edge) return 0; #if 0 // Special case for sub 8x8 chroma cases, to prevent referring to chroma // pixels outside current tile. for (int plane = 1; plane < av1_num_planes(cm); ++plane) { const struct macroblockd_plane *const pd = &xd->plane[plane]; if (is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, pd->subsampling_y)) { if (bw < 8 && pd->subsampling_x) if (src_left_edge < tile_left_edge + 4 * SCALE_PX_TO_MV) return 0; if (bh < 8 && pd->subsampling_y) if (src_top_edge < tile_top_edge + 4 * SCALE_PX_TO_MV) return 0; } } #endif // Is the bottom right within an already coded SB? Also consider additional // constraints to facilitate HW decoder. const int max_mib_size = 1 << mib_size_log2; const int active_sb_row = mi_row >> mib_size_log2; const int active_sb64_col = (mi_col * MI_SIZE) >> 6; const int sb_size = max_mib_size * MI_SIZE; const int src_sb_row = ((src_bottom_edge >> 3) - 1) / sb_size; const int src_sb64_col = ((src_right_edge >> 3) - 1) >> 6; const int total_sb64_per_row = ((tile->mi_col_end - tile->mi_col_start - 1) >> 4) + 1; const int active_sb64 = active_sb_row * total_sb64_per_row + active_sb64_col; const int src_sb64 = src_sb_row * total_sb64_per_row + src_sb64_col; if (src_sb64 >= active_sb64 - INTRABC_DELAY_SB64) return 0; #if USE_WAVE_FRONT const int gradient = 1 + INTRABC_DELAY_SB64 + (sb_size > 64); const int wf_offset = gradient * (active_sb_row - src_sb_row); if (src_sb_row > active_sb_row || src_sb64_col >= active_sb64_col - INTRABC_DELAY_SB64 + wf_offset) return 0; #endif return 1; } #ifdef __cplusplus } // extern "C" #endif #endif // AV1_COMMON_MVREF_COMMON_H_ /* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include <stdlib.h> //#include "av1/common/mvref_common.h" //#include "av1/common/warped_motion.h" // Although we assign 32 bit integers, all the values are strictly under 14 // bits. static int div_mult[32] = { 0, 16384, 8192, 5461, 4096, 3276, 2730, 2340, 2048, 1820, 1638, 1489, 1365, 1260, 1170, 1092, 1024, 963, 910, 862, 819, 780, 744, 712, 682, 655, 630, 606, 585, 564, 546, 528 }; // TODO(jingning): Consider the use of lookup table for (num / den) // altogether. static void get_mv_projection(MV *output, MV ref, int num, int den) { den = AOMMIN(den, MAX_FRAME_DISTANCE); num = num > 0 ? AOMMIN(num, MAX_FRAME_DISTANCE) : AOMMAX(num, -MAX_FRAME_DISTANCE); int mv_row = ROUND_POWER_OF_TWO_SIGNED(ref.row * num * div_mult[den], 14); int mv_col = ROUND_POWER_OF_TWO_SIGNED(ref.col * num * div_mult[den], 14); const int clamp_max = MV_UPP - 1; const int clamp_min = MV_LOW + 1; output->row = (int16_t)clamp(mv_row, clamp_min, clamp_max); output->col = (int16_t)clamp(mv_col, clamp_min, clamp_max); } #if 0 void av1_copy_frame_mvs(const AV1_COMMON *const cm, MB_MODE_INFO *mi, int mi_row, int mi_col, int x_mis, int y_mis) { const int frame_mvs_stride = ROUND_POWER_OF_TWO(cm->mi_cols, 1); MV_REF *frame_mvs = cm->cur_frame.mvs + (mi_row >> 1) * frame_mvs_stride + (mi_col >> 1); x_mis = ROUND_POWER_OF_TWO(x_mis, 1); y_mis = ROUND_POWER_OF_TWO(y_mis, 1); int w, h; for (h = 0; h < y_mis; h++) { MV_REF *mv = frame_mvs; for (w = 0; w < x_mis; w++) { mv->ref_frame = NONE_FRAME; mv->mv.as_int = 0; for (int idx = 0; idx < 2; ++idx) { MV_REFERENCE_FRAME ref_frame = mi->ref_frame[idx]; if (ref_frame > INTRA_FRAME) { int8_t ref_idx = cm->ref_frame_side[ref_frame]; if (ref_idx) continue; if ((abs(mi->mv[idx].as_mv.row) > REFMVS_LIMIT) || (abs(mi->mv[idx].as_mv.col) > REFMVS_LIMIT)) continue; mv->ref_frame = ref_frame; mv->mv.as_int = mi->mv[idx].as_int; } } mv++; } frame_mvs += frame_mvs_stride; } } #endif static void add_ref_mv_candidate( const MB_MODE_INFO *const candidate, const MV_REFERENCE_FRAME rf[2], uint8_t *refmv_count, uint8_t *ref_match_count, uint8_t *newmv_count, CANDIDATE_MV *ref_mv_stack, int_mv *gm_mv_candidates, const WarpedMotionParams *gm_params, int col, int weight) { if (!is_inter_block(candidate)) return; // for intrabc int index = 0, ref; assert(weight % 2 == 0); if (rf[1] == NONE_FRAME) { // single reference frame for (ref = 0; ref < 2; ++ref) { if (candidate->ref_frame[ref] == rf[0]) { int_mv this_refmv; if (is_global_mv_block(candidate, gm_params[rf[0]].wmtype)) this_refmv = gm_mv_candidates[0]; else this_refmv = get_sub_block_mv(candidate, ref, col); for (index = 0; index < *refmv_count; ++index) if (ref_mv_stack[index].this_mv.as_int == this_refmv.as_int) break; if (index < *refmv_count) ref_mv_stack[index].weight += weight; // Add a new item to the list. if (index == *refmv_count && *refmv_count < MAX_REF_MV_STACK_SIZE) { ref_mv_stack[index].this_mv = this_refmv; ref_mv_stack[index].weight = weight; ++(*refmv_count); } if (have_newmv_in_inter_mode(candidate->mode)) ++*newmv_count; ++*ref_match_count; } } } else { // compound reference frame if (candidate->ref_frame[0] == rf[0] && candidate->ref_frame[1] == rf[1]) { int_mv this_refmv[2]; for (ref = 0; ref < 2; ++ref) { if (is_global_mv_block(candidate, gm_params[rf[ref]].wmtype)) this_refmv[ref] = gm_mv_candidates[ref]; else this_refmv[ref] = get_sub_block_mv(candidate, ref, col); } for (index = 0; index < *refmv_count; ++index) if ((ref_mv_stack[index].this_mv.as_int == this_refmv[0].as_int) && (ref_mv_stack[index].comp_mv.as_int == this_refmv[1].as_int)) break; if (index < *refmv_count) ref_mv_stack[index].weight += weight; // Add a new item to the list. if (index == *refmv_count && *refmv_count < MAX_REF_MV_STACK_SIZE) { ref_mv_stack[index].this_mv = this_refmv[0]; ref_mv_stack[index].comp_mv = this_refmv[1]; ref_mv_stack[index].weight = weight; ++(*refmv_count); } if (have_newmv_in_inter_mode(candidate->mode)) ++*newmv_count; ++*ref_match_count; } } } static void scan_row_mbmi(const AV1_COMMON *cm, const MACROBLOCKD *xd, int mi_row, int mi_col, const MV_REFERENCE_FRAME rf[2], int row_offset, CANDIDATE_MV *ref_mv_stack, uint8_t *refmv_count, uint8_t *ref_match_count, uint8_t *newmv_count, int_mv *gm_mv_candidates, int max_row_offset, int *processed_rows) { int end_mi = AOMMIN(xd->n8_w, cm->mi_cols - mi_col); end_mi = AOMMIN(end_mi, mi_size_wide[BLOCK_64X64]); const int n8_w_8 = mi_size_wide[BLOCK_8X8]; const int n8_w_16 = mi_size_wide[BLOCK_16X16]; int i; int col_offset = 0; const int shift = 0; // TODO(jingning): Revisit this part after cb4x4 is stable. if (abs(row_offset) > 1) { col_offset = 1; if ((mi_col & 0x01) && xd->n8_w < n8_w_8) --col_offset; } const int use_step_16 = (xd->n8_w >= 16); MB_MODE_INFO *const candidate_mi0 = xd->mi + row_offset * xd->mi_stride; (void)mi_row; for (i = 0; i < end_mi;) { const MB_MODE_INFO *const candidate = &candidate_mi0[col_offset + i]; const int candidate_bsize = candidate->sb_type; const int n8_w = mi_size_wide[candidate_bsize]; int len = AOMMIN(xd->n8_w, n8_w); if (use_step_16) len = AOMMAX(n8_w_16, len); else if (abs(row_offset) > 1) len = AOMMAX(len, n8_w_8); int weight = 2; if (xd->n8_w >= n8_w_8 && xd->n8_w <= n8_w) { int inc = AOMMIN(-max_row_offset + row_offset + 1, mi_size_high[candidate_bsize]); // Obtain range used in weight calculation. weight = AOMMAX(weight, (inc << shift)); // Update processed rows. *processed_rows = inc - row_offset - 1; } add_ref_mv_candidate(candidate, rf, refmv_count, ref_match_count, newmv_count, ref_mv_stack, gm_mv_candidates, cm->global_motion, col_offset + i, len * weight); i += len; } } static void scan_col_mbmi(const AV1_COMMON *cm, const MACROBLOCKD *xd, int mi_row, int mi_col, const MV_REFERENCE_FRAME rf[2], int col_offset, CANDIDATE_MV *ref_mv_stack, uint8_t *refmv_count, uint8_t *ref_match_count, uint8_t *newmv_count, int_mv *gm_mv_candidates, int max_col_offset, int *processed_cols) { int end_mi = AOMMIN(xd->n8_h, cm->mi_rows - mi_row); end_mi = AOMMIN(end_mi, mi_size_high[BLOCK_64X64]); const int n8_h_8 = mi_size_high[BLOCK_8X8]; const int n8_h_16 = mi_size_high[BLOCK_16X16]; int i; int row_offset = 0; const int shift = 0; if (abs(col_offset) > 1) { row_offset = 1; if ((mi_row & 0x01) && xd->n8_h < n8_h_8) --row_offset; } const int use_step_16 = (xd->n8_h >= 16); (void)mi_col; for (i = 0; i < end_mi;) { const MB_MODE_INFO *const candidate = &xd->mi[(row_offset + i) * xd->mi_stride + col_offset]; const int candidate_bsize = candidate->sb_type; const int n8_h = mi_size_high[candidate_bsize]; int len = AOMMIN(xd->n8_h, n8_h); if (use_step_16) len = AOMMAX(n8_h_16, len); else if (abs(col_offset) > 1) len = AOMMAX(len, n8_h_8); int weight = 2; if (xd->n8_h >= n8_h_8 && xd->n8_h <= n8_h) { int inc = AOMMIN(-max_col_offset + col_offset + 1, mi_size_wide[candidate_bsize]); // Obtain range used in weight calculation. weight = AOMMAX(weight, (inc << shift)); // Update processed cols. *processed_cols = inc - col_offset - 1; } add_ref_mv_candidate(candidate, rf, refmv_count, ref_match_count, newmv_count, ref_mv_stack, gm_mv_candidates, cm->global_motion, col_offset, len * weight); i += len; } } static void scan_blk_mbmi(const AV1_COMMON *cm, const MACROBLOCKD *xd, const int mi_row, const int mi_col, const MV_REFERENCE_FRAME rf[2], int row_offset, int col_offset, CANDIDATE_MV *ref_mv_stack, uint8_t *ref_match_count, uint8_t *newmv_count, int_mv *gm_mv_candidates, uint8_t refmv_count[MODE_CTX_REF_FRAMES]) { const TileInfo *const tile = &xd->tile; POSITION mi_pos; mi_pos.row = row_offset; mi_pos.col = col_offset; if (is_inside(tile, mi_col, mi_row, cm->mi_rows, &mi_pos)) { const MB_MODE_INFO *const candidate = &xd->mi[mi_pos.row * xd->mi_stride + mi_pos.col]; const int len = mi_size_wide[BLOCK_8X8]; add_ref_mv_candidate(candidate, rf, refmv_count, ref_match_count, newmv_count, ref_mv_stack, gm_mv_candidates, cm->global_motion, mi_pos.col, 2 * len); } // Analyze a single 8x8 block motion information. } static int has_top_right(const AV1_COMMON *cm, const MACROBLOCKD *xd, int mi_row, int mi_col, int bs) { const int sb_mi_size = mi_size_wide[cm->seq_params.sb_size]; const int mask_row = mi_row & (sb_mi_size - 1); const int mask_col = mi_col & (sb_mi_size - 1); if (bs > mi_size_wide[BLOCK_64X64]) return 0; // In a split partition all apart from the bottom right has a top right int has_tr = !((mask_row & bs) && (mask_col & bs)); // bs > 0 and bs is a power of 2 assert(bs > 0 && !(bs & (bs - 1))); // For each 4x4 group of blocks, when the bottom right is decoded the blocks // to the right have not been decoded therefore the bottom right does // not have a top right while (bs < sb_mi_size) { if (mask_col & bs) { if ((mask_col & (2 * bs)) && (mask_row & (2 * bs))) { has_tr = 0; break; } } else { break; } bs <<= 1; } // The left hand of two vertical rectangles always has a top right (as the // block above will have been decoded) if (xd->n8_w < xd->n8_h) if (!xd->is_sec_rect) has_tr = 1; // The bottom of two horizontal rectangles never has a top right (as the block // to the right won't have been decoded) if (xd->n8_w > xd->n8_h) if (xd->is_sec_rect) has_tr = 0; // The bottom left square of a Vertical A (in the old format) does // not have a top right as it is decoded before the right hand // rectangle of the partition if (xd->cur_mi.partition == PARTITION_VERT_A) { if (xd->n8_w == xd->n8_h) if (mask_row & bs) has_tr = 0; } return has_tr; } static int check_sb_border(const int mi_row, const int mi_col, const int row_offset, const int col_offset) { const int sb_mi_size = mi_size_wide[BLOCK_64X64]; const int row = mi_row & (sb_mi_size - 1); const int col = mi_col & (sb_mi_size - 1); if (row + row_offset < 0 || row + row_offset >= sb_mi_size || col + col_offset < 0 || col + col_offset >= sb_mi_size) return 0; return 1; } static int add_tpl_ref_mv(const AV1_COMMON *cm, const MACROBLOCKD *xd, int mi_row, int mi_col, MV_REFERENCE_FRAME ref_frame, int blk_row, int blk_col, int_mv *gm_mv_candidates, uint8_t refmv_count[MODE_CTX_REF_FRAMES], CANDIDATE_MV ref_mv_stacks[][MAX_REF_MV_STACK_SIZE], int16_t *mode_context) { POSITION mi_pos; int idx; const int weight_unit = 1; // mi_size_wide[BLOCK_8X8]; mi_pos.row = (mi_row & 0x01) ? blk_row : blk_row + 1; mi_pos.col = (mi_col & 0x01) ? blk_col : blk_col + 1; if (!is_inside(&xd->tile, mi_col, mi_row, cm->mi_rows, &mi_pos)) return 0; const TPL_MV_REF *prev_frame_mvs = cm->tpl_mvs + ((mi_row + mi_pos.row) >> 1) * (cm->mi_stride >> 1) + ((mi_col + mi_pos.col) >> 1); MV_REFERENCE_FRAME rf[2]; av1_set_ref_frame(rf, ref_frame); if (rf[1] == NONE_FRAME) { int cur_frame_index = cm->cur_frame.cur_frame_offset; int buf_idx_0 = cm->frame_refs[FWD_RF_OFFSET(rf[0])].idx; int frame0_index = cm->buffer_pool.frame_bufs[buf_idx_0].cur_frame_offset; int cur_offset_0 = get_relative_dist(cm, cur_frame_index, frame0_index); CANDIDATE_MV *ref_mv_stack = ref_mv_stacks[rf[0]]; if (prev_frame_mvs->mfmv0.as_int != INVALID_MV) { int_mv this_refmv; get_mv_projection(&this_refmv.as_mv, prev_frame_mvs->mfmv0.as_mv, cur_offset_0, prev_frame_mvs->ref_frame_offset); lower_mv_precision(&this_refmv.as_mv, cm->allow_high_precision_mv, cm->cur_frame_force_integer_mv); if (blk_row == 0 && blk_col == 0) if (abs(this_refmv.as_mv.row - gm_mv_candidates[0].as_mv.row) >= 16 || abs(this_refmv.as_mv.col - gm_mv_candidates[0].as_mv.col) >= 16) mode_context[ref_frame] |= (1 << GLOBALMV_OFFSET); for (idx = 0; idx < refmv_count[rf[0]]; ++idx) if (this_refmv.as_int == ref_mv_stack[idx].this_mv.as_int) break; if (idx < refmv_count[rf[0]]) ref_mv_stack[idx].weight += 2 * weight_unit; if (idx == refmv_count[rf[0]] && refmv_count[rf[0]] < MAX_REF_MV_STACK_SIZE) { ref_mv_stack[idx].this_mv.as_int = this_refmv.as_int; ref_mv_stack[idx].weight = 2 * weight_unit; ++(refmv_count[rf[0]]); } return 1; } } else { // Process compound inter mode int cur_frame_index = cm->cur_frame.cur_frame_offset; int buf_idx_0 = cm->frame_refs[FWD_RF_OFFSET(rf[0])].idx; int frame0_index = cm->buffer_pool.frame_bufs[buf_idx_0].cur_frame_offset; int cur_offset_0 = get_relative_dist(cm, cur_frame_index, frame0_index); int buf_idx_1 = cm->frame_refs[FWD_RF_OFFSET(rf[1])].idx; int frame1_index = cm->buffer_pool.frame_bufs[buf_idx_1].cur_frame_offset; int cur_offset_1 = get_relative_dist(cm, cur_frame_index, frame1_index); CANDIDATE_MV *ref_mv_stack = ref_mv_stacks[ref_frame]; if (prev_frame_mvs->mfmv0.as_int != INVALID_MV) { int_mv this_refmv; int_mv comp_refmv; get_mv_projection(&this_refmv.as_mv, prev_frame_mvs->mfmv0.as_mv, cur_offset_0, prev_frame_mvs->ref_frame_offset); get_mv_projection(&comp_refmv.as_mv, prev_frame_mvs->mfmv0.as_mv, cur_offset_1, prev_frame_mvs->ref_frame_offset); lower_mv_precision(&this_refmv.as_mv, cm->allow_high_precision_mv, cm->cur_frame_force_integer_mv); lower_mv_precision(&comp_refmv.as_mv, cm->allow_high_precision_mv, cm->cur_frame_force_integer_mv); if (blk_row == 0 && blk_col == 0) if (abs(this_refmv.as_mv.row - gm_mv_candidates[0].as_mv.row) >= 16 || abs(this_refmv.as_mv.col - gm_mv_candidates[0].as_mv.col) >= 16 || abs(comp_refmv.as_mv.row - gm_mv_candidates[1].as_mv.row) >= 16 || abs(comp_refmv.as_mv.col - gm_mv_candidates[1].as_mv.col) >= 16) mode_context[ref_frame] |= (1 << GLOBALMV_OFFSET); for (idx = 0; idx < refmv_count[ref_frame]; ++idx) if (this_refmv.as_int == ref_mv_stack[idx].this_mv.as_int && comp_refmv.as_int == ref_mv_stack[idx].comp_mv.as_int) break; if (idx < refmv_count[ref_frame]) ref_mv_stack[idx].weight += 2 * weight_unit; if (idx == refmv_count[ref_frame] && refmv_count[ref_frame] < MAX_REF_MV_STACK_SIZE) { ref_mv_stack[idx].this_mv.as_int = this_refmv.as_int; ref_mv_stack[idx].comp_mv.as_int = comp_refmv.as_int; ref_mv_stack[idx].weight = 2 * weight_unit; ++(refmv_count[ref_frame]); } return 1; } } return 0; } static void setup_ref_mv_list( const AV1_COMMON *cm, const MACROBLOCKD *xd, MV_REFERENCE_FRAME ref_frame, uint8_t refmv_count[MODE_CTX_REF_FRAMES], CANDIDATE_MV ref_mv_stack[][MAX_REF_MV_STACK_SIZE], int_mv mv_ref_list[][MAX_MV_REF_CANDIDATES], int_mv *gm_mv_candidates, int mi_row, int mi_col, int16_t *mode_context) { const int bs = AOMMAX(xd->n8_w, xd->n8_h); const int has_tr = has_top_right(cm, xd, mi_row, mi_col, bs); MV_REFERENCE_FRAME rf[2]; const TileInfo *const tile = &xd->tile; int max_row_offset = 0, max_col_offset = 0; const int row_adj = (xd->n8_h < mi_size_high[BLOCK_8X8]) && (mi_row & 0x01); const int col_adj = (xd->n8_w < mi_size_wide[BLOCK_8X8]) && (mi_col & 0x01); int processed_rows = 0; int processed_cols = 0; av1_set_ref_frame(rf, ref_frame); mode_context[ref_frame] = 0; refmv_count[ref_frame] = 0; // Find valid maximum row/col offset. if (xd->up_available) { max_row_offset = -(MVREF_ROW_COLS << 1) + row_adj; if (xd->n8_h < mi_size_high[BLOCK_8X8]) max_row_offset = -(2 << 1) + row_adj; max_row_offset = find_valid_row_offset(tile, mi_row, cm->mi_rows, max_row_offset); } if (xd->left_available) { max_col_offset = -(MVREF_ROW_COLS << 1) + col_adj; if (xd->n8_w < mi_size_wide[BLOCK_8X8]) max_col_offset = -(2 << 1) + col_adj; max_col_offset = find_valid_col_offset(tile, mi_col, max_col_offset); } uint8_t col_match_count = 0; uint8_t row_match_count = 0; uint8_t newmv_count = 0; // Scan the first above row mode info. row_offset = -1; if (abs(max_row_offset) >= 1) scan_row_mbmi(cm, xd, mi_row, mi_col, rf, -1, ref_mv_stack[ref_frame], &refmv_count[ref_frame], &row_match_count, &newmv_count, gm_mv_candidates, max_row_offset, &processed_rows); // Scan the first left column mode info. col_offset = -1; if (abs(max_col_offset) >= 1) scan_col_mbmi(cm, xd, mi_row, mi_col, rf, -1, ref_mv_stack[ref_frame], &refmv_count[ref_frame], &col_match_count, &newmv_count, gm_mv_candidates, max_col_offset, &processed_cols); // Check top-right boundary if (has_tr) scan_blk_mbmi(cm, xd, mi_row, mi_col, rf, -1, xd->n8_w, ref_mv_stack[ref_frame], &row_match_count, &newmv_count, gm_mv_candidates, &refmv_count[ref_frame]); uint8_t nearest_match = (row_match_count > 0) + (col_match_count > 0); uint8_t nearest_refmv_count = refmv_count[ref_frame]; // TODO(yunqing): for comp_search, do it for all 3 cases. for (int idx = 0; idx < nearest_refmv_count; ++idx) ref_mv_stack[ref_frame][idx].weight += REF_CAT_LEVEL; if (cm->allow_ref_frame_mvs) { int is_available = 0; const int voffset = AOMMAX(mi_size_high[BLOCK_8X8], xd->n8_h); const int hoffset = AOMMAX(mi_size_wide[BLOCK_8X8], xd->n8_w); const int blk_row_end = AOMMIN(xd->n8_h, mi_size_high[BLOCK_64X64]); const int blk_col_end = AOMMIN(xd->n8_w, mi_size_wide[BLOCK_64X64]); const int tpl_sample_pos[3][2] = { { voffset, -2 }, { voffset, hoffset }, { voffset - 2, hoffset }, }; const int allow_extension = (xd->n8_h >= mi_size_high[BLOCK_8X8]) && (xd->n8_h < mi_size_high[BLOCK_64X64]) && (xd->n8_w >= mi_size_wide[BLOCK_8X8]) && (xd->n8_w < mi_size_wide[BLOCK_64X64]); int step_h = (xd->n8_h >= mi_size_high[BLOCK_64X64]) ? mi_size_high[BLOCK_16X16] : mi_size_high[BLOCK_8X8]; int step_w = (xd->n8_w >= mi_size_wide[BLOCK_64X64]) ? mi_size_wide[BLOCK_16X16] : mi_size_wide[BLOCK_8X8]; for (int blk_row = 0; blk_row < blk_row_end; blk_row += step_h) { for (int blk_col = 0; blk_col < blk_col_end; blk_col += step_w) { int ret = add_tpl_ref_mv(cm, xd, mi_row, mi_col, ref_frame, blk_row, blk_col, gm_mv_candidates, refmv_count, ref_mv_stack, mode_context); if (blk_row == 0 && blk_col == 0) is_available = ret; } } if (is_available == 0) mode_context[ref_frame] |= (1 << GLOBALMV_OFFSET); for (int i = 0; i < 3 && allow_extension; ++i) { const int blk_row = tpl_sample_pos[i][0]; const int blk_col = tpl_sample_pos[i][1]; if (!check_sb_border(mi_row, mi_col, blk_row, blk_col)) continue; add_tpl_ref_mv(cm, xd, mi_row, mi_col, ref_frame, blk_row, blk_col, gm_mv_candidates, refmv_count, ref_mv_stack, mode_context); } } uint8_t dummy_newmv_count = 0; // Scan the second outer area. scan_blk_mbmi(cm, xd, mi_row, mi_col, rf, -1, -1, ref_mv_stack[ref_frame], &row_match_count, &dummy_newmv_count, gm_mv_candidates, &refmv_count[ref_frame]); for (int idx = 2; idx <= MVREF_ROW_COLS; ++idx) { const int row_offset = -(idx << 1) + 1 + row_adj; const int col_offset = -(idx << 1) + 1 + col_adj; if (abs(row_offset) <= abs(max_row_offset) && abs(row_offset) > processed_rows) scan_row_mbmi(cm, xd, mi_row, mi_col, rf, row_offset, ref_mv_stack[ref_frame], &refmv_count[ref_frame], &row_match_count, &dummy_newmv_count, gm_mv_candidates, max_row_offset, &processed_rows); if (abs(col_offset) <= abs(max_col_offset) && abs(col_offset) > processed_cols) scan_col_mbmi(cm, xd, mi_row, mi_col, rf, col_offset, ref_mv_stack[ref_frame], &refmv_count[ref_frame], &col_match_count, &dummy_newmv_count, gm_mv_candidates, max_col_offset, &processed_cols); } uint8_t ref_match_count = (row_match_count > 0) + (col_match_count > 0); switch (nearest_match) { case 0: mode_context[ref_frame] |= 0; if (ref_match_count >= 1) mode_context[ref_frame] |= 1; if (ref_match_count == 1) mode_context[ref_frame] |= (1 << REFMV_OFFSET); else if (ref_match_count >= 2) mode_context[ref_frame] |= (2 << REFMV_OFFSET); break; case 1: mode_context[ref_frame] |= (newmv_count > 0) ? 2 : 3; if (ref_match_count == 1) mode_context[ref_frame] |= (3 << REFMV_OFFSET); else if (ref_match_count >= 2) mode_context[ref_frame] |= (4 << REFMV_OFFSET); break; case 2: default: if (newmv_count >= 1) mode_context[ref_frame] |= 4; else mode_context[ref_frame] |= 5; mode_context[ref_frame] |= (5 << REFMV_OFFSET); break; } // Rank the likelihood and assign nearest and near mvs. int len = nearest_refmv_count; while (len > 0) { int nr_len = 0; for (int idx = 1; idx < len; ++idx) { if (ref_mv_stack[ref_frame][idx - 1].weight < ref_mv_stack[ref_frame][idx].weight) { CANDIDATE_MV tmp_mv = ref_mv_stack[ref_frame][idx - 1]; ref_mv_stack[ref_frame][idx - 1] = ref_mv_stack[ref_frame][idx]; ref_mv_stack[ref_frame][idx] = tmp_mv; nr_len = idx; } } len = nr_len; } len = refmv_count[ref_frame]; while (len > nearest_refmv_count) { int nr_len = nearest_refmv_count; for (int idx = nearest_refmv_count + 1; idx < len; ++idx) { if (ref_mv_stack[ref_frame][idx - 1].weight < ref_mv_stack[ref_frame][idx].weight) { CANDIDATE_MV tmp_mv = ref_mv_stack[ref_frame][idx - 1]; ref_mv_stack[ref_frame][idx - 1] = ref_mv_stack[ref_frame][idx]; ref_mv_stack[ref_frame][idx] = tmp_mv; nr_len = idx; } } len = nr_len; } if (rf[1] > NONE_FRAME) { // TODO(jingning, yunqing): Refactor and consolidate the compound and // single reference frame modes. Reduce unnecessary redundancy. if (refmv_count[ref_frame] < MAX_MV_REF_CANDIDATES) { int_mv ref_id[2][2], ref_diff[2][2]; int ref_id_count[2] = { 0 }, ref_diff_count[2] = { 0 }; int mi_width = AOMMIN(mi_size_wide[BLOCK_64X64], xd->n8_w); mi_width = AOMMIN(mi_width, cm->mi_cols - mi_col); int mi_height = AOMMIN(mi_size_high[BLOCK_64X64], xd->n8_h); mi_height = AOMMIN(mi_height, cm->mi_rows - mi_row); int mi_size = AOMMIN(mi_width, mi_height); for (int idx = 0; abs(max_row_offset) >= 1 && idx < mi_size;) { const MB_MODE_INFO *const candidate = &xd->mi[-xd->mi_stride + idx]; const int candidate_bsize = candidate->sb_type; for (int rf_idx = 0; rf_idx < 2; ++rf_idx) { MV_REFERENCE_FRAME can_rf = candidate->ref_frame[rf_idx]; for (int cmp_idx = 0; cmp_idx < 2; ++cmp_idx) { if (can_rf == rf[cmp_idx] && ref_id_count[cmp_idx] < 2) { ref_id[cmp_idx][ref_id_count[cmp_idx]] = candidate->mv[rf_idx]; ++ref_id_count[cmp_idx]; } else if (can_rf > INTRA_FRAME && ref_diff_count[cmp_idx] < 2) { int_mv this_mv = candidate->mv[rf_idx]; if (cm->ref_frame_sign_bias[can_rf] != cm->ref_frame_sign_bias[rf[cmp_idx]]) { this_mv.as_mv.row = -this_mv.as_mv.row; this_mv.as_mv.col = -this_mv.as_mv.col; } ref_diff[cmp_idx][ref_diff_count[cmp_idx]] = this_mv; ++ref_diff_count[cmp_idx]; } } } idx += mi_size_wide[candidate_bsize]; } for (int idx = 0; abs(max_col_offset) >= 1 && idx < mi_size;) { const MB_MODE_INFO *const candidate = &xd->mi[idx * xd->mi_stride - 1]; const int candidate_bsize = candidate->sb_type; for (int rf_idx = 0; rf_idx < 2; ++rf_idx) { MV_REFERENCE_FRAME can_rf = candidate->ref_frame[rf_idx]; for (int cmp_idx = 0; cmp_idx < 2; ++cmp_idx) { if (can_rf == rf[cmp_idx] && ref_id_count[cmp_idx] < 2) { ref_id[cmp_idx][ref_id_count[cmp_idx]] = candidate->mv[rf_idx]; ++ref_id_count[cmp_idx]; } else if (can_rf > INTRA_FRAME && ref_diff_count[cmp_idx] < 2) { int_mv this_mv = candidate->mv[rf_idx]; if (cm->ref_frame_sign_bias[can_rf] != cm->ref_frame_sign_bias[rf[cmp_idx]]) { this_mv.as_mv.row = -this_mv.as_mv.row; this_mv.as_mv.col = -this_mv.as_mv.col; } ref_diff[cmp_idx][ref_diff_count[cmp_idx]] = this_mv; ++ref_diff_count[cmp_idx]; } } } idx += mi_size_high[candidate_bsize]; } // Build up the compound mv predictor int_mv comp_list[3][2]; for (int idx = 0; idx < 2; ++idx) { int comp_idx = 0; for (int list_idx = 0; list_idx < ref_id_count[idx] && comp_idx < 2; ++list_idx, ++comp_idx) comp_list[comp_idx][idx] = ref_id[idx][list_idx]; for (int list_idx = 0; list_idx < ref_diff_count[idx] && comp_idx < 2; ++list_idx, ++comp_idx) comp_list[comp_idx][idx] = ref_diff[idx][list_idx]; for (; comp_idx < 3; ++comp_idx) comp_list[comp_idx][idx] = gm_mv_candidates[idx]; } if (refmv_count[ref_frame]) { assert(refmv_count[ref_frame] == 1); if (comp_list[0][0].as_int == ref_mv_stack[ref_frame][0].this_mv.as_int && comp_list[0][1].as_int == ref_mv_stack[ref_frame][0].comp_mv.as_int) { ref_mv_stack[ref_frame][refmv_count[ref_frame]].this_mv = comp_list[1][0]; ref_mv_stack[ref_frame][refmv_count[ref_frame]].comp_mv = comp_list[1][1]; } else { ref_mv_stack[ref_frame][refmv_count[ref_frame]].this_mv = comp_list[0][0]; ref_mv_stack[ref_frame][refmv_count[ref_frame]].comp_mv = comp_list[0][1]; } ref_mv_stack[ref_frame][refmv_count[ref_frame]].weight = 2; ++refmv_count[ref_frame]; } else { for (int idx = 0; idx < MAX_MV_REF_CANDIDATES; ++idx) { ref_mv_stack[ref_frame][refmv_count[ref_frame]].this_mv = comp_list[idx][0]; ref_mv_stack[ref_frame][refmv_count[ref_frame]].comp_mv = comp_list[idx][1]; ref_mv_stack[ref_frame][refmv_count[ref_frame]].weight = 2; ++refmv_count[ref_frame]; } } } assert(refmv_count[ref_frame] >= 2); for (int idx = 0; idx < refmv_count[ref_frame]; ++idx) { clamp_mv_ref(&ref_mv_stack[ref_frame][idx].this_mv.as_mv, xd->n8_w << MI_SIZE_LOG2, xd->n8_h << MI_SIZE_LOG2, xd); clamp_mv_ref(&ref_mv_stack[ref_frame][idx].comp_mv.as_mv, xd->n8_w << MI_SIZE_LOG2, xd->n8_h << MI_SIZE_LOG2, xd); } } else { // Handle single reference frame extension int mi_width = AOMMIN(mi_size_wide[BLOCK_64X64], xd->n8_w); mi_width = AOMMIN(mi_width, cm->mi_cols - mi_col); int mi_height = AOMMIN(mi_size_high[BLOCK_64X64], xd->n8_h); mi_height = AOMMIN(mi_height, cm->mi_rows - mi_row); int mi_size = AOMMIN(mi_width, mi_height); for (int idx = 0; abs(max_row_offset) >= 1 && idx < mi_size && refmv_count[ref_frame] < MAX_MV_REF_CANDIDATES;) { const MB_MODE_INFO *const candidate = &xd->mi[-xd->mi_stride + idx]; const int candidate_bsize = candidate->sb_type; // TODO(jingning): Refactor the following code. for (int rf_idx = 0; rf_idx < 2; ++rf_idx) { if (candidate->ref_frame[rf_idx] > INTRA_FRAME) { int_mv this_mv = candidate->mv[rf_idx]; if (cm->ref_frame_sign_bias[candidate->ref_frame[rf_idx]] != cm->ref_frame_sign_bias[ref_frame]) { this_mv.as_mv.row = -this_mv.as_mv.row; this_mv.as_mv.col = -this_mv.as_mv.col; } int stack_idx; for (stack_idx = 0; stack_idx < refmv_count[ref_frame]; ++stack_idx) { int_mv stack_mv = ref_mv_stack[ref_frame][stack_idx].this_mv; if (this_mv.as_int == stack_mv.as_int) break; } if (stack_idx == refmv_count[ref_frame]) { ref_mv_stack[ref_frame][stack_idx].this_mv = this_mv; // TODO(jingning): Set an arbitrary small number here. The weight // doesn't matter as long as it is properly initialized. ref_mv_stack[ref_frame][stack_idx].weight = 2; ++refmv_count[ref_frame]; } } } idx += mi_size_wide[candidate_bsize]; } for (int idx = 0; abs(max_col_offset) >= 1 && idx < mi_size && refmv_count[ref_frame] < MAX_MV_REF_CANDIDATES;) { const MB_MODE_INFO *const candidate = &xd->mi[idx * xd->mi_stride - 1]; const int candidate_bsize = candidate->sb_type; // TODO(jingning): Refactor the following code. for (int rf_idx = 0; rf_idx < 2; ++rf_idx) { if (candidate->ref_frame[rf_idx] > INTRA_FRAME) { int_mv this_mv = candidate->mv[rf_idx]; if (cm->ref_frame_sign_bias[candidate->ref_frame[rf_idx]] != cm->ref_frame_sign_bias[ref_frame]) { this_mv.as_mv.row = -this_mv.as_mv.row; this_mv.as_mv.col = -this_mv.as_mv.col; } int stack_idx; for (stack_idx = 0; stack_idx < refmv_count[ref_frame]; ++stack_idx) { int_mv stack_mv = ref_mv_stack[ref_frame][stack_idx].this_mv; if (this_mv.as_int == stack_mv.as_int) break; } if (stack_idx == refmv_count[ref_frame]) { ref_mv_stack[ref_frame][stack_idx].this_mv = this_mv; // TODO(jingning): Set an arbitrary small number here. The weight // doesn't matter as long as it is properly initialized. ref_mv_stack[ref_frame][stack_idx].weight = 2; ++refmv_count[ref_frame]; } } } idx += mi_size_high[candidate_bsize]; } for (int idx = 0; idx < refmv_count[ref_frame]; ++idx) { clamp_mv_ref(&ref_mv_stack[ref_frame][idx].this_mv.as_mv, xd->n8_w << MI_SIZE_LOG2, xd->n8_h << MI_SIZE_LOG2, xd); } if (mv_ref_list != NULL) { for (int idx = refmv_count[ref_frame]; idx < MAX_MV_REF_CANDIDATES; ++idx) mv_ref_list[rf[0]][idx].as_int = gm_mv_candidates[0].as_int; for (int idx = 0; idx < AOMMIN(MAX_MV_REF_CANDIDATES, refmv_count[ref_frame]); ++idx) { mv_ref_list[rf[0]][idx].as_int = ref_mv_stack[ref_frame][idx].this_mv.as_int; } } } } void av1_find_mv_refs(const AV1_COMMON *cm, const MACROBLOCKD *xd, MB_MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame, uint8_t ref_mv_count[MODE_CTX_REF_FRAMES], CANDIDATE_MV ref_mv_stack[][MAX_REF_MV_STACK_SIZE], int_mv mv_ref_list[][MAX_MV_REF_CANDIDATES], int_mv *global_mvs, int mi_row, int mi_col, int16_t *mode_context) { int_mv zeromv[2]; BLOCK_SIZE bsize = mi->sb_type; MV_REFERENCE_FRAME rf[2]; av1_set_ref_frame(rf, ref_frame); if (ref_frame < REF_FRAMES) { if (ref_frame != INTRA_FRAME) { global_mvs[ref_frame] = gm_get_motion_vector( &cm->global_motion[ref_frame], cm->allow_high_precision_mv, bsize, mi_col, mi_row, cm->cur_frame_force_integer_mv); } else { global_mvs[ref_frame].as_int = INVALID_MV; } } if (ref_frame != INTRA_FRAME) { zeromv[0].as_int = gm_get_motion_vector(&cm->global_motion[rf[0]], cm->allow_high_precision_mv, bsize, mi_col, mi_row, cm->cur_frame_force_integer_mv) .as_int; zeromv[1].as_int = (rf[1] != NONE_FRAME) ? gm_get_motion_vector(&cm->global_motion[rf[1]], cm->allow_high_precision_mv, bsize, mi_col, mi_row, cm->cur_frame_force_integer_mv) .as_int : 0; } else { zeromv[0].as_int = zeromv[1].as_int = 0; } setup_ref_mv_list(cm, xd, ref_frame, ref_mv_count, ref_mv_stack, mv_ref_list, zeromv, mi_row, mi_col, mode_context); } void av1_find_best_ref_mvs(int allow_hp, int_mv *mvlist, int_mv *nearest_mv, int_mv *near_mv, int is_integer) { int i; // Make sure all the candidates are properly clamped etc for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) { lower_mv_precision(&mvlist[i].as_mv, allow_hp, is_integer); } *nearest_mv = mvlist[0]; *near_mv = mvlist[1]; } void av1_setup_frame_buf_refs(AV1_COMMON *cm) { cm->cur_frame.cur_frame_offset = cm->frame_offset; MV_REFERENCE_FRAME ref_frame; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { const int buf_idx = cm->frame_refs[ref_frame - LAST_FRAME].idx; if (buf_idx >= 0) cm->cur_frame.ref_frame_offset[ref_frame - LAST_FRAME] = cm->buffer_pool.frame_bufs[buf_idx].cur_frame_offset; } } #if 0 void av1_setup_frame_sign_bias(AV1_COMMON *cm) { MV_REFERENCE_FRAME ref_frame; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { const int buf_idx = cm->frame_refs[ref_frame - LAST_FRAME].idx; if (cm->seq_params.enable_order_hint && buf_idx != INVALID_IDX) { const int ref_frame_offset = cm->buffer_pool->frame_bufs[buf_idx].cur_frame_offset; cm->ref_frame_sign_bias[ref_frame] = (get_relative_dist(cm, ref_frame_offset, (int)cm->frame_offset) <= 0) ? 0 : 1; } else { cm->ref_frame_sign_bias[ref_frame] = 0; } } } #endif #define MAX_OFFSET_WIDTH 64 #define MAX_OFFSET_HEIGHT 0 static int get_block_position(AV1_COMMON *cm, int *mi_r, int *mi_c, int blk_row, int blk_col, MV mv, int sign_bias) { const int base_blk_row = (blk_row >> 3) << 3; const int base_blk_col = (blk_col >> 3) << 3; const int row_offset = (mv.row >= 0) ? (mv.row >> (4 + MI_SIZE_LOG2)) : -((-mv.row) >> (4 + MI_SIZE_LOG2)); const int col_offset = (mv.col >= 0) ? (mv.col >> (4 + MI_SIZE_LOG2)) : -((-mv.col) >> (4 + MI_SIZE_LOG2)); int row = (sign_bias == 1) ? blk_row - row_offset : blk_row + row_offset; int col = (sign_bias == 1) ? blk_col - col_offset : blk_col + col_offset; if (row < 0 || row >= (cm->mi_rows >> 1) || col < 0 || col >= (cm->mi_cols >> 1)) return 0; if (row < base_blk_row - (MAX_OFFSET_HEIGHT >> 3) || row >= base_blk_row + 8 + (MAX_OFFSET_HEIGHT >> 3) || col < base_blk_col - (MAX_OFFSET_WIDTH >> 3) || col >= base_blk_col + 8 + (MAX_OFFSET_WIDTH >> 3)) return 0; *mi_r = row; *mi_c = col; return 1; } static int motion_field_projection(AV1_COMMON *cm, MV_REFERENCE_FRAME ref_frame, int dir, const int from_x4, const int to_x4, const int from_y4, const int to_y4) { TPL_MV_REF *tpl_mvs_base = cm->tpl_mvs; int ref_offset[TOTAL_REFS_PER_FRAME] = { 0 }; int ref_sign[TOTAL_REFS_PER_FRAME] = { 0 }; (void)dir; int ref_frame_idx = cm->frame_refs[FWD_RF_OFFSET(ref_frame)].idx; if (ref_frame_idx < 0) return 0; if (cm->buffer_pool.frame_bufs[ref_frame_idx].intra_only) return 0; if (cm->buffer_pool.frame_bufs[ref_frame_idx].mi_rows != cm->mi_rows || cm->buffer_pool.frame_bufs[ref_frame_idx].mi_cols != cm->mi_cols) return 0; int ref_frame_index = cm->buffer_pool.frame_bufs[ref_frame_idx].cur_frame_offset; unsigned int *ref_rf_idx = &cm->buffer_pool.frame_bufs[ref_frame_idx].ref_frame_offset[0]; int cur_frame_index = cm->cur_frame.cur_frame_offset; int ref_to_cur = get_relative_dist(cm, ref_frame_index, cur_frame_index); for (MV_REFERENCE_FRAME rf = LAST_FRAME; rf <= INTER_REFS_PER_FRAME; ++rf) { ref_offset[rf] = get_relative_dist(cm, ref_frame_index, ref_rf_idx[rf - LAST_FRAME]); // note the inverted sign ref_sign[rf] = get_relative_dist(cm, ref_rf_idx[rf - LAST_FRAME], ref_frame_index) < 0; } if (dir == 2) ref_to_cur = -ref_to_cur; MV_REF *mv_ref_base = cm->buffer_pool.frame_bufs[ref_frame_idx].mvs; const ptrdiff_t mv_stride = cm->buffer_pool.frame_bufs[ref_frame_idx].mv_stride; const int mvs_rows = (cm->mi_rows + 1) >> 1; const int mvs_cols = (cm->mi_cols + 1) >> 1; assert(from_y4 >= 0); const int row_start8 = from_y4 >> 1; const int row_end8 = imin(to_y4 >> 1, mvs_rows); const int col_start8 = imax((from_x4 - (MAX_OFFSET_WIDTH >> 2)) >> 1, 0); const int col_end8 = imin((to_x4 + (MAX_OFFSET_WIDTH >> 2)) >> 1, mvs_cols); for (int blk_row = row_start8; blk_row < row_end8; ++blk_row) { for (int blk_col = col_start8; blk_col < col_end8; ++blk_col) { MV_REF *mv_ref = &mv_ref_base[((blk_row << 1) + 1) * mv_stride + (blk_col << 1) + 1]; int diridx; const int ref0 = mv_ref->ref_frame[0], ref1 = mv_ref->ref_frame[1]; if (ref1 > 0 && ref_sign[ref1] && abs(mv_ref->mv[1].as_mv.row) < (1 << 12) && abs(mv_ref->mv[1].as_mv.col) < (1 << 12)) { diridx = 1; } else if (ref0 > 0 && ref_sign[ref0] && abs(mv_ref->mv[0].as_mv.row) < (1 << 12) && abs(mv_ref->mv[0].as_mv.col) < (1 << 12)) { diridx = 0; } else { continue; } MV fwd_mv = mv_ref->mv[diridx].as_mv; if (mv_ref->ref_frame[diridx] > INTRA_FRAME) { int_mv this_mv; int mi_r, mi_c; const int ref_frame_offset = ref_offset[mv_ref->ref_frame[diridx]]; int pos_valid = abs(ref_frame_offset) <= MAX_FRAME_DISTANCE && ref_frame_offset > 0 && abs(ref_to_cur) <= MAX_FRAME_DISTANCE; if (pos_valid) { get_mv_projection(&this_mv.as_mv, fwd_mv, ref_to_cur, ref_frame_offset); pos_valid = get_block_position(cm, &mi_r, &mi_c, blk_row, blk_col, this_mv.as_mv, dir >> 1); } if (pos_valid && mi_c >= (from_x4 >> 1) && mi_c < (to_x4 >> 1)) { int mi_offset = mi_r * (cm->mi_stride >> 1) + mi_c; tpl_mvs_base[mi_offset].mfmv0.as_mv.row = fwd_mv.row; tpl_mvs_base[mi_offset].mfmv0.as_mv.col = fwd_mv.col; tpl_mvs_base[mi_offset].ref_frame_offset = ref_frame_offset; } } } } return 1; } #if 0 void av1_setup_motion_field(AV1_COMMON *cm) { memset(cm->ref_frame_side, 0, sizeof(cm->ref_frame_side)); if (!cm->seq_params.enable_order_hint) return; TPL_MV_REF *tpl_mvs_base = cm->tpl_mvs; int size = ((cm->mi_rows + MAX_MIB_SIZE) >> 1) * (cm->mi_stride >> 1); for (int idx = 0; idx < size; ++idx) { tpl_mvs_base[idx].mfmv0.as_int = INVALID_MV; tpl_mvs_base[idx].ref_frame_offset = 0; } const int cur_order_hint = cm->cur_frame.cur_frame_offset; RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; int ref_buf_idx[INTER_REFS_PER_FRAME]; int ref_order_hint[INTER_REFS_PER_FRAME]; for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { const int ref_idx = ref_frame - LAST_FRAME; const int buf_idx = cm->frame_refs[ref_idx].idx; int order_hint = 0; if (buf_idx >= 0) order_hint = frame_bufs[buf_idx].cur_frame_offset; ref_buf_idx[ref_idx] = buf_idx; ref_order_hint[ref_idx] = order_hint; if (get_relative_dist(cm, order_hint, cur_order_hint) > 0) cm->ref_frame_side[ref_frame] = 1; else if (order_hint == cur_order_hint) cm->ref_frame_side[ref_frame] = -1; } int ref_stamp = MFMV_STACK_SIZE - 1; if (ref_buf_idx[LAST_FRAME - LAST_FRAME] >= 0) { const int alt_of_lst_order_hint = frame_bufs[ref_buf_idx[LAST_FRAME - LAST_FRAME]] .ref_frame_offset[ALTREF_FRAME - LAST_FRAME]; const int is_lst_overlay = (alt_of_lst_order_hint == ref_order_hint[GOLDEN_FRAME - LAST_FRAME]); if (!is_lst_overlay) motion_field_projection(cm, LAST_FRAME, 2); --ref_stamp; } if (get_relative_dist(cm, ref_order_hint[BWDREF_FRAME - LAST_FRAME], cur_order_hint) > 0) { if (motion_field_projection(cm, BWDREF_FRAME, 0)) --ref_stamp; } if (get_relative_dist(cm, ref_order_hint[ALTREF2_FRAME - LAST_FRAME], cur_order_hint) > 0) { if (motion_field_projection(cm, ALTREF2_FRAME, 0)) --ref_stamp; } if (get_relative_dist(cm, ref_order_hint[ALTREF_FRAME - LAST_FRAME], cur_order_hint) > 0 && ref_stamp >= 0) if (motion_field_projection(cm, ALTREF_FRAME, 0)) --ref_stamp; if (ref_stamp >= 0 && ref_buf_idx[LAST2_FRAME - LAST_FRAME] >= 0) if (motion_field_projection(cm, LAST2_FRAME, 2)) --ref_stamp; } #endif void av1_setup_motion_field(AV1_COMMON *cm) { if (!cm->seq_params.enable_order_hint) return; TPL_MV_REF *tpl_mvs_base = cm->tpl_mvs; int size = (((cm->mi_rows + 31) & ~31) >> 1) * (cm->mi_stride >> 1); for (int idx = 0; idx < size; ++idx) { tpl_mvs_base[idx].mfmv0.as_int = INVALID_MV; tpl_mvs_base[idx].ref_frame_offset = 0; } memset(cm->ref_frame_side, 0, sizeof(cm->ref_frame_side)); RefCntBuffer *const frame_bufs = cm->buffer_pool.frame_bufs; const int cur_order_hint = cm->cur_frame.cur_frame_offset; int *const ref_buf_idx = cm->ref_buf_idx; int *const ref_order_hint = cm->ref_order_hint; for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { const int ref_idx = ref_frame - LAST_FRAME; const int buf_idx = cm->frame_refs[ref_idx].idx; int order_hint = 0; if (buf_idx >= 0) order_hint = frame_bufs[buf_idx].cur_frame_offset; ref_buf_idx[ref_idx] = buf_idx; ref_order_hint[ref_idx] = order_hint; if (get_relative_dist(cm, order_hint, cur_order_hint) > 0) cm->ref_frame_side[ref_frame] = 1; else if (order_hint == cur_order_hint) cm->ref_frame_side[ref_frame] = -1; } } void av1_fill_motion_field(AV1_COMMON *cm, const int tile_col_start4, const int tile_col_end4, const int row_start4, int row_end4) { RefCntBuffer *const frame_bufs = cm->buffer_pool.frame_bufs; const int cur_order_hint = cm->cur_frame.cur_frame_offset; int *const ref_buf_idx = cm->ref_buf_idx; int *const ref_order_hint = cm->ref_order_hint; int ref_stamp = MFMV_STACK_SIZE - 1; if (ref_buf_idx[LAST_FRAME - LAST_FRAME] >= 0) { const int alt_of_lst_order_hint = frame_bufs[ref_buf_idx[LAST_FRAME - LAST_FRAME]] .ref_frame_offset[ALTREF_FRAME - LAST_FRAME]; const int is_lst_overlay = (alt_of_lst_order_hint == ref_order_hint[GOLDEN_FRAME - LAST_FRAME]); if (!is_lst_overlay) motion_field_projection(cm, LAST_FRAME, 2, tile_col_start4, tile_col_end4, row_start4, row_end4); --ref_stamp; } if (get_relative_dist(cm, ref_order_hint[BWDREF_FRAME - LAST_FRAME], cur_order_hint) > 0) { if (motion_field_projection(cm, BWDREF_FRAME, 0, tile_col_start4, tile_col_end4, row_start4, row_end4)) --ref_stamp; } if (get_relative_dist(cm, ref_order_hint[ALTREF2_FRAME - LAST_FRAME], cur_order_hint) > 0) { if (motion_field_projection(cm, ALTREF2_FRAME, 0, tile_col_start4, tile_col_end4, row_start4, row_end4)) --ref_stamp; } if (get_relative_dist(cm, ref_order_hint[ALTREF_FRAME - LAST_FRAME], cur_order_hint) > 0 && ref_stamp >= 0) if (motion_field_projection(cm, ALTREF_FRAME, 0, tile_col_start4, tile_col_end4, row_start4, row_end4)) --ref_stamp; if (ref_stamp >= 0 && ref_buf_idx[LAST2_FRAME - LAST_FRAME] >= 0) if (motion_field_projection(cm, LAST2_FRAME, 2, tile_col_start4, tile_col_end4, row_start4, row_end4)) --ref_stamp; } #if 0 static INLINE void record_samples(MB_MODE_INFO *mbmi, int *pts, int *pts_inref, int row_offset, int sign_r, int col_offset, int sign_c) { int bw = block_size_wide[mbmi->sb_type]; int bh = block_size_high[mbmi->sb_type]; int x = col_offset * MI_SIZE + sign_c * AOMMAX(bw, MI_SIZE) / 2 - 1; int y = row_offset * MI_SIZE + sign_r * AOMMAX(bh, MI_SIZE) / 2 - 1; pts[0] = (x * 8); pts[1] = (y * 8); pts_inref[0] = (x * 8) + mbmi->mv[0].as_mv.col; pts_inref[1] = (y * 8) + mbmi->mv[0].as_mv.row; } // Select samples according to the motion vector difference. int selectSamples(MV *mv, int *pts, int *pts_inref, int len, BLOCK_SIZE bsize) { const int bw = block_size_wide[bsize]; const int bh = block_size_high[bsize]; const int thresh = clamp(AOMMAX(bw, bh), 16, 112); int pts_mvd[SAMPLES_ARRAY_SIZE] = { 0 }; int i, j, k, l = len; int ret = 0; assert(len <= LEAST_SQUARES_SAMPLES_MAX); // Obtain the motion vector difference. for (i = 0; i < len; ++i) { pts_mvd[i] = abs(pts_inref[2 * i] - pts[2 * i] - mv->col) + abs(pts_inref[2 * i + 1] - pts[2 * i + 1] - mv->row); if (pts_mvd[i] > thresh) pts_mvd[i] = -1; else ret++; } // Keep at least 1 sample. if (!ret) return 1; i = 0; j = l - 1; for (k = 0; k < l - ret; k++) { while (pts_mvd[i] != -1) i++; while (pts_mvd[j] == -1) j--; assert(i != j); if (i > j) break; // Replace the discarded samples; pts_mvd[i] = pts_mvd[j]; pts[2 * i] = pts[2 * j]; pts[2 * i + 1] = pts[2 * j + 1]; pts_inref[2 * i] = pts_inref[2 * j]; pts_inref[2 * i + 1] = pts_inref[2 * j + 1]; i++; j--; } return ret; } // Note: Samples returned are at 1/8-pel precision // Sample are the neighbor block center point's coordinates relative to the // left-top pixel of current block. int findSamples(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, int *pts, int *pts_inref) { MB_MODE_INFO *const mbmi0 = xd->mi[0]; int ref_frame = mbmi0->ref_frame[0]; int up_available = xd->up_available; int left_available = xd->left_available; int i, mi_step = 1, np = 0; const TileInfo *const tile = &xd->tile; int do_tl = 1; int do_tr = 1; // scan the nearest above rows if (up_available) { int mi_row_offset = -1; MB_MODE_INFO *mbmi = xd->mi[mi_row_offset * xd->mi_stride]; uint8_t n8_w = mi_size_wide[mbmi->sb_type]; if (xd->n8_w <= n8_w) { // Handle "current block width <= above block width" case. int col_offset = -mi_col % n8_w; if (col_offset < 0) do_tl = 0; if (col_offset + n8_w > xd->n8_w) do_tr = 0; if (mbmi->ref_frame[0] == ref_frame && mbmi->ref_frame[1] == NONE_FRAME) { record_samples(mbmi, pts, pts_inref, 0, -1, col_offset, 1); pts += 2; pts_inref += 2; np++; if (np >= LEAST_SQUARES_SAMPLES_MAX) return LEAST_SQUARES_SAMPLES_MAX; } } else { // Handle "current block width > above block width" case. for (i = 0; i < AOMMIN(xd->n8_w, cm->mi_cols - mi_col); i += mi_step) { int mi_col_offset = i; mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; mbmi = &mi->mbmi; n8_w = mi_size_wide[mbmi->sb_type]; mi_step = AOMMIN(xd->n8_w, n8_w); if (mbmi->ref_frame[0] == ref_frame && mbmi->ref_frame[1] == NONE_FRAME) { record_samples(mbmi, pts, pts_inref, 0, -1, i, 1); pts += 2; pts_inref += 2; np++; if (np >= LEAST_SQUARES_SAMPLES_MAX) return LEAST_SQUARES_SAMPLES_MAX; } } } } assert(np <= LEAST_SQUARES_SAMPLES_MAX); // scan the nearest left columns if (left_available) { int mi_col_offset = -1; MB_MODE_INFO *mi = xd->mi[mi_col_offset]; uint8_t n8_h = mi_size_high[mbmi->sb_type]; if (xd->n8_h <= n8_h) { // Handle "current block height <= above block height" case. int row_offset = -mi_row % n8_h; if (row_offset < 0) do_tl = 0; if (mbmi->ref_frame[0] == ref_frame && mbmi->ref_frame[1] == NONE_FRAME) { record_samples(mbmi, pts, pts_inref, row_offset, 1, 0, -1); pts += 2; pts_inref += 2; np++; if (np >= LEAST_SQUARES_SAMPLES_MAX) return LEAST_SQUARES_SAMPLES_MAX; } } else { // Handle "current block height > above block height" case. for (i = 0; i < AOMMIN(xd->n8_h, cm->mi_rows - mi_row); i += mi_step) { int mi_row_offset = i; mbmi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; n8_h = mi_size_high[mbmi->sb_type]; mi_step = AOMMIN(xd->n8_h, n8_h); if (mbmi->ref_frame[0] == ref_frame && mbmi->ref_frame[1] == NONE_FRAME) { record_samples(mbmi, pts, pts_inref, i, 1, 0, -1); pts += 2; pts_inref += 2; np++; if (np >= LEAST_SQUARES_SAMPLES_MAX) return LEAST_SQUARES_SAMPLES_MAX; } } } } assert(np <= LEAST_SQUARES_SAMPLES_MAX); // Top-left block if (do_tl && left_available && up_available) { int mi_row_offset = -1; int mi_col_offset = -1; MB_MODE_INFO *mbmi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; if (mbmi->ref_frame[0] == ref_frame && mbmi->ref_frame[1] == NONE_FRAME) { record_samples(mbmi, pts, pts_inref, 0, -1, 0, -1); pts += 2; pts_inref += 2; np++; if (np >= LEAST_SQUARES_SAMPLES_MAX) return LEAST_SQUARES_SAMPLES_MAX; } } assert(np <= LEAST_SQUARES_SAMPLES_MAX); // Top-right block if (do_tr && has_top_right(cm, xd, mi_row, mi_col, AOMMAX(xd->n8_w, xd->n8_h))) { POSITION trb_pos = { -1, xd->n8_w }; if (is_inside(tile, mi_col, mi_row, cm->mi_rows, &trb_pos)) { int mi_row_offset = -1; int mi_col_offset = xd->n8_w; MB_MODE_INFO *mbmi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; if (mbmi->ref_frame[0] == ref_frame && mbmi->ref_frame[1] == NONE_FRAME) { record_samples(mbmi, pts, pts_inref, 0, -1, xd->n8_w, 1); np++; if (np >= LEAST_SQUARES_SAMPLES_MAX) return LEAST_SQUARES_SAMPLES_MAX; } } } assert(np <= LEAST_SQUARES_SAMPLES_MAX); return np; } void av1_setup_skip_mode_allowed(AV1_COMMON *cm) { cm->is_skip_mode_allowed = 0; cm->ref_frame_idx_0 = cm->ref_frame_idx_1 = INVALID_IDX; if (!cm->seq_params.enable_order_hint || frame_is_intra_only(cm) || cm->reference_mode == SINGLE_REFERENCE) return; RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; const int cur_frame_offset = cm->frame_offset; int ref_frame_offset[2] = { -1, INT_MAX }; int ref_idx[2] = { INVALID_IDX, INVALID_IDX }; // Identify the nearest forward and backward references. for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { const int buf_idx = cm->frame_refs[i].idx; if (buf_idx == INVALID_IDX) continue; const int ref_offset = frame_bufs[buf_idx].cur_frame_offset; if (get_relative_dist(cm, ref_offset, cur_frame_offset) < 0) { // Forward reference if (ref_frame_offset[0] == -1 || get_relative_dist(cm, ref_offset, ref_frame_offset[0]) > 0) { ref_frame_offset[0] = ref_offset; ref_idx[0] = i; } } else if (get_relative_dist(cm, ref_offset, cur_frame_offset) > 0) { // Backward reference if (ref_frame_offset[1] == INT_MAX || get_relative_dist(cm, ref_offset, ref_frame_offset[1]) < 0) { ref_frame_offset[1] = ref_offset; ref_idx[1] = i; } } } if (ref_idx[0] != INVALID_IDX && ref_idx[1] != INVALID_IDX) { // == Bi-directional prediction == cm->is_skip_mode_allowed = 1; cm->ref_frame_idx_0 = AOMMIN(ref_idx[0], ref_idx[1]); cm->ref_frame_idx_1 = AOMMAX(ref_idx[0], ref_idx[1]); } else if (ref_idx[0] != INVALID_IDX && ref_idx[1] == INVALID_IDX) { // == Forward prediction only == // Identify the second nearest forward reference. ref_frame_offset[1] = -1; for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { const int buf_idx = cm->frame_refs[i].idx; if (buf_idx == INVALID_IDX) continue; const int ref_offset = frame_bufs[buf_idx].cur_frame_offset; if ((ref_frame_offset[0] != -1 && get_relative_dist(cm, ref_offset, ref_frame_offset[0]) < 0) && (ref_frame_offset[1] == -1 || get_relative_dist(cm, ref_offset, ref_frame_offset[1]) > 0)) { // Second closest forward reference ref_frame_offset[1] = ref_offset; ref_idx[1] = i; } } if (ref_frame_offset[1] != -1) { cm->is_skip_mode_allowed = 1; cm->ref_frame_idx_0 = AOMMIN(ref_idx[0], ref_idx[1]); cm->ref_frame_idx_1 = AOMMAX(ref_idx[0], ref_idx[1]); } } } typedef struct { int map_idx; // frame map index int buf_idx; // frame buffer index int sort_idx; // index based on the offset to be used for sorting } REF_FRAME_INFO; static int compare_ref_frame_info(const void *arg_a, const void *arg_b) { const REF_FRAME_INFO *info_a = (REF_FRAME_INFO *)arg_a; const REF_FRAME_INFO *info_b = (REF_FRAME_INFO *)arg_b; if (info_a->sort_idx < info_b->sort_idx) return -1; if (info_a->sort_idx > info_b->sort_idx) return 1; return (info_a->map_idx < info_b->map_idx) ? -1 : ((info_a->map_idx > info_b->map_idx) ? 1 : 0); } static void set_ref_frame_info(AV1_COMMON *const cm, int frame_idx, REF_FRAME_INFO *ref_info) { assert(frame_idx >= 0 && frame_idx <= INTER_REFS_PER_FRAME); const int buf_idx = ref_info->buf_idx; cm->frame_refs[frame_idx].idx = buf_idx; cm->frame_refs[frame_idx].buf = &cm->buffer_pool->frame_bufs[buf_idx].buf; cm->frame_refs[frame_idx].map_idx = ref_info->map_idx; } void av1_set_frame_refs(AV1_COMMON *const cm, int lst_map_idx, int gld_map_idx) { BufferPool *const pool = cm->buffer_pool; RefCntBuffer *const frame_bufs = pool->frame_bufs; assert(cm->seq_params.enable_order_hint); assert(cm->seq_params.order_hint_bits_minus_1 >= 0); const int cur_frame_offset = (int)cm->frame_offset; const int cur_frame_sort_idx = 1 << cm->seq_params.order_hint_bits_minus_1; REF_FRAME_INFO ref_frame_info[REF_FRAMES]; int ref_flag_list[INTER_REFS_PER_FRAME] = { 0, 0, 0, 0, 0, 0, 0 }; for (int i = 0; i < REF_FRAMES; ++i) { const int map_idx = i; ref_frame_info[i].map_idx = map_idx; ref_frame_info[i].sort_idx = -1; const int buf_idx = cm->ref_frame_map[map_idx]; ref_frame_info[i].buf_idx = buf_idx; if (buf_idx < 0 || buf_idx >= FRAME_BUFFERS) continue; // TODO([email protected]): To verify the checking on ref_count. if (frame_bufs[buf_idx].ref_count <= 0) continue; const int offset = (int)frame_bufs[buf_idx].cur_frame_offset; ref_frame_info[i].sort_idx = (offset == -1) ? -1 : cur_frame_sort_idx + get_relative_dist(cm, offset, cur_frame_offset); assert(ref_frame_info[i].sort_idx >= -1); if (map_idx == lst_map_idx) lst_frame_sort_idx = ref_frame_info[i].sort_idx; if (map_idx == gld_map_idx) gld_frame_sort_idx = ref_frame_info[i].sort_idx; } // Confirm both LAST_FRAME and GOLDEN_FRAME are valid forward reference // frames. if (lst_frame_sort_idx == -1 || lst_frame_sort_idx >= cur_frame_sort_idx) { aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Inter frame requests a look-ahead frame as LAST"); } if (gld_frame_sort_idx == -1 || gld_frame_sort_idx >= cur_frame_sort_idx) { aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Inter frame requests a look-ahead frame as GOLDEN"); } // Sort ref frames based on their frame_offset values. qsort(ref_frame_info, REF_FRAMES, sizeof(REF_FRAME_INFO), compare_ref_frame_info); // Identify forward and backward reference frames. // Forward reference: offset < cur_frame_offset // Backward reference: offset >= cur_frame_offset int fwd_start_idx = 0, fwd_end_idx = REF_FRAMES - 1; for (int i = 0; i < REF_FRAMES; i++) { if (ref_frame_info[i].sort_idx == -1) { fwd_start_idx++; continue; } if (ref_frame_info[i].sort_idx >= cur_frame_sort_idx) { fwd_end_idx = i - 1; break; } } int bwd_start_idx = fwd_end_idx + 1; int bwd_end_idx = REF_FRAMES - 1; // === Backward Reference Frames === // == ALTREF_FRAME == if (bwd_start_idx <= bwd_end_idx) { set_ref_frame_info(cm, ALTREF_FRAME - LAST_FRAME, &ref_frame_info[bwd_end_idx]); ref_flag_list[ALTREF_FRAME - LAST_FRAME] = 1; bwd_end_idx--; } // == BWDREF_FRAME == if (bwd_start_idx <= bwd_end_idx) { set_ref_frame_info(cm, BWDREF_FRAME - LAST_FRAME, &ref_frame_info[bwd_start_idx]); ref_flag_list[BWDREF_FRAME - LAST_FRAME] = 1; bwd_start_idx++; } // == ALTREF2_FRAME == if (bwd_start_idx <= bwd_end_idx) { set_ref_frame_info(cm, ALTREF2_FRAME - LAST_FRAME, &ref_frame_info[bwd_start_idx]); ref_flag_list[ALTREF2_FRAME - LAST_FRAME] = 1; } // === Forward Reference Frames === for (int i = fwd_start_idx; i <= fwd_end_idx; ++i) { // == LAST_FRAME == if (ref_frame_info[i].map_idx == lst_map_idx) { set_ref_frame_info(cm, LAST_FRAME - LAST_FRAME, &ref_frame_info[i]); ref_flag_list[LAST_FRAME - LAST_FRAME] = 1; } // == GOLDEN_FRAME == if (ref_frame_info[i].map_idx == gld_map_idx) { set_ref_frame_info(cm, GOLDEN_FRAME - LAST_FRAME, &ref_frame_info[i]); ref_flag_list[GOLDEN_FRAME - LAST_FRAME] = 1; } } assert(ref_flag_list[LAST_FRAME - LAST_FRAME] == 1 && ref_flag_list[GOLDEN_FRAME - LAST_FRAME] == 1); // == LAST2_FRAME == // == LAST3_FRAME == // == BWDREF_FRAME == // == ALTREF2_FRAME == // == ALTREF_FRAME == // Set up the reference frames in the anti-chronological order. static const MV_REFERENCE_FRAME ref_frame_list[INTER_REFS_PER_FRAME - 2] = { LAST2_FRAME, LAST3_FRAME, BWDREF_FRAME, ALTREF2_FRAME, ALTREF_FRAME }; int ref_idx; for (ref_idx = 0; ref_idx < (INTER_REFS_PER_FRAME - 2); ref_idx++) { const MV_REFERENCE_FRAME ref_frame = ref_frame_list[ref_idx]; if (ref_flag_list[ref_frame - LAST_FRAME] == 1) continue; while (fwd_start_idx <= fwd_end_idx && (ref_frame_info[fwd_end_idx].map_idx == lst_map_idx || ref_frame_info[fwd_end_idx].map_idx == gld_map_idx)) { fwd_end_idx--; } if (fwd_start_idx > fwd_end_idx) break; set_ref_frame_info(cm, ref_frame - LAST_FRAME, &ref_frame_info[fwd_end_idx]); ref_flag_list[ref_frame - LAST_FRAME] = 1; fwd_end_idx--; } // Assign all the remaining frame(s), if any, to the earliest reference frame. for (; ref_idx < (INTER_REFS_PER_FRAME - 2); ref_idx++) { const MV_REFERENCE_FRAME ref_frame = ref_frame_list[ref_idx]; if (ref_flag_list[ref_frame - LAST_FRAME] == 1) continue; set_ref_frame_info(cm, ref_frame - LAST_FRAME, &ref_frame_info[fwd_start_idx]); ref_flag_list[ref_frame - LAST_FRAME] = 1; } for (int i = 0; i < INTER_REFS_PER_FRAME; i++) { assert(ref_flag_list[i] == 1); } } #endif enum BlockSize { BS_128x128, BS_128x64, BS_64x128, BS_64x64, BS_64x32, BS_64x16, BS_32x64, BS_32x32, BS_32x16, BS_32x8, BS_16x64, BS_16x32, BS_16x16, BS_16x8, BS_16x4, BS_8x32, BS_8x16, BS_8x8, BS_8x4, BS_4x16, BS_4x8, BS_4x4, N_BS_SIZES, }; extern const uint8_t dav1d_block_dimensions[N_BS_SIZES][4]; const uint8_t bs_to_sbtype[N_BS_SIZES] = { [BS_128x128] = BLOCK_128X128, [BS_128x64] = BLOCK_128X64, [BS_64x128] = BLOCK_64X128, [BS_64x64] = BLOCK_64X64, [BS_64x32] = BLOCK_64X32, [BS_64x16] = BLOCK_64X16, [BS_32x64] = BLOCK_32X64, [BS_32x32] = BLOCK_32X32, [BS_32x16] = BLOCK_32X16, [BS_32x8] = BLOCK_32X8, [BS_16x64] = BLOCK_16X64, [BS_16x32] = BLOCK_16X32, [BS_16x16] = BLOCK_16X16, [BS_16x8] = BLOCK_16X8, [BS_16x4] = BLOCK_16X4, [BS_8x32] = BLOCK_8X32, [BS_8x16] = BLOCK_8X16, [BS_8x8] = BLOCK_8X8, [BS_8x4] = BLOCK_8X4, [BS_4x16] = BLOCK_4X16, [BS_4x8] = BLOCK_4X8, [BS_4x4] = BLOCK_4X4, }; const uint8_t sbtype_to_bs[BLOCK_SIZES_ALL] = { [BLOCK_128X128] = BS_128x128, [BLOCK_128X64] = BS_128x64, [BLOCK_64X128] = BS_64x128, [BLOCK_64X64] = BS_64x64, [BLOCK_64X32] = BS_64x32, [BLOCK_64X16] = BS_64x16, [BLOCK_32X64] = BS_32x64, [BLOCK_32X32] = BS_32x32, [BLOCK_32X16] = BS_32x16, [BLOCK_32X8] = BS_32x8, [BLOCK_16X64] = BS_16x64, [BLOCK_16X32] = BS_16x32, [BLOCK_16X16] = BS_16x16, [BLOCK_16X8] = BS_16x8, [BLOCK_16X4] = BS_16x4, [BLOCK_8X32] = BS_8x32, [BLOCK_8X16] = BS_8x16, [BLOCK_8X8] = BS_8x8, [BLOCK_8X4] = BS_8x4, [BLOCK_4X16] = BS_4x16, [BLOCK_4X8] = BS_4x8, [BLOCK_4X4] = BS_4x4, }; static inline struct MV av1_clamp_mv(const struct MV mv, const int bx4, const int by4, const int bw4, const int bh4, const int iw4, const int ih4) { const int left = -(bx4 + bw4 + 4) * 4 * 8; const int right = (iw4 - bx4 + 0 * bw4 + 4) * 4 * 8; const int top = -(by4 + bh4 + 4) * 4 * 8; const int bottom = (ih4 - by4 + 0 * bh4 + 4) * 4 * 8; return (struct MV) { .col = iclip(mv.col, left, right), .row = iclip(mv.row, top, bottom) }; } #include <stdio.h> void av1_find_ref_mvs(CANDIDATE_MV *mvstack, int *cnt, int_mv (*mvlist)[2], int *ctx, int refidx_dav1d[2], int w4, int h4, int bs, int bp, int by4, int bx4, int tile_col_start4, int tile_col_end4, int tile_row_start4, int tile_row_end4, AV1_COMMON *cm) { const int bw4 = dav1d_block_dimensions[bs][0]; const int bh4 = dav1d_block_dimensions[bs][1]; int stride = cm->cur_frame.mv_stride; MACROBLOCKD xd = (MACROBLOCKD) { .n8_w = bw4, .n8_h = bh4, .mi_stride = stride, .up_available = by4 > tile_row_start4, .left_available = bx4 > tile_col_start4, .tile = { .mi_col_end = AOMMIN(w4, tile_col_end4), .mi_row_end = AOMMIN(h4, tile_row_end4), .tg_horz_boundary = 0, .mi_row_start = tile_row_start4, .mi_col_start = tile_col_start4, }, .mi = (MB_MODE_INFO *) &cm->cur_frame.mvs[by4 * stride + bx4], .mb_to_bottom_edge = (h4 - bh4 - by4) * 32, .mb_to_left_edge = -bx4 * 32, .mb_to_right_edge = (w4 - bw4 - bx4) * 32, .mb_to_top_edge = -by4 * 32, .is_sec_rect = 0, .cur_mi = { .partition = bp, }, }; xd.mi->sb_type = bs_to_sbtype[bs]; if (xd.n8_w < xd.n8_h) { // Only mark is_sec_rect as 1 for the last block. // For PARTITION_VERT_4, it would be (0, 0, 0, 1); // For other partitions, it would be (0, 1). if (!((bx4 + xd.n8_w) & (xd.n8_h - 1))) xd.is_sec_rect = 1; } if (xd.n8_w > xd.n8_h) if (by4 & (xd.n8_w - 1)) xd.is_sec_rect = 1; MV_REFERENCE_FRAME rf[2] = { refidx_dav1d[0] + 1, refidx_dav1d[1] + 1 }; const int refidx = av1_ref_frame_type(rf); int16_t single_context[MODE_CTX_REF_FRAMES]; uint8_t mv_cnt[MODE_CTX_REF_FRAMES] = { 0 }; CANDIDATE_MV mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]; memset(mv_stack, 0, sizeof(mv_stack)); int_mv mv_list[MODE_CTX_REF_FRAMES][MAX_MV_REF_CANDIDATES] = { { { 0 } } }; int_mv gmvs[MODE_CTX_REF_FRAMES]; #if 0 void av1_find_mv_refs(const AV1_COMMON *cm, const MACROBLOCKD *xd, MB_MODE_INFO *mi, MV_REFERENCE_FRAME ref_frame, uint8_t ref_mv_count[MODE_CTX_REF_FRAMES], CANDIDATE_MV ref_mv_stack[][MAX_REF_MV_STACK_SIZE], int_mv mv_ref_list[][MAX_MV_REF_CANDIDATES], int_mv *global_mvs, int mi_row, int mi_col, int16_t *mode_context) #endif av1_find_mv_refs(cm, &xd, xd.mi, refidx, mv_cnt, mv_stack, mv_list, gmvs, by4, bx4, single_context); #if !defined(NDEBUG) if (refidx_dav1d[1] == -1 && mv_cnt[refidx] >= 1) { int_mv tmpa = { .as_int = mv_stack[refidx][0].this_mv.as_int }; clamp_mv_ref(&tmpa.as_mv, bw4 * 4, bh4 * 4, &xd); int_mv tmp1 = { .as_mv = av1_clamp_mv(mv_stack[refidx][0].this_mv.as_mv, bx4, by4, bw4, bh4, w4, h4) }; assert(tmpa.as_int == tmp1.as_int); assert(tmp1.as_int == mv_list[refidx][0].as_int); if (mv_cnt[refidx] >= 2) { int_mv tmpb = { .as_int = mv_stack[refidx][1].this_mv.as_int }; clamp_mv_ref(&tmpb.as_mv, bw4 * 4, bh4 * 4, &xd); int_mv tmp2 = { .as_mv = av1_clamp_mv(mv_stack[refidx][1].this_mv.as_mv, bx4, by4, bw4, bh4, w4, h4) }; assert(tmp2.as_int == tmpb.as_int); assert(tmp2.as_int == mv_list[refidx][1].as_int); } } #endif for (int i = 0; i < mv_cnt[refidx]; i++) mvstack[i] = mv_stack[refidx][i]; *cnt = mv_cnt[refidx]; mvlist[0][0] = mv_list[refidx_dav1d[0] + 1][0]; mvlist[0][1] = mv_list[refidx_dav1d[0] + 1][1]; if (refidx_dav1d[1] != -1) { mvlist[1][0] = mv_list[refidx_dav1d[1] + 1][0]; mvlist[1][1] = mv_list[refidx_dav1d[1] + 1][1]; } if (ctx) { if (refidx_dav1d[1] == -1) *ctx = single_context[refidx_dav1d[0] + 1]; else *ctx = av1_mode_context_analyzer(single_context, rf); } if (0 && bx4 == 38 && by4 == 15 && cm->frame_offset == 3 && refidx_dav1d[1] == -1 && refidx_dav1d[0] == 4 && bw4 == 1 && bh4 == 1 && bp == 3) { MV_REF *l = bx4 ? &cm->cur_frame.mvs[by4*stride+bx4-1] : NULL; MV_REF *a = by4 ? &cm->cur_frame.mvs[by4*stride+bx4-stride] : NULL; printf("Input: left=[0]y:%d,x:%d,r:%d,[1]y:%d,x:%d,r:%d,mode=%d, " "above=[0]y:%d,x:%d,r:%d,[1]y:%d,x:%d,r:%d,mode=%d, " "temp=y:%d,x:%d,r:%d [use_ref=%d]\n", l ? l->mv[0].as_mv.row : -1, l ? l->mv[0].as_mv.col : -1, l ? l->ref_frame[0]: -1, l ? l->mv[1].as_mv.row : -1, l ? l->mv[1].as_mv.col : -1, l ? l->ref_frame[1]: -1, l ? l->mode : -1, a ? a->mv[0].as_mv.row: -1, a ? a->mv[0].as_mv.col : -1, a ? a->ref_frame[0] : -1, a ? a->mv[1].as_mv.row: -1, a ? a->mv[1].as_mv.col : -1, a ? a->ref_frame[1] : -1, a ? a->mode : -1, cm->tpl_mvs[(by4 >> 1) * (cm->mi_stride >> 1) + (bx4 >> 1)].mfmv0.as_mv.row, cm->tpl_mvs[(by4 >> 1) * (cm->mi_stride >> 1) + (bx4 >> 1)].mfmv0.as_mv.col, cm->tpl_mvs[(by4 >> 1) * (cm->mi_stride >> 1) + (bx4 >> 1)].ref_frame_offset, cm->allow_ref_frame_mvs); printf("Edges: l=%d,t=%d,r=%d,b=%d,w=%d,h=%d,border=%d\n", xd.mb_to_left_edge, xd.mb_to_top_edge, xd.mb_to_right_edge, xd.mb_to_bottom_edge, xd.n8_w << MI_SIZE_LOG2, xd.n8_h << MI_SIZE_LOG2, MV_BORDER); printf("bp=%d, x=%d, y=%d, refs=%d/%d, n_mvs: %d, " "first mv: y=%d,x=%d | y=%d,x=%d, " "first comp mv: y=%d,x=%d | y=%d,x=%d, " "second mv: y=%d, x=%d | y=%d, x=%d, " "second comp mv: y=%d, x=%d | y=%d, x=%d, " "third mv: y=%d, x=%d, " "ctx=%d\n", bp, bx4, by4, refidx_dav1d[0], refidx_dav1d[1], mv_cnt[refidx], mv_stack[refidx][0].this_mv.as_mv.row, mv_stack[refidx][0].this_mv.as_mv.col, mv_list[refidx_dav1d[0] + 1][0].as_mv.row, mv_list[refidx_dav1d[0] + 1][0].as_mv.col, mv_stack[refidx][0].comp_mv.as_mv.row, mv_stack[refidx][0].comp_mv.as_mv.col, mv_list[refidx_dav1d[1] + 1][0].as_mv.row, mv_list[refidx_dav1d[1] + 1][0].as_mv.col, mv_stack[refidx][1].this_mv.as_mv.row, mv_stack[refidx][1].this_mv.as_mv.col, mv_list[refidx_dav1d[0] + 1][1].as_mv.row, mv_list[refidx_dav1d[0] + 1][1].as_mv.col, mv_stack[refidx][1].comp_mv.as_mv.row, mv_stack[refidx][1].comp_mv.as_mv.col, mv_list[refidx_dav1d[1] + 1][1].as_mv.row, mv_list[refidx_dav1d[1] + 1][1].as_mv.col, mv_stack[refidx][2].this_mv.as_mv.row, mv_stack[refidx][2].this_mv.as_mv.col, *ctx); } } int av1_init_ref_mv_common(AV1_COMMON *cm, const int w8, const int h8, const ptrdiff_t stride, const int allow_sb128, MV_REF *cur, MV_REF *ref_mvs[7], const unsigned cur_poc, const unsigned ref_poc[7], const unsigned ref_ref_poc[7][7], const WarpedMotionParams gmv[7], const int allow_hp, const int force_int_mv, const int allow_ref_frame_mvs, const int order_hint) { if (cm->mi_cols != (w8 << 1) || cm->mi_rows != (h8 << 1)) { const int align_h = (h8 + 15) & ~15; if (cm->tpl_mvs) free(cm->tpl_mvs); cm->tpl_mvs = malloc(sizeof(*cm->tpl_mvs) * (stride >> 1) * align_h); if (!cm->tpl_mvs) return -ENOMEM; for (int i = 0; i < 7; i++) cm->frame_refs[i].idx = i; cm->mi_cols = w8 << 1; cm->mi_rows = h8 << 1; cm->mi_stride = stride; for (int i = 0; i < 7; i++) { cm->buffer_pool.frame_bufs[i].mi_rows = cm->mi_rows; cm->buffer_pool.frame_bufs[i].mi_cols = cm->mi_cols; cm->buffer_pool.frame_bufs[i].mv_stride = stride; } cm->cur_frame.mv_stride = stride; } cm->allow_high_precision_mv = allow_hp; cm->seq_params.sb_size = allow_sb128 ? BLOCK_128X128 : BLOCK_64X64; cm->seq_params.enable_order_hint = !!order_hint; cm->seq_params.order_hint_bits_minus1 = order_hint - 1; // FIXME get these from the sequence/frame headers instead of hardcoding cm->frame_parallel_decode = 0; cm->cur_frame_force_integer_mv = force_int_mv; memcpy(&cm->global_motion[1], gmv, sizeof(*gmv) * 7); cm->frame_offset = cur_poc; cm->allow_ref_frame_mvs = allow_ref_frame_mvs; cm->cur_frame.mvs = cur; for (int i = 0; i < 7; i++) { cm->buffer_pool.frame_bufs[i].mvs = ref_mvs[i]; cm->buffer_pool.frame_bufs[i].intra_only = ref_mvs[i] == NULL; cm->buffer_pool.frame_bufs[i].cur_frame_offset = ref_poc[i]; for (int j = 0; j < 7; j++) cm->buffer_pool.frame_bufs[i].ref_frame_offset[j] = ref_ref_poc[i][j]; } av1_setup_frame_buf_refs(cm); for (int i = 0; i < 7; i++) { const int ref_poc = cm->buffer_pool.frame_bufs[i].cur_frame_offset; cm->ref_frame_sign_bias[1 + i] = get_relative_dist(cm, ref_poc, cur_poc) > 0; } av1_setup_motion_field(cm); return 0; } void av1_init_ref_mv_tile_row(AV1_COMMON *cm, int tile_col_start4, int tile_col_end4, int row_start4, int row_end4) { av1_fill_motion_field(cm, tile_col_start4, tile_col_end4, row_start4, row_end4); } AV1_COMMON *av1_alloc_ref_mv_common(void) { AV1_COMMON *cm = malloc(sizeof(*cm)); if (!cm) return NULL; memset(cm, 0, sizeof(*cm)); return cm; } void av1_free_ref_mv_common(AV1_COMMON *cm) { if (cm->tpl_mvs) free(cm->tpl_mvs); free(cm); }