ref: b8c0e4deccffcd668f7d08ffc1fe16147e9e894a
dir: /code/renderer/tr_flares.c/
/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Foobar; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // tr_flares.c #include "tr_local.h" /* ============================================================================= LIGHT FLARES A light flare is an effect that takes place inside the eye when bright light sources are visible. The size of the flare reletive to the screen is nearly constant, irrespective of distance, but the intensity should be proportional to the projected area of the light source. A surface that has been flagged as having a light flare will calculate the depth buffer value that it's midpoint should have when the surface is added. After all opaque surfaces have been rendered, the depth buffer is read back for each flare in view. If the point has not been obscured by a closer surface, the flare should be drawn. Surfaces that have a repeated texture should never be flagged as flaring, because there will only be a single flare added at the midpoint of the polygon. To prevent abrupt popping, the intensity of the flare is interpolated up and down as it changes visibility. This involves scene to scene state, unlike almost all other aspects of the renderer, and is complicated by the fact that a single frame may have multiple scenes. RB_RenderFlares() will be called once per view (twice in a mirrored scene, potentially up to five or more times in a frame with 3D status bar icons). ============================================================================= */ // flare states maintain visibility over multiple frames for fading // layers: view, mirror, menu typedef struct flare_s { struct flare_s *next; // for active chain int addedFrame; qboolean inPortal; // true if in a portal view of the scene int frameSceneNum; void *surface; int fogNum; int fadeTime; qboolean visible; // state of last test float drawIntensity; // may be non 0 even if !visible due to fading int windowX, windowY; float eyeZ; vec3_t color; } flare_t; #define MAX_FLARES 128 flare_t r_flareStructs[MAX_FLARES]; flare_t *r_activeFlares, *r_inactiveFlares; /* ================== R_ClearFlares ================== */ void R_ClearFlares( void ) { int i; Com_Memset( r_flareStructs, 0, sizeof( r_flareStructs ) ); r_activeFlares = NULL; r_inactiveFlares = NULL; for ( i = 0 ; i < MAX_FLARES ; i++ ) { r_flareStructs[i].next = r_inactiveFlares; r_inactiveFlares = &r_flareStructs[i]; } } /* ================== RB_AddFlare This is called at surface tesselation time ================== */ void RB_AddFlare( void *surface, int fogNum, vec3_t point, vec3_t color, vec3_t normal ) { int i; flare_t *f, *oldest; vec3_t local; float d; vec4_t eye, clip, normalized, window; backEnd.pc.c_flareAdds++; // if the point is off the screen, don't bother adding it // calculate screen coordinates and depth R_TransformModelToClip( point, backEnd.or.modelMatrix, backEnd.viewParms.projectionMatrix, eye, clip ); // check to see if the point is completely off screen for ( i = 0 ; i < 3 ; i++ ) { if ( clip[i] >= clip[3] || clip[i] <= -clip[3] ) { return; } } R_TransformClipToWindow( clip, &backEnd.viewParms, normalized, window ); if ( window[0] < 0 || window[0] >= backEnd.viewParms.viewportWidth || window[1] < 0 || window[1] >= backEnd.viewParms.viewportHeight ) { return; // shouldn't happen, since we check the clip[] above, except for FP rounding } // see if a flare with a matching surface, scene, and view exists oldest = r_flareStructs; for ( f = r_activeFlares ; f ; f = f->next ) { if ( f->surface == surface && f->frameSceneNum == backEnd.viewParms.frameSceneNum && f->inPortal == backEnd.viewParms.isPortal ) { break; } } // allocate a new one if (!f ) { if ( !r_inactiveFlares ) { // the list is completely full return; } f = r_inactiveFlares; r_inactiveFlares = r_inactiveFlares->next; f->next = r_activeFlares; r_activeFlares = f; f->surface = surface; f->frameSceneNum = backEnd.viewParms.frameSceneNum; f->inPortal = backEnd.viewParms.isPortal; f->addedFrame = -1; } if ( f->addedFrame != backEnd.viewParms.frameCount - 1 ) { f->visible = qfalse; f->fadeTime = backEnd.refdef.time - 2000; } f->addedFrame = backEnd.viewParms.frameCount; f->fogNum = fogNum; VectorCopy( color, f->color ); // fade the intensity of the flare down as the // light surface turns away from the viewer if ( normal ) { VectorSubtract( backEnd.viewParms.or.origin, point, local ); VectorNormalizeFast( local ); d = DotProduct( local, normal ); VectorScale( f->color, d, f->color ); } // save info needed to test f->windowX = backEnd.viewParms.viewportX + window[0]; f->windowY = backEnd.viewParms.viewportY + window[1]; f->eyeZ = eye[2]; } /* ================== RB_AddDlightFlares ================== */ void RB_AddDlightFlares( void ) { dlight_t *l; int i, j, k; fog_t *fog; if ( !r_flares->integer ) { return; } l = backEnd.refdef.dlights; fog = tr.world->fogs; for (i=0 ; i<backEnd.refdef.num_dlights ; i++, l++) { // find which fog volume the light is in for ( j = 1 ; j < tr.world->numfogs ; j++ ) { fog = &tr.world->fogs[j]; for ( k = 0 ; k < 3 ; k++ ) { if ( l->origin[k] < fog->bounds[0][k] || l->origin[k] > fog->bounds[1][k] ) { break; } } if ( k == 3 ) { break; } } if ( j == tr.world->numfogs ) { j = 0; } RB_AddFlare( (void *)l, j, l->origin, l->color, NULL ); } } /* =============================================================================== FLARE BACK END =============================================================================== */ /* ================== RB_TestFlare ================== */ void RB_TestFlare( flare_t *f ) { float depth; qboolean visible; float fade; float screenZ; backEnd.pc.c_flareTests++; // doing a readpixels is as good as doing a glFinish(), so // don't bother with another sync glState.finishCalled = qfalse; // read back the z buffer contents qglReadPixels( f->windowX, f->windowY, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, &depth ); screenZ = backEnd.viewParms.projectionMatrix[14] / ( ( 2*depth - 1 ) * backEnd.viewParms.projectionMatrix[11] - backEnd.viewParms.projectionMatrix[10] ); visible = ( -f->eyeZ - -screenZ ) < 24; if ( visible ) { if ( !f->visible ) { f->visible = qtrue; f->fadeTime = backEnd.refdef.time - 1; } fade = ( ( backEnd.refdef.time - f->fadeTime ) /1000.0f ) * r_flareFade->value; } else { if ( f->visible ) { f->visible = qfalse; f->fadeTime = backEnd.refdef.time - 1; } fade = 1.0f - ( ( backEnd.refdef.time - f->fadeTime ) / 1000.0f ) * r_flareFade->value; } if ( fade < 0 ) { fade = 0; } if ( fade > 1 ) { fade = 1; } f->drawIntensity = fade; } /* ================== RB_RenderFlare ================== */ void RB_RenderFlare( flare_t *f ) { float size; vec3_t color; int iColor[3]; backEnd.pc.c_flareRenders++; VectorScale( f->color, f->drawIntensity*tr.identityLight, color ); iColor[0] = color[0] * 255; iColor[1] = color[1] * 255; iColor[2] = color[2] * 255; size = backEnd.viewParms.viewportWidth * ( r_flareSize->value/640.0f + 8 / -f->eyeZ ); RB_BeginSurface( tr.flareShader, f->fogNum ); // FIXME: use quadstamp? tess.xyz[tess.numVertexes][0] = f->windowX - size; tess.xyz[tess.numVertexes][1] = f->windowY - size; tess.texCoords[tess.numVertexes][0][0] = 0; tess.texCoords[tess.numVertexes][0][1] = 0; tess.vertexColors[tess.numVertexes][0] = iColor[0]; tess.vertexColors[tess.numVertexes][1] = iColor[1]; tess.vertexColors[tess.numVertexes][2] = iColor[2]; tess.vertexColors[tess.numVertexes][3] = 255; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = f->windowX - size; tess.xyz[tess.numVertexes][1] = f->windowY + size; tess.texCoords[tess.numVertexes][0][0] = 0; tess.texCoords[tess.numVertexes][0][1] = 1; tess.vertexColors[tess.numVertexes][0] = iColor[0]; tess.vertexColors[tess.numVertexes][1] = iColor[1]; tess.vertexColors[tess.numVertexes][2] = iColor[2]; tess.vertexColors[tess.numVertexes][3] = 255; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = f->windowX + size; tess.xyz[tess.numVertexes][1] = f->windowY + size; tess.texCoords[tess.numVertexes][0][0] = 1; tess.texCoords[tess.numVertexes][0][1] = 1; tess.vertexColors[tess.numVertexes][0] = iColor[0]; tess.vertexColors[tess.numVertexes][1] = iColor[1]; tess.vertexColors[tess.numVertexes][2] = iColor[2]; tess.vertexColors[tess.numVertexes][3] = 255; tess.numVertexes++; tess.xyz[tess.numVertexes][0] = f->windowX + size; tess.xyz[tess.numVertexes][1] = f->windowY - size; tess.texCoords[tess.numVertexes][0][0] = 1; tess.texCoords[tess.numVertexes][0][1] = 0; tess.vertexColors[tess.numVertexes][0] = iColor[0]; tess.vertexColors[tess.numVertexes][1] = iColor[1]; tess.vertexColors[tess.numVertexes][2] = iColor[2]; tess.vertexColors[tess.numVertexes][3] = 255; tess.numVertexes++; tess.indexes[tess.numIndexes++] = 0; tess.indexes[tess.numIndexes++] = 1; tess.indexes[tess.numIndexes++] = 2; tess.indexes[tess.numIndexes++] = 0; tess.indexes[tess.numIndexes++] = 2; tess.indexes[tess.numIndexes++] = 3; RB_EndSurface(); } /* ================== RB_RenderFlares Because flares are simulating an occular effect, they should be drawn after everything (all views) in the entire frame has been drawn. Because of the way portals use the depth buffer to mark off areas, the needed information would be lost after each view, so we are forced to draw flares after each view. The resulting artifact is that flares in mirrors or portals don't dim properly when occluded by something in the main view, and portal flares that should extend past the portal edge will be overwritten. ================== */ void RB_RenderFlares (void) { flare_t *f; flare_t **prev; qboolean draw; if ( !r_flares->integer ) { return; } // RB_AddDlightFlares(); // perform z buffer readback on each flare in this view draw = qfalse; prev = &r_activeFlares; while ( ( f = *prev ) != NULL ) { // throw out any flares that weren't added last frame if ( f->addedFrame < backEnd.viewParms.frameCount - 1 ) { *prev = f->next; f->next = r_inactiveFlares; r_inactiveFlares = f; continue; } // don't draw any here that aren't from this scene / portal f->drawIntensity = 0; if ( f->frameSceneNum == backEnd.viewParms.frameSceneNum && f->inPortal == backEnd.viewParms.isPortal ) { RB_TestFlare( f ); if ( f->drawIntensity ) { draw = qtrue; } else { // this flare has completely faded out, so remove it from the chain *prev = f->next; f->next = r_inactiveFlares; r_inactiveFlares = f; continue; } } prev = &f->next; } if ( !draw ) { return; // none visible } if ( backEnd.viewParms.isPortal ) { qglDisable (GL_CLIP_PLANE0); } qglPushMatrix(); qglLoadIdentity(); qglMatrixMode( GL_PROJECTION ); qglPushMatrix(); qglLoadIdentity(); qglOrtho( backEnd.viewParms.viewportX, backEnd.viewParms.viewportX + backEnd.viewParms.viewportWidth, backEnd.viewParms.viewportY, backEnd.viewParms.viewportY + backEnd.viewParms.viewportHeight, -99999, 99999 ); for ( f = r_activeFlares ; f ; f = f->next ) { if ( f->frameSceneNum == backEnd.viewParms.frameSceneNum && f->inPortal == backEnd.viewParms.isPortal && f->drawIntensity ) { RB_RenderFlare( f ); } } qglPopMatrix(); qglMatrixMode( GL_MODELVIEW ); qglPopMatrix(); }