ref: 0aa2ca7ee392ce54ca6273409165a3febb59e1a9
dir: /libfaad/sbr_qmf.c/
/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Ahead Software through [email protected]. ** ** $Id: sbr_qmf.c,v 1.6 2003/09/09 18:09:52 menno Exp $ **/ #include "common.h" #include "structs.h" #ifdef SBR_DEC #include <stdlib.h> #include <string.h> #include "sbr_dct.h" #include "sbr_qmf.h" #include "sbr_syntax.h" qmfa_info *qmfa_init(uint8_t channels) { qmfa_info *qmfa = (qmfa_info*)malloc(sizeof(qmfa_info)); qmfa->x = (real_t*)malloc(channels * 10 * sizeof(real_t)); memset(qmfa->x, 0, channels * 10 * sizeof(real_t)); qmfa->x_index = 0; qmfa->channels = channels; return qmfa; } void qmfa_end(qmfa_info *qmfa) { if (qmfa) { if (qmfa->x) free(qmfa->x); free(qmfa); } } void sbr_qmf_analysis_32(sbr_info *sbr, qmfa_info *qmfa, const real_t *input, qmf_t *X, uint8_t offset) { uint8_t l; real_t u[64]; #ifndef SBR_LOW_POWER real_t x[64], y[64]; #else real_t y[32]; #endif const real_t *inptr = input; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { int16_t n; /* shift input buffer x */ /* replaced by using qmfa->x_index */ /* add new samples to input buffer x */ for (n = 32 - 1; n >= 0; n--) { #ifdef FIXED_POINT qmfa->x[(n + qmfa->x_index) & 319] = (*inptr++) >> 5; //5; #else qmfa->x[(n + qmfa->x_index) & 319] = *inptr++; #endif } /* window and summation to create array u */ for (n = 0; n < 64; n++) { u[n] = MUL_R_C(qmfa->x[(n + qmfa->x_index) & 319], qmf_c_2[n]) + MUL_R_C(qmfa->x[(n + 64 + qmfa->x_index) & 319], qmf_c_2[n + 64]) + MUL_R_C(qmfa->x[(n + 128 + qmfa->x_index) & 319], qmf_c_2[n + 128]) + MUL_R_C(qmfa->x[(n + 192 + qmfa->x_index) & 319], qmf_c_2[n + 192]) + MUL_R_C(qmfa->x[(n + 256 + qmfa->x_index) & 319], qmf_c_2[n + 256]); } qmfa->x_index = (qmfa->x_index + 32) & 319; /* calculate 32 subband samples by introducing X */ #ifdef SBR_LOW_POWER y[0] = u[48]; for (n = 1; n < 16; n++) y[n] = u[n+48] + u[48-n]; for (n = 16; n < 32; n++) y[n] = -u[n-16] + u[48-n]; DCT3_32_unscaled(u, y); for (n = 0; n < 32; n++) { #ifdef FIXED_POINT QMF_RE(X[((l + offset)<<5) + n]) = u[n] << 1; #else QMF_RE(X[((l + offset)<<5) + n]) = 2. * u[n]; #endif } #else x[0] = u[0]; x[63] = u[32]; for (n = 2; n < 64; n += 2) { x[n-1] = u[(n>>1)]; x[n] = -u[64-(n>>1)]; } DCT4_64(y, x); for (n = 0; n < 32; n++) { #ifdef FIXED_POINT QMF_RE(X[((l + offset)<<5) + n]) = y[n] << 1; QMF_IM(X[((l + offset)<<5) + n]) = -y[63-n] << 1; #else QMF_RE(X[((l + offset)<<5) + n]) = 2. * y[n]; QMF_IM(X[((l + offset)<<5) + n]) = -2. * y[63-n]; #endif } #endif } } qmfs_info *qmfs_init(uint8_t channels) { int size = 0; qmfs_info *qmfs = (qmfs_info*)malloc(sizeof(qmfs_info)); qmfs->v = (real_t*)malloc(channels * 20 * sizeof(real_t)); memset(qmfs->v, 0, channels * 20 * sizeof(real_t)); qmfs->v_index = 0; qmfs->channels = channels; return qmfs; } void qmfs_end(qmfs_info *qmfs) { if (qmfs) { if (qmfs->v) free(qmfs->v); free(qmfs); } } #ifdef SBR_LOW_POWER void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, const qmf_t *X, real_t *output) { uint8_t l; int16_t n, k; real_t x[64]; real_t *outptr = output; #ifndef FIXED_POINT real_t scale = 1./32.; #endif /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { int16_t l64 = l<<6; /* shift buffer */ /* replaced by using qmfs->v_index */ /* calculate 128 samples */ for (k = 0; k < 64; k++) { #ifdef FIXED_POINT /* for fixed point the scaling is already done in the * analysis filterbank */ x[k] = QMF_RE(X[l64 + k]); #else x[k] = scale * QMF_RE(X[l64 + k]); #endif } DCT2_64_unscaled(x, x); for (n = 0; n < 64; n++) { qmfs->v[(n + 32 + qmfs->v_index) & 1279] = x[n]; } qmfs->v[0] = qmfs->v[64]; for (n = 1; n < 32; n++) { qmfs->v[(32 - n + qmfs->v_index) & 1279] = qmfs->v[(n + 32 + qmfs->v_index) & 1279]; qmfs->v[(n + 96 + qmfs->v_index) & 1279] = -qmfs->v[(96 - n + qmfs->v_index) & 1279]; } /* calculate 64 output samples and window */ for (k = 0; k < 64; k++) { *outptr++ = MUL_R_C(qmfs->v[(k + qmfs->v_index) & 1279], qmf_c[k]) + MUL_R_C(qmfs->v[(192 + k + qmfs->v_index) & 1279], qmf_c[64 + k]) + MUL_R_C(qmfs->v[(256 + k + qmfs->v_index) & 1279], qmf_c[128 + k]) + MUL_R_C(qmfs->v[(256 + 192 + k + qmfs->v_index) & 1279], qmf_c[128 + 64 + k]) + MUL_R_C(qmfs->v[(512 + k + qmfs->v_index) & 1279], qmf_c[256 + k]) + MUL_R_C(qmfs->v[(512 + 192 + k + qmfs->v_index) & 1279], qmf_c[256 + 64 + k]) + MUL_R_C(qmfs->v[(768 + k + qmfs->v_index) & 1279], qmf_c[384 + k]) + MUL_R_C(qmfs->v[(768 + 192 + k + qmfs->v_index) & 1279], qmf_c[384 + 64 + k]) + MUL_R_C(qmfs->v[(1024 + k + qmfs->v_index) & 1279], qmf_c[512 + k]) + MUL_R_C(qmfs->v[(1024 + 192 + k + qmfs->v_index) & 1279], qmf_c[512 + 64 + k]); } qmfs->v_index = (qmfs->v_index + 128) & 1279; } } #else void sbr_qmf_synthesis_64(sbr_info *sbr, qmfs_info *qmfs, const qmf_t *X, real_t *output) { uint8_t l; int16_t n, k; real_t x1[64], x2[64]; real_t *outptr = output; real_t scale = 1./64.; /* qmf subsample l */ for (l = 0; l < sbr->numTimeSlotsRate; l++) { int16_t l64 = l << 6; /* shift buffer */ /* replaced by using qmfs->v_index */ /* calculate 128 samples */ for (k = 0; k < 64; k++) { x1[k] = scale * QMF_RE(X[l64 + k]); x2[k] = scale * QMF_IM(X[l64 + k]); } DCT4_64(x1, x1); DST4_64(x2, x2); for (n = 0; n < 64; n++) { qmfs->v[(n + qmfs->v_index) & 1279] = x2[n] - x1[n]; qmfs->v[(127 - n + qmfs->v_index) & 1279] = x2[n] + x1[n]; } /* calculate 64 output samples and window */ for (k = 0; k < 64; k++) { *outptr++ = MUL_R_C(qmfs->v[(k + qmfs->v_index) & 1279], qmf_c[k]) + MUL_R_C(qmfs->v[(192 + k + qmfs->v_index) & 1279], qmf_c[64 + k]) + MUL_R_C(qmfs->v[(256 + k + qmfs->v_index) & 1279], qmf_c[128 + k]) + MUL_R_C(qmfs->v[(256 + 192 + k + qmfs->v_index) & 1279], qmf_c[128 + 64 + k]) + MUL_R_C(qmfs->v[(512 + k + qmfs->v_index) & 1279], qmf_c[256 + k]) + MUL_R_C(qmfs->v[(512 + 192 + k + qmfs->v_index) & 1279], qmf_c[256 + 64 + k]) + MUL_R_C(qmfs->v[(768 + k + qmfs->v_index) & 1279], qmf_c[384 + k]) + MUL_R_C(qmfs->v[(768 + 192 + k + qmfs->v_index) & 1279], qmf_c[384 + 64 + k]) + MUL_R_C(qmfs->v[(1024 + k + qmfs->v_index) & 1279], qmf_c[512 + k]) + MUL_R_C(qmfs->v[(1024 + 192 + k + qmfs->v_index) & 1279], qmf_c[512 + 64 + k]); } qmfs->v_index = (qmfs->v_index + 128) & 1279; } } #endif #endif