ref: 31d2a9a396109e2aec9220d8e3d8aadd4b3eb8b1
dir: /tests/checkasm/itx.c/
/* * Copyright © 2018, VideoLAN and dav1d authors * Copyright © 2018, Two Orioles, LLC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "tests/checkasm/checkasm.h" #include <math.h> #include "src/itx.h" #include "src/levels.h" #include "src/scan.h" #include "src/tables.h" #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #ifndef M_SQRT1_2 #define M_SQRT1_2 0.707106781186547524401 #endif enum Tx1D { DCT, ADST, FLIPADST, IDENTITY, WHT }; static const uint8_t itx_1d_types[N_TX_TYPES_PLUS_LL][2] = { [DCT_DCT] = { DCT, DCT }, [ADST_DCT] = { DCT, ADST }, [DCT_ADST] = { ADST, DCT }, [ADST_ADST] = { ADST, ADST }, [FLIPADST_DCT] = { DCT, FLIPADST }, [DCT_FLIPADST] = { FLIPADST, DCT }, [FLIPADST_FLIPADST] = { FLIPADST, FLIPADST }, [ADST_FLIPADST] = { FLIPADST, ADST }, [FLIPADST_ADST] = { ADST, FLIPADST }, [IDTX] = { IDENTITY, IDENTITY }, [V_DCT] = { IDENTITY, DCT }, [H_DCT] = { DCT, IDENTITY }, [V_ADST] = { IDENTITY, ADST }, [H_ADST] = { ADST, IDENTITY }, [V_FLIPADST] = { IDENTITY, FLIPADST }, [H_FLIPADST] = { FLIPADST, IDENTITY }, [WHT_WHT] = { WHT, WHT }, }; static const char *const itx_1d_names[5] = { [DCT] = "dct", [ADST] = "adst", [FLIPADST] = "flipadst", [IDENTITY] = "identity", [WHT] = "wht" }; static const double scaling_factors[9] = { 4.00, /* 4x4 */ 4.00 * M_SQRT1_2, /* 4x8 8x4 */ 2.00, /* 4x16 8x8 16x4 */ 2.00 * M_SQRT1_2, /* 8x16 16x8 */ 1.00, /* 8x32 16x16 32x8 */ 1.00 * M_SQRT1_2, /* 16x32 32x16 */ 0.50, /* 16x64 32x32 64x16 */ 0.50 * M_SQRT1_2, /* 32x64 64x32 */ 0.25, /* 64x64 */ }; /* FIXME: Ensure that those forward transforms are similar to the real AV1 * transforms. The FLIPADST currently uses the ADST forward transform for * example which is obviously "incorrect", but we're just using it for now * since it does produce coefficients in the correct range at least. */ /* DCT-II */ static void fdct_1d(double *const out, const double *const in, const int sz) { for (int i = 0; i < sz; i++) { out[i] = 0.0; for (int j = 0; j < sz; j++) out[i] += in[j] * cos(M_PI * (2 * j + 1) * i / (sz * 2.0)); } out[0] *= M_SQRT1_2; } /* See "Towards jointly optimal spatial prediction and adaptive transform in * video/image coding", by J. Han, A. Saxena, and K. Rose * IEEE Proc. ICASSP, pp. 726-729, Mar. 2010. * and "A Butterfly Structured Design of The Hybrid Transform Coding Scheme", * by Jingning Han, Yaowu Xu, and Debargha Mukherjee * http://research.google.com/pubs/archive/41418.pdf */ static void fadst_1d(double *const out, const double *const in, const int sz) { for (int i = 0; i < sz; i++) { out[i] = 0.0; for (int j = 0; j < sz; j++) out[i] += in[j] * sin(M_PI * (sz == 4 ? ( j + 1) * (2 * i + 1) / (8.0 + 1.0) : (2 * j + 1) * (2 * i + 1) / (sz * 4.0))); } } static void fwht4_1d(double *const out, const double *const in) { const double t0 = in[0] + in[1]; const double t3 = in[3] - in[2]; const double t4 = (t0 - t3) * 0.5; const double t1 = t4 - in[1]; const double t2 = t4 - in[2]; out[0] = t0 - t2; out[1] = t2; out[2] = t3 + t1; out[3] = t1; } static int copy_subcoefs(coef *coeff, const enum RectTxfmSize tx, const enum TxfmType txtp, const int sw, const int sh, const int subsh) { /* copy the topleft coefficients such that the return value (being the * coefficient scantable index for the eob token) guarantees that only * the topleft $sub out of $sz (where $sz >= $sub) coefficients in both * dimensions are non-zero. This leads to braching to specific optimized * simd versions (e.g. dc-only) so that we get full asm coverage in this * test */ const int16_t *const scan = dav1d_scans[tx][dav1d_tx_type_class[txtp]]; const int sub_high = subsh > 0 ? subsh * 8 - 1 : 0; const int sub_low = subsh > 1 ? sub_high - 8 : 0; int n, eob; for (n = 0, eob = 0; n < sw * sh; n++) { const int rc = scan[n]; const int rcx = rc % sh, rcy = rc / sh; /* Pick a random eob within this sub-itx */ if (rcx > sub_high || rcy > sub_high) { break; /* upper boundary */ } else if (!eob && (rcx > sub_low || rcy > sub_low)) eob = n; /* lower boundary */ } if (eob) eob += rand() % (n - eob - 1); for (n = eob + 1; n < sw * sh; n++) coeff[scan[n]] = 0; return eob; } static int ftx(coef *const buf, const enum RectTxfmSize tx, const enum TxfmType txtp, const int w, const int h, const int subsh) { double out[64 * 64], temp[64 * 64]; const double scale = scaling_factors[ctz(w * h) - 4]; const int sw = imin(w, 32), sh = imin(h, 32); for (int i = 0; i < h; i++) { double in[64], temp_out[64]; for (int i = 0; i < w; i++) in[i] = (rand() & ((2 << BITDEPTH) - 1)) - ((1 << BITDEPTH) - 1); switch (itx_1d_types[txtp][0]) { case DCT: fdct_1d(temp_out, in, w); break; case ADST: case FLIPADST: fadst_1d(temp_out, in, w); break; case WHT: fwht4_1d(temp_out, in); break; case IDENTITY: memcpy(temp_out, in, w * sizeof(*temp_out)); break; } for (int j = 0; j < w; j++) temp[j * h + i] = temp_out[j] * scale; } for (int i = 0; i < w; i++) { switch (itx_1d_types[txtp][0]) { case DCT: fdct_1d(&out[i * h], &temp[i * h], h); break; case ADST: case FLIPADST: fadst_1d(&out[i * h], &temp[i * h], h); break; case WHT: fwht4_1d(&out[i * h], &temp[i * h]); break; case IDENTITY: memcpy(&out[i * h], &temp[i * h], h * sizeof(*out)); break; } } for (int y = 0; y < sh; y++) for (int x = 0; x < sw; x++) buf[y * sw + x] = out[y * w + x] + 0.5; return copy_subcoefs(buf, tx, txtp, sw, sh, subsh); } void bitfn(checkasm_check_itx)(void) { Dav1dInvTxfmDSPContext c; bitfn(dav1d_itx_dsp_init)(&c); ALIGN_STK_32(coef, coeff, 3, [32 * 32]); ALIGN_STK_32(pixel, c_dst, 64 * 64,); ALIGN_STK_32(pixel, a_dst, 64 * 64,); static const uint8_t txfm_size_order[N_RECT_TX_SIZES] = { TX_4X4, RTX_4X8, RTX_4X16, RTX_8X4, TX_8X8, RTX_8X16, RTX_8X32, RTX_16X4, RTX_16X8, TX_16X16, RTX_16X32, RTX_16X64, RTX_32X8, RTX_32X16, TX_32X32, RTX_32X64, RTX_64X16, RTX_64X32, TX_64X64 }; static const uint8_t subsh_iters[5] = { 2, 2, 3, 5, 5 }; declare_func(void, pixel *dst, ptrdiff_t dst_stride, coef *coeff, int eob); for (int i = 0; i < N_RECT_TX_SIZES; i++) { const enum RectTxfmSize tx = txfm_size_order[i]; const int w = dav1d_txfm_dimensions[tx].w * 4; const int h = dav1d_txfm_dimensions[tx].h * 4; const int sw = imin(w, 32), sh = imin(h, 32); const int subsh_max = subsh_iters[imax(dav1d_txfm_dimensions[tx].lw, dav1d_txfm_dimensions[tx].lh)]; for (enum TxfmType txtp = 0; txtp < N_TX_TYPES_PLUS_LL; txtp++) for (int subsh = 0; subsh < subsh_max; subsh++) if (check_func(c.itxfm_add[tx][txtp], "inv_txfm_add_%dx%d_%s_%s_%d_%dbpc", w, h, itx_1d_names[itx_1d_types[txtp][0]], itx_1d_names[itx_1d_types[txtp][1]], subsh, BITDEPTH)) { const int eob = ftx(coeff[0], tx, txtp, w, h, subsh); for (int j = 0; j < w * h; j++) c_dst[j] = a_dst[j] = rand() & ((1 << BITDEPTH) - 1); memcpy(coeff[1], coeff[0], sw * sh * sizeof(**coeff)); memcpy(coeff[2], coeff[0], sw * sh * sizeof(**coeff)); call_ref(c_dst, w * sizeof(*c_dst), coeff[0], eob); call_new(a_dst, w * sizeof(*c_dst), coeff[1], eob); if (memcmp(c_dst, a_dst, w * h * sizeof(*c_dst)) || memcmp(coeff[0], coeff[1], sw * sh * sizeof(**coeff))) { fail(); } bench_new(a_dst, w * sizeof(*c_dst), coeff[2], eob); } report("add_%dx%d", w, h); } }