ref: bea7b7bf8ccbc2bc41906517079e76fcfb31cb5a
dir: /code/bspc/brushbsp.c/
/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Foobar; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ #include "qbsp.h" #include "l_mem.h" #include "../botlib/aasfile.h" #include "aas_store.h" #include "aas_cfg.h" #include <assert.h> /* each side has a count of the other sides it splits the best split will be the one that minimizes the total split counts of all remaining sides precalc side on plane table evaluate split side { cost = 0 for all sides for all sides get if side splits side and splitside is on same child cost++; } */ int c_nodes; int c_nonvis; int c_active_brushes; int c_solidleafnodes; int c_totalsides; int c_brushmemory; int c_peak_brushmemory; int c_nodememory; int c_peak_totalbspmemory; // if a brush just barely pokes onto the other side, // let it slide by without chopping #define PLANESIDE_EPSILON 0.001 //0.1 //#ifdef DEBUG typedef struct cname_s { int value; char *name; } cname_t; cname_t contentnames[] = { {CONTENTS_SOLID,"CONTENTS_SOLID"}, {CONTENTS_WINDOW,"CONTENTS_WINDOW"}, {CONTENTS_AUX,"CONTENTS_AUX"}, {CONTENTS_LAVA,"CONTENTS_LAVA"}, {CONTENTS_SLIME,"CONTENTS_SLIME"}, {CONTENTS_WATER,"CONTENTS_WATER"}, {CONTENTS_MIST,"CONTENTS_MIST"}, {LAST_VISIBLE_CONTENTS,"LAST_VISIBLE_CONTENTS"}, {CONTENTS_AREAPORTAL,"CONTENTS_AREAPORTAL"}, {CONTENTS_PLAYERCLIP,"CONTENTS_PLAYERCLIP"}, {CONTENTS_MONSTERCLIP,"CONTENTS_MONSTERCLIP"}, {CONTENTS_CURRENT_0,"CONTENTS_CURRENT_0"}, {CONTENTS_CURRENT_90,"CONTENTS_CURRENT_90"}, {CONTENTS_CURRENT_180,"CONTENTS_CURRENT_180"}, {CONTENTS_CURRENT_270,"CONTENTS_CURRENT_270"}, {CONTENTS_CURRENT_UP,"CONTENTS_CURRENT_UP"}, {CONTENTS_CURRENT_DOWN,"CONTENTS_CURRENT_DOWN"}, {CONTENTS_ORIGIN,"CONTENTS_ORIGIN"}, {CONTENTS_MONSTER,"CONTENTS_MONSTER"}, {CONTENTS_DEADMONSTER,"CONTENTS_DEADMONSTER"}, {CONTENTS_DETAIL,"CONTENTS_DETAIL"}, {CONTENTS_Q2TRANSLUCENT,"CONTENTS_TRANSLUCENT"}, {CONTENTS_LADDER,"CONTENTS_LADDER"}, {0, 0} }; void PrintContents(int contents) { int i; for (i = 0; contentnames[i].value; i++) { if (contents & contentnames[i].value) { Log_Write("%s,", contentnames[i].name); } //end if } //end for } //end of the function PrintContents //#endif DEBUG //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== void ResetBrushBSP(void) { c_nodes = 0; c_nonvis = 0; c_active_brushes = 0; c_solidleafnodes = 0; c_totalsides = 0; c_brushmemory = 0; c_peak_brushmemory = 0; c_nodememory = 0; c_peak_totalbspmemory = 0; } //end of the function ResetBrushBSP //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== void FindBrushInTree (node_t *node, int brushnum) { bspbrush_t *b; if (node->planenum == PLANENUM_LEAF) { for (b=node->brushlist ; b ; b=b->next) if (b->original->brushnum == brushnum) Log_Print ("here\n"); return; } FindBrushInTree(node->children[0], brushnum); FindBrushInTree(node->children[1], brushnum); } //end of the function FindBrushInTree //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== void DrawBrushList (bspbrush_t *brush, node_t *node) { int i; side_t *s; GLS_BeginScene (); for ( ; brush ; brush=brush->next) { for (i=0 ; i<brush->numsides ; i++) { s = &brush->sides[i]; if (!s->winding) continue; if (s->texinfo == TEXINFO_NODE) GLS_Winding (s->winding, 1); else if (!(s->flags & SFL_VISIBLE)) GLS_Winding (s->winding, 2); else GLS_Winding (s->winding, 0); } } GLS_EndScene (); } //end of the function DrawBrushList //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== void WriteBrushList (char *name, bspbrush_t *brush, qboolean onlyvis) { int i; side_t *s; FILE *f; qprintf ("writing %s\n", name); f = SafeOpenWrite (name); for ( ; brush ; brush=brush->next) { for (i=0 ; i<brush->numsides ; i++) { s = &brush->sides[i]; if (!s->winding) continue; if (onlyvis && !(s->flags & SFL_VISIBLE)) continue; OutputWinding (brush->sides[i].winding, f); } } fclose (f); } //end of the function WriteBrushList //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== void PrintBrush (bspbrush_t *brush) { int i; printf ("brush: %p\n", brush); for (i=0;i<brush->numsides ; i++) { pw(brush->sides[i].winding); printf ("\n"); } //end for } //end of the function PrintBrush //=========================================================================== // Sets the mins/maxs based on the windings // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== void BoundBrush (bspbrush_t *brush) { int i, j; winding_t *w; ClearBounds (brush->mins, brush->maxs); for (i=0 ; i<brush->numsides ; i++) { w = brush->sides[i].winding; if (!w) continue; for (j=0 ; j<w->numpoints ; j++) AddPointToBounds (w->p[j], brush->mins, brush->maxs); } } //end of the function BoundBrush //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== void CreateBrushWindings (bspbrush_t *brush) { int i, j; winding_t *w; side_t *side; plane_t *plane; for (i=0 ; i<brush->numsides ; i++) { side = &brush->sides[i]; plane = &mapplanes[side->planenum]; w = BaseWindingForPlane (plane->normal, plane->dist); for (j=0 ; j<brush->numsides && w; j++) { if (i == j) continue; if (brush->sides[j].flags & SFL_BEVEL) continue; plane = &mapplanes[brush->sides[j].planenum^1]; ChopWindingInPlace (&w, plane->normal, plane->dist, 0); //CLIP_EPSILON); } side->winding = w; } BoundBrush (brush); } //end of the function CreateBrushWindings //=========================================================================== // Creates a new axial brush // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== bspbrush_t *BrushFromBounds (vec3_t mins, vec3_t maxs) { bspbrush_t *b; int i; vec3_t normal; vec_t dist; b = AllocBrush (6); b->numsides = 6; for (i=0 ; i<3 ; i++) { VectorClear (normal); normal[i] = 1; dist = maxs[i]; b->sides[i].planenum = FindFloatPlane (normal, dist); normal[i] = -1; dist = -mins[i]; b->sides[3+i].planenum = FindFloatPlane (normal, dist); } CreateBrushWindings (b); return b; } //end of the function BrushFromBounds //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== int BrushOutOfBounds(bspbrush_t *brush, vec3_t mins, vec3_t maxs, float epsilon) { int i, j, n; winding_t *w; side_t *side; for (i = 0; i < brush->numsides; i++) { side = &brush->sides[i]; w = side->winding; for (j = 0; j < w->numpoints; j++) { for (n = 0; n < 3; n++) { if (w->p[j][n] < (mins[n] + epsilon) || w->p[j][n] > (maxs[n] - epsilon)) return true; } //end for } //end for } //end for return false; } //end of the function BrushOutOfBounds //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== vec_t BrushVolume (bspbrush_t *brush) { int i; winding_t *w; vec3_t corner; vec_t d, area, volume; plane_t *plane; if (!brush) return 0; // grab the first valid point as the corner w = NULL; for (i = 0; i < brush->numsides; i++) { w = brush->sides[i].winding; if (w) break; } //end for if (!w) return 0; VectorCopy (w->p[0], corner); // make tetrahedrons to all other faces volume = 0; for ( ; i < brush->numsides; i++) { w = brush->sides[i].winding; if (!w) continue; plane = &mapplanes[brush->sides[i].planenum]; d = -(DotProduct (corner, plane->normal) - plane->dist); area = WindingArea(w); volume += d * area; } //end for volume /= 3; return volume; } //end of the function BrushVolume //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== int CountBrushList (bspbrush_t *brushes) { int c; c = 0; for ( ; brushes; brushes = brushes->next) c++; return c; } //end of the function CountBrushList //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== node_t *AllocNode (void) { node_t *node; node = GetMemory(sizeof(*node)); memset (node, 0, sizeof(*node)); if (numthreads == 1) { c_nodememory += MemorySize(node); } //end if return node; } //end of the function AllocNode //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== bspbrush_t *AllocBrush (int numsides) { bspbrush_t *bb; int c; c = (int)&(((bspbrush_t *)0)->sides[numsides]); bb = GetMemory(c); memset (bb, 0, c); if (numthreads == 1) { c_active_brushes++; c_brushmemory += MemorySize(bb); if (c_brushmemory > c_peak_brushmemory) c_peak_brushmemory = c_brushmemory; } //end if return bb; } //end of the function AllocBrush //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== void FreeBrush (bspbrush_t *brushes) { int i; for (i=0 ; i<brushes->numsides ; i++) if (brushes->sides[i].winding) FreeWinding(brushes->sides[i].winding); if (numthreads == 1) { c_active_brushes--; c_brushmemory -= MemorySize(brushes); if (c_brushmemory < 0) c_brushmemory = 0; } //end if FreeMemory(brushes); } //end of the function FreeBrush //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== void FreeBrushList (bspbrush_t *brushes) { bspbrush_t *next; for ( ; brushes; brushes = next) { next = brushes->next; FreeBrush(brushes); } //end for } //end of the function FreeBrushList //=========================================================================== // Duplicates the brush, the sides, and the windings // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== bspbrush_t *CopyBrush (bspbrush_t *brush) { bspbrush_t *newbrush; int size; int i; size = (int)&(((bspbrush_t *)0)->sides[brush->numsides]); newbrush = AllocBrush (brush->numsides); memcpy (newbrush, brush, size); for (i=0 ; i<brush->numsides ; i++) { if (brush->sides[i].winding) newbrush->sides[i].winding = CopyWinding (brush->sides[i].winding); } return newbrush; } //end of the function CopyBrush //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== node_t *PointInLeaf (node_t *node, vec3_t point) { vec_t d; plane_t *plane; while (node->planenum != PLANENUM_LEAF) { plane = &mapplanes[node->planenum]; d = DotProduct (point, plane->normal) - plane->dist; if (d > 0) node = node->children[0]; else node = node->children[1]; } return node; } //end of the function PointInLeaf //=========================================================================== // Returns PSIDE_FRONT, PSIDE_BACK, or PSIDE_BOTH // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== #if 0 int BoxOnPlaneSide (vec3_t mins, vec3_t maxs, plane_t *plane) { int side; int i; vec3_t corners[2]; vec_t dist1, dist2; // axial planes are easy if (plane->type < 3) { side = 0; if (maxs[plane->type] > plane->dist+PLANESIDE_EPSILON) side |= PSIDE_FRONT; if (mins[plane->type] < plane->dist-PLANESIDE_EPSILON) side |= PSIDE_BACK; return side; } // create the proper leading and trailing verts for the box for (i=0 ; i<3 ; i++) { if (plane->normal[i] < 0) { corners[0][i] = mins[i]; corners[1][i] = maxs[i]; } else { corners[1][i] = mins[i]; corners[0][i] = maxs[i]; } } dist1 = DotProduct (plane->normal, corners[0]) - plane->dist; dist2 = DotProduct (plane->normal, corners[1]) - plane->dist; side = 0; if (dist1 >= PLANESIDE_EPSILON) side = PSIDE_FRONT; if (dist2 < PLANESIDE_EPSILON) side |= PSIDE_BACK; return side; } #else int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, plane_t *p) { float dist1, dist2; int sides; // axial planes are easy if (p->type < 3) { sides = 0; if (emaxs[p->type] > p->dist+PLANESIDE_EPSILON) sides |= PSIDE_FRONT; if (emins[p->type] < p->dist-PLANESIDE_EPSILON) sides |= PSIDE_BACK; return sides; } //end if // general case switch (p->signbits) { case 0: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; break; case 1: dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; break; case 2: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; break; case 3: dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; break; case 4: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; break; case 5: dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; break; case 6: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; break; case 7: dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; break; default: dist1 = dist2 = 0; // shut up compiler // assert( 0 ); break; } sides = 0; if (dist1 - p->dist >= PLANESIDE_EPSILON) sides = PSIDE_FRONT; if (dist2 - p->dist < PLANESIDE_EPSILON) sides |= PSIDE_BACK; // assert(sides != 0); return sides; } #endif //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== int QuickTestBrushToPlanenum (bspbrush_t *brush, int planenum, int *numsplits) { int i, num; plane_t *plane; int s; *numsplits = 0; plane = &mapplanes[planenum]; #ifdef ME //fast axial cases if (plane->type < 3) { if (plane->dist + PLANESIDE_EPSILON < brush->mins[plane->type]) return PSIDE_FRONT; if (plane->dist - PLANESIDE_EPSILON > brush->maxs[plane->type]) return PSIDE_BACK; } //end if #endif //ME*/ // if the brush actually uses the planenum, // we can tell the side for sure for (i = 0; i < brush->numsides; i++) { num = brush->sides[i].planenum; if (num >= MAX_MAPFILE_PLANES) Error ("bad planenum"); if (num == planenum) return PSIDE_BACK|PSIDE_FACING; if (num == (planenum ^ 1) ) return PSIDE_FRONT|PSIDE_FACING; } // box on plane side s = BoxOnPlaneSide (brush->mins, brush->maxs, plane); // if both sides, count the visible faces split if (s == PSIDE_BOTH) { *numsplits += 3; } return s; } //end of the function QuickTestBrushToPlanenum //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== int TestBrushToPlanenum (bspbrush_t *brush, int planenum, int *numsplits, qboolean *hintsplit, int *epsilonbrush) { int i, j, num; plane_t *plane; int s = 0; winding_t *w; vec_t d, d_front, d_back; int front, back; int type; float dist; *numsplits = 0; *hintsplit = false; plane = &mapplanes[planenum]; #ifdef ME //fast axial cases type = plane->type; if (type < 3) { dist = plane->dist; if (dist + PLANESIDE_EPSILON < brush->mins[type]) return PSIDE_FRONT; if (dist - PLANESIDE_EPSILON > brush->maxs[type]) return PSIDE_BACK; if (brush->mins[type] < dist - PLANESIDE_EPSILON && brush->maxs[type] > dist + PLANESIDE_EPSILON) s = PSIDE_BOTH; } //end if if (s != PSIDE_BOTH) #endif //ME { // if the brush actually uses the planenum, // we can tell the side for sure for (i = 0; i < brush->numsides; i++) { num = brush->sides[i].planenum; if (num >= MAX_MAPFILE_PLANES) Error ("bad planenum"); if (num == planenum) { //we don't need to test this side plane again brush->sides[i].flags |= SFL_TESTED; return PSIDE_BACK|PSIDE_FACING; } //end if if (num == (planenum ^ 1) ) { //we don't need to test this side plane again brush->sides[i].flags |= SFL_TESTED; return PSIDE_FRONT|PSIDE_FACING; } //end if } //end for // box on plane side s = BoxOnPlaneSide (brush->mins, brush->maxs, plane); if (s != PSIDE_BOTH) return s; } //end if // if both sides, count the visible faces split d_front = d_back = 0; for (i = 0; i < brush->numsides; i++) { if (brush->sides[i].texinfo == TEXINFO_NODE) continue; // on node, don't worry about splits if (!(brush->sides[i].flags & SFL_VISIBLE)) continue; // we don't care about non-visible w = brush->sides[i].winding; if (!w) continue; front = back = 0; for (j = 0; j < w->numpoints; j++) { d = DotProduct(w->p[j], plane->normal) - plane->dist; if (d > d_front) d_front = d; if (d < d_back) d_back = d; if (d > 0.1) // PLANESIDE_EPSILON) front = 1; if (d < -0.1) // PLANESIDE_EPSILON) back = 1; } //end for if (front && back) { if ( !(brush->sides[i].surf & SURF_SKIP) ) { (*numsplits)++; if (brush->sides[i].surf & SURF_HINT) { *hintsplit = true; } //end if } //end if } //end if } //end for if ( (d_front > 0.0 && d_front < 1.0) || (d_back < 0.0 && d_back > -1.0) ) (*epsilonbrush)++; #if 0 if (*numsplits == 0) { // didn't really need to be split if (front) s = PSIDE_FRONT; else if (back) s = PSIDE_BACK; else s = 0; } #endif return s; } //end of the function TestBrushToPlanenum //=========================================================================== // Returns true if the winding would be crunched out of // existance by the vertex snapping. // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== #define EDGE_LENGTH 0.2 qboolean WindingIsTiny (winding_t *w) { #if 0 if (WindingArea (w) < 1) return true; return false; #else int i, j; vec_t len; vec3_t delta; int edges; edges = 0; for (i=0 ; i<w->numpoints ; i++) { j = i == w->numpoints - 1 ? 0 : i+1; VectorSubtract (w->p[j], w->p[i], delta); len = VectorLength (delta); if (len > EDGE_LENGTH) { if (++edges == 3) return false; } } return true; #endif } //end of the function WindingIsTiny //=========================================================================== // Returns true if the winding still has one of the points // from basewinding for plane // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== qboolean WindingIsHuge (winding_t *w) { int i, j; for (i=0 ; i<w->numpoints ; i++) { for (j=0 ; j<3 ; j++) if (w->p[i][j] < -BOGUS_RANGE+1 || w->p[i][j] > BOGUS_RANGE-1) return true; } return false; } //end of the function WindingIsHuge //=========================================================================== // creates a leaf out of the given nodes with the given brushes // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== void LeafNode(node_t *node, bspbrush_t *brushes) { bspbrush_t *b; int i; node->side = NULL; node->planenum = PLANENUM_LEAF; node->contents = 0; for (b = brushes; b; b = b->next) { // if the brush is solid and all of its sides are on nodes, // it eats everything if (b->original->contents & CONTENTS_SOLID) { for (i=0 ; i<b->numsides ; i++) if (b->sides[i].texinfo != TEXINFO_NODE) break; if (i == b->numsides) { node->contents = CONTENTS_SOLID; break; } //end if } //end if node->contents |= b->original->contents; } //end for if (create_aas) { node->expansionbboxes = 0; node->contents = 0; for (b = brushes; b; b = b->next) { node->expansionbboxes |= b->original->expansionbbox; node->contents |= b->original->contents; if (b->original->modelnum) node->modelnum = b->original->modelnum; } //end for if (node->contents & CONTENTS_SOLID) { if (node->expansionbboxes != cfg.allpresencetypes) { node->contents &= ~CONTENTS_SOLID; } //end if } //end if } //end if node->brushlist = brushes; } //end of the function LeafNode //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== void CheckPlaneAgainstParents (int pnum, node_t *node) { node_t *p; for (p = node->parent; p; p = p->parent) { if (p->planenum == pnum) Error("Tried parent"); } //end for } //end of the function CheckPlaneAgainstParants //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== qboolean CheckPlaneAgainstVolume (int pnum, node_t *node) { bspbrush_t *front, *back; qboolean good; SplitBrush (node->volume, pnum, &front, &back); good = (front && back); if (front) FreeBrush (front); if (back) FreeBrush (back); return good; } //end of the function CheckPlaneAgaintsVolume //=========================================================================== // Using a hueristic, choses one of the sides out of the brushlist // to partition the brushes with. // Returns NULL if there are no valid planes to split with.. // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== side_t *SelectSplitSide (bspbrush_t *brushes, node_t *node) { int value, bestvalue; bspbrush_t *brush, *test; side_t *side, *bestside; int i, pass, numpasses; int pnum; int s; int front, back, both, facing, splits; int bsplits; int bestsplits; int epsilonbrush; qboolean hintsplit = false; bestside = NULL; bestvalue = -99999; bestsplits = 0; // the search order goes: visible-structural, visible-detail, // nonvisible-structural, nonvisible-detail. // If any valid plane is available in a pass, no further // passes will be tried. numpasses = 2; for (pass = 0; pass < numpasses; pass++) { for (brush = brushes; brush; brush = brush->next) { // only check detail the second pass // if ( (pass & 1) && !(brush->original->contents & CONTENTS_DETAIL) ) // continue; // if ( !(pass & 1) && (brush->original->contents & CONTENTS_DETAIL) ) // continue; for (i = 0; i < brush->numsides; i++) { side = brush->sides + i; // if (side->flags & SFL_BEVEL) // continue; // never use a bevel as a spliter if (!side->winding) continue; // nothing visible, so it can't split if (side->texinfo == TEXINFO_NODE) continue; // allready a node splitter if (side->flags & SFL_TESTED) continue; // we allready have metrics for this plane // if (side->surf & SURF_SKIP) // continue; // skip surfaces are never chosen // if (!(side->flags & SFL_VISIBLE) && (pass < 2)) // continue; // only check visible faces on first pass if ((side->flags & SFL_CURVE) && (pass < 1)) continue; // only check curves the second pass pnum = side->planenum; pnum &= ~1; // allways use positive facing plane CheckPlaneAgainstParents (pnum, node); if (!CheckPlaneAgainstVolume (pnum, node)) continue; // would produce a tiny volume front = 0; back = 0; both = 0; facing = 0; splits = 0; epsilonbrush = 0; //inner loop: optimize for (test = brushes; test; test = test->next) { s = TestBrushToPlanenum (test, pnum, &bsplits, &hintsplit, &epsilonbrush); splits += bsplits; // if (bsplits && (s&PSIDE_FACING) ) // Error ("PSIDE_FACING with splits"); test->testside = s; // if (s & PSIDE_FACING) facing++; if (s & PSIDE_FRONT) front++; if (s & PSIDE_BACK) back++; if (s == PSIDE_BOTH) both++; } //end for // give a value estimate for using this plane value = 5*facing - 5*splits - abs(front-back); // value = -5*splits; // value = 5*facing - 5*splits; if (mapplanes[pnum].type < 3) value+=5; // axial is better value -= epsilonbrush * 1000; // avoid! // never split a hint side except with another hint if (hintsplit && !(side->surf & SURF_HINT) ) value = -9999999; // save off the side test so we don't need // to recalculate it when we actually seperate // the brushes if (value > bestvalue) { bestvalue = value; bestside = side; bestsplits = splits; for (test = brushes; test ; test = test->next) test->side = test->testside; } //end if } //end for } //end for (brush = brushes; // if we found a good plane, don't bother trying any // other passes if (bestside) { if (pass > 1) { if (numthreads == 1) c_nonvis++; } if (pass > 0) node->detail_seperator = true; // not needed for vis break; } //end if } //end for (pass = 0; // // clear all the tested flags we set // for (brush = brushes ; brush ; brush=brush->next) { for (i = 0; i < brush->numsides; i++) { brush->sides[i].flags &= ~SFL_TESTED; } //end for } //end for return bestside; } //end of the function SelectSplitSide //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== int BrushMostlyOnSide (bspbrush_t *brush, plane_t *plane) { int i, j; winding_t *w; vec_t d, max; int side; max = 0; side = PSIDE_FRONT; for (i=0 ; i<brush->numsides ; i++) { w = brush->sides[i].winding; if (!w) continue; for (j=0 ; j<w->numpoints ; j++) { d = DotProduct (w->p[j], plane->normal) - plane->dist; if (d > max) { max = d; side = PSIDE_FRONT; } if (-d > max) { max = -d; side = PSIDE_BACK; } } } return side; } //end of the function BrushMostlyOnSide //=========================================================================== // Generates two new brushes, leaving the original // unchanged // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== void SplitBrush (bspbrush_t *brush, int planenum, bspbrush_t **front, bspbrush_t **back) { bspbrush_t *b[2]; int i, j; winding_t *w, *cw[2], *midwinding; plane_t *plane, *plane2; side_t *s, *cs; float d, d_front, d_back; *front = *back = NULL; plane = &mapplanes[planenum]; // check all points d_front = d_back = 0; for (i=0 ; i<brush->numsides ; i++) { w = brush->sides[i].winding; if (!w) continue; for (j=0 ; j<w->numpoints ; j++) { d = DotProduct (w->p[j], plane->normal) - plane->dist; if (d > 0 && d > d_front) d_front = d; if (d < 0 && d < d_back) d_back = d; } } if (d_front < 0.2) // PLANESIDE_EPSILON) { // only on back *back = CopyBrush (brush); return; } if (d_back > -0.2) // PLANESIDE_EPSILON) { // only on front *front = CopyBrush (brush); return; } // create a new winding from the split plane w = BaseWindingForPlane (plane->normal, plane->dist); for (i=0 ; i<brush->numsides && w ; i++) { plane2 = &mapplanes[brush->sides[i].planenum ^ 1]; ChopWindingInPlace (&w, plane2->normal, plane2->dist, 0); // PLANESIDE_EPSILON); } if (!w || WindingIsTiny(w)) { // the brush isn't really split int side; side = BrushMostlyOnSide (brush, plane); if (side == PSIDE_FRONT) *front = CopyBrush (brush); if (side == PSIDE_BACK) *back = CopyBrush (brush); //free a possible winding if (w) FreeWinding(w); return; } if (WindingIsHuge (w)) { Log_Write("WARNING: huge winding\n"); } midwinding = w; // split it for real for (i=0 ; i<2 ; i++) { b[i] = AllocBrush (brush->numsides+1); b[i]->original = brush->original; } // split all the current windings for (i=0 ; i<brush->numsides ; i++) { s = &brush->sides[i]; w = s->winding; if (!w) continue; ClipWindingEpsilon (w, plane->normal, plane->dist, 0 /*PLANESIDE_EPSILON*/, &cw[0], &cw[1]); for (j=0 ; j<2 ; j++) { if (!cw[j]) continue; #if 0 if (WindingIsTiny (cw[j])) { FreeWinding (cw[j]); continue; } #endif cs = &b[j]->sides[b[j]->numsides]; b[j]->numsides++; *cs = *s; // cs->planenum = s->planenum; // cs->texinfo = s->texinfo; // cs->original = s->original; cs->winding = cw[j]; cs->flags &= ~SFL_TESTED; } } // see if we have valid polygons on both sides for (i=0 ; i<2 ; i++) { BoundBrush (b[i]); for (j=0 ; j<3 ; j++) { if (b[i]->mins[j] < -MAX_MAP_BOUNDS || b[i]->maxs[j] > MAX_MAP_BOUNDS) { Log_Write("bogus brush after clip"); break; } } if (b[i]->numsides < 3 || j < 3) { FreeBrush (b[i]); b[i] = NULL; } } if ( !(b[0] && b[1]) ) { if (!b[0] && !b[1]) Log_Write("split removed brush\r\n"); else Log_Write("split not on both sides\r\n"); if (b[0]) { FreeBrush (b[0]); *front = CopyBrush (brush); } if (b[1]) { FreeBrush (b[1]); *back = CopyBrush (brush); } return; } // add the midwinding to both sides for (i=0 ; i<2 ; i++) { cs = &b[i]->sides[b[i]->numsides]; b[i]->numsides++; cs->planenum = planenum^i^1; cs->texinfo = TEXINFO_NODE; //never use these sides as splitters cs->flags &= ~SFL_VISIBLE; cs->flags &= ~SFL_TESTED; if (i==0) cs->winding = CopyWinding (midwinding); else cs->winding = midwinding; } { vec_t v1; int i; for (i = 0; i < 2; i++) { v1 = BrushVolume (b[i]); if (v1 < 1.0) { FreeBrush(b[i]); b[i] = NULL; //Log_Write("tiny volume after clip"); } } if (!b[0] && !b[1]) { Log_Write("two tiny brushes\r\n"); } //end if } *front = b[0]; *back = b[1]; } //end of the function SplitBrush //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== void SplitBrushList (bspbrush_t *brushes, node_t *node, bspbrush_t **front, bspbrush_t **back) { bspbrush_t *brush, *newbrush, *newbrush2; side_t *side; int sides; int i; *front = *back = NULL; for (brush = brushes; brush; brush = brush->next) { sides = brush->side; if (sides == PSIDE_BOTH) { // split into two brushes SplitBrush (brush, node->planenum, &newbrush, &newbrush2); if (newbrush) { newbrush->next = *front; *front = newbrush; } //end if if (newbrush2) { newbrush2->next = *back; *back = newbrush2; } //end if continue; } //end if newbrush = CopyBrush (brush); // if the planenum is actualy a part of the brush // find the plane and flag it as used so it won't be tried // as a splitter again if (sides & PSIDE_FACING) { for (i=0 ; i<newbrush->numsides ; i++) { side = newbrush->sides + i; if ( (side->planenum& ~1) == node->planenum) side->texinfo = TEXINFO_NODE; } //end for } //end if if (sides & PSIDE_FRONT) { newbrush->next = *front; *front = newbrush; continue; } //end if if (sides & PSIDE_BACK) { newbrush->next = *back; *back = newbrush; continue; } //end if } //end for } //end of the function SplitBrushList //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== void CheckBrushLists(bspbrush_t *brushlist1, bspbrush_t *brushlist2) { bspbrush_t *brush1, *brush2; for (brush1 = brushlist1; brush1; brush1 = brush1->next) { for (brush2 = brushlist2; brush2; brush2 = brush2->next) { assert(brush1 != brush2); } //end for } //end for } //end of the function CheckBrushLists //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== int numrecurse = 0; node_t *BuildTree_r (node_t *node, bspbrush_t *brushes) { node_t *newnode; side_t *bestside; int i, totalmem; bspbrush_t *children[2]; qprintf("\r%6d", numrecurse); numrecurse++; if (numthreads == 1) { totalmem = WindingMemory() + c_nodememory + c_brushmemory; if (totalmem > c_peak_totalbspmemory) c_peak_totalbspmemory = totalmem; c_nodes++; } //endif if (drawflag) DrawBrushList(brushes, node); // find the best plane to use as a splitter bestside = SelectSplitSide (brushes, node); if (!bestside) { // leaf node node->side = NULL; node->planenum = -1; LeafNode(node, brushes); if (node->contents & CONTENTS_SOLID) c_solidleafnodes++; if (create_aas) { //free up memory!!! FreeBrushList(node->brushlist); node->brushlist = NULL; //free the node volume brush if (node->volume) { FreeBrush(node->volume); node->volume = NULL; } //end if } //end if return node; } //end if // this is a splitplane node node->side = bestside; node->planenum = bestside->planenum & ~1; // always use front facing //split the brush list in two for both children SplitBrushList (brushes, node, &children[0], &children[1]); //free the old brush list FreeBrushList (brushes); // allocate children before recursing for (i = 0; i < 2; i++) { newnode = AllocNode (); newnode->parent = node; node->children[i] = newnode; } //end for //split the volume brush of the node for the children SplitBrush (node->volume, node->planenum, &node->children[0]->volume, &node->children[1]->volume); if (create_aas) { //free the volume brush if (node->volume) { FreeBrush(node->volume); node->volume = NULL; } //end if } //end if // recursively process children for (i = 0; i < 2; i++) { node->children[i] = BuildTree_r(node->children[i], children[i]); } //end for return node; } //end of the function BuildTree_r //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== node_t *firstnode; //first node in the list node_t *lastnode; //last node in the list int nodelistsize; //number of nodes in the list int use_nodequeue = 0; //use nodequeue, otherwise a node stack is used int numwaiting = 0; void (*AddNodeToList)(node_t *node); //add the node to the front of the node list //(effectively using a node stack) void AddNodeToStack(node_t *node) { ThreadLock(); node->next = firstnode; firstnode = node; if (!lastnode) lastnode = node; nodelistsize++; ThreadUnlock(); // ThreadSemaphoreIncrease(1); } //end of the function AddNodeToStack //add the node to the end of the node list //(effectively using a node queue) void AddNodeToQueue(node_t *node) { ThreadLock(); node->next = NULL; if (lastnode) lastnode->next = node; else firstnode = node; lastnode = node; nodelistsize++; ThreadUnlock(); // ThreadSemaphoreIncrease(1); } //end of the function AddNodeToQueue //get the first node from the front of the node list node_t *NextNodeFromList(void) { node_t *node; ThreadLock(); numwaiting++; if (!firstnode) { if (numwaiting >= GetNumThreads()) ThreadSemaphoreIncrease(GetNumThreads()); } //end if ThreadUnlock(); ThreadSemaphoreWait(); ThreadLock(); numwaiting--; node = firstnode; if (firstnode) { firstnode = firstnode->next; nodelistsize--; } //end if if (!firstnode) lastnode = NULL; ThreadUnlock(); return node; } //end of the function NextNodeFromList //returns the size of the node list int NodeListSize(void) { int size; ThreadLock(); size = nodelistsize; ThreadUnlock(); return size; } //end of the function NodeListSize // void IncreaseNodeCounter(void) { ThreadLock(); //if (verbose) printf("\r%6d", numrecurse++); qprintf("\r%6d", numrecurse++); //qprintf("\r%6d %d, %5d ", numrecurse++, GetNumThreads(), nodelistsize); ThreadUnlock(); } //end of the function IncreaseNodeCounter //thread function, gets nodes from the nodelist and processes them void BuildTreeThread(int threadid) { node_t *newnode, *node; side_t *bestside; int i, totalmem; bspbrush_t *brushes; for (node = NextNodeFromList(); node; ) { //if the nodelist isn't empty try to add another thread //if (NodeListSize() > 10) AddThread(BuildTreeThread); //display the number of nodes processed so far if (numthreads == 1) IncreaseNodeCounter(); brushes = node->brushlist; if (numthreads == 1) { totalmem = WindingMemory() + c_nodememory + c_brushmemory; if (totalmem > c_peak_totalbspmemory) { c_peak_totalbspmemory = totalmem; } //end if c_nodes++; } //endif if (drawflag) { DrawBrushList(brushes, node); } //end if if (cancelconversion) { bestside = NULL; } //end if else { // find the best plane to use as a splitter bestside = SelectSplitSide(brushes, node); } //end else //if there's no split side left if (!bestside) { //create a leaf out of the node LeafNode(node, brushes); if (node->contents & CONTENTS_SOLID) c_solidleafnodes++; if (create_aas) { //free up memory!!! FreeBrushList(node->brushlist); node->brushlist = NULL; } //end if //free the node volume brush (it is not used anymore) if (node->volume) { FreeBrush(node->volume); node->volume = NULL; } //end if node = NextNodeFromList(); continue; } //end if // this is a splitplane node node->side = bestside; node->planenum = bestside->planenum & ~1; //always use front facing //allocate children for (i = 0; i < 2; i++) { newnode = AllocNode(); newnode->parent = node; node->children[i] = newnode; } //end for //split the brush list in two for both children SplitBrushList(brushes, node, &node->children[0]->brushlist, &node->children[1]->brushlist); CheckBrushLists(node->children[0]->brushlist, node->children[1]->brushlist); //free the old brush list FreeBrushList(brushes); node->brushlist = NULL; //split the volume brush of the node for the children SplitBrush(node->volume, node->planenum, &node->children[0]->volume, &node->children[1]->volume); if (!node->children[0]->volume || !node->children[1]->volume) { Error("child without volume brush"); } //end if //free the volume brush if (node->volume) { FreeBrush(node->volume); node->volume = NULL; } //end if //add both children to the node list //AddNodeToList(node->children[0]); AddNodeToList(node->children[1]); node = node->children[0]; } //end while RemoveThread(threadid); } //end of the function BuildTreeThread //=========================================================================== // build the bsp tree using a node list // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== void BuildTree(tree_t *tree) { int i; firstnode = NULL; lastnode = NULL; //use a node queue or node stack if (use_nodequeue) AddNodeToList = AddNodeToQueue; else AddNodeToList = AddNodeToStack; //setup thread locking ThreadSetupLock(); ThreadSetupSemaphore(); numwaiting = 0; // Log_Print("%6d threads max\n", numthreads); if (use_nodequeue) Log_Print("breadth first bsp building\n"); else Log_Print("depth first bsp building\n"); qprintf("%6d splits", 0); //add the first node to the list AddNodeToList(tree->headnode); //start the threads for (i = 0; i < numthreads; i++) AddThread(BuildTreeThread); //wait for all added threads to be finished WaitForAllThreadsFinished(); //shutdown the thread locking ThreadShutdownLock(); ThreadShutdownSemaphore(); } //end of the function BuildTree //=========================================================================== // The incoming brush list will be freed before exiting // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== tree_t *BrushBSP(bspbrush_t *brushlist, vec3_t mins, vec3_t maxs) { int i, c_faces, c_nonvisfaces, c_brushes; bspbrush_t *b; node_t *node; tree_t *tree; vec_t volume; // vec3_t point; Log_Print("-------- Brush BSP ---------\n"); tree = Tree_Alloc(); c_faces = 0; c_nonvisfaces = 0; c_brushes = 0; c_totalsides = 0; for (b = brushlist; b; b = b->next) { c_brushes++; volume = BrushVolume(b); if (volume < microvolume) { Log_Print("WARNING: entity %i, brush %i: microbrush\n", b->original->entitynum, b->original->brushnum); } //end if for (i=0 ; i<b->numsides ; i++) { if (b->sides[i].flags & SFL_BEVEL) continue; if (!b->sides[i].winding) continue; if (b->sides[i].texinfo == TEXINFO_NODE) continue; if (b->sides[i].flags & SFL_VISIBLE) { c_faces++; } //end if else { c_nonvisfaces++; //if (create_aas) b->sides[i].texinfo = TEXINFO_NODE; } //end if } //end for c_totalsides += b->numsides; AddPointToBounds (b->mins, tree->mins, tree->maxs); AddPointToBounds (b->maxs, tree->mins, tree->maxs); } //end for Log_Print("%6i brushes\n", c_brushes); Log_Print("%6i visible faces\n", c_faces); Log_Print("%6i nonvisible faces\n", c_nonvisfaces); Log_Print("%6i total sides\n", c_totalsides); c_active_brushes = c_brushes; c_nodememory = 0; c_brushmemory = 0; c_peak_brushmemory = 0; c_nodes = 0; c_nonvis = 0; node = AllocNode (); //volume of first node (head node) node->volume = BrushFromBounds (mins, maxs); // tree->headnode = node; //just get some statistics and the mins/maxs of the node numrecurse = 0; // qprintf("%6d splits", numrecurse); tree->headnode->brushlist = brushlist; BuildTree(tree); //build the bsp tree with the start node from the brushlist // node = BuildTree_r(node, brushlist); //if the conversion is cancelled if (cancelconversion) return tree; qprintf("\n"); Log_Write("%6d splits\r\n", numrecurse); // Log_Print("%6i visible nodes\n", c_nodes/2 - c_nonvis); // Log_Print("%6i nonvis nodes\n", c_nonvis); // Log_Print("%6i leaves\n", (c_nodes+1)/2); // Log_Print("%6i solid leaf nodes\n", c_solidleafnodes); // Log_Print("%6i active brushes\n", c_active_brushes); if (numthreads == 1) { // Log_Print("%6i KB of node memory\n", c_nodememory >> 10); // Log_Print("%6i KB of brush memory\n", c_brushmemory >> 10); // Log_Print("%6i KB of peak brush memory\n", c_peak_brushmemory >> 10); // Log_Print("%6i KB of winding memory\n", WindingMemory() >> 10); // Log_Print("%6i KB of peak winding memory\n", WindingPeakMemory() >> 10); Log_Print("%6i KB of peak total bsp memory\n", c_peak_totalbspmemory >> 10); } //end if /* point[0] = 1485; point[1] = 956.125; point[2] = 352.125; node = PointInLeaf(tree->headnode, point); if (node->planenum != PLANENUM_LEAF) { Log_Print("node not a leaf\n"); } //end if Log_Print("at %f %f %f:\n", point[0], point[1], point[2]); PrintContents(node->contents); Log_Print("node->expansionbboxes = %d\n", node->expansionbboxes); //*/ return tree; } //end of the function BrushBSP