ref: fd1a5db140d51e7188e5126db2edc0ab923cfa8c
dir: /src_FLP/SKP_Silk_control_codec_FLP.c/
/*********************************************************************** Copyright (c) 2006-2010, Skype Limited. All rights reserved. Redistribution and use in source and binary forms, with or without modification, (subject to the limitations in the disclaimer below) are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of Skype Limited, nor the names of specific contributors, may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***********************************************************************/ #include "SKP_Silk_main_FLP.h" /* ToDo: Move the functions below to common to be able to use them in FLP control codec also */ SKP_INLINE SKP_int SKP_Silk_setup_resamplers( SKP_Silk_encoder_state_FLP *psEnc, /* I/O */ SKP_int API_fs_Hz, /* I */ SKP_int fs_kHz /* I */ ); SKP_INLINE SKP_int SKP_Silk_setup_packetsize( SKP_Silk_encoder_state_FLP *psEnc, /* I/O */ SKP_int PacketSize_ms /* I */ ); SKP_INLINE SKP_int SKP_Silk_setup_fs( SKP_Silk_encoder_state_FLP *psEnc, /* I/O */ SKP_int fs_kHz /* I */ ); SKP_INLINE SKP_int SKP_Silk_setup_complexity( SKP_Silk_encoder_state_FLP *psEnc, /* I/O */ SKP_int Complexity /* I */ ); SKP_INLINE SKP_int SKP_Silk_setup_rate( SKP_Silk_encoder_state_FLP *psEnc, /* I/O */ SKP_int TargetRate_bps /* I */ ); SKP_INLINE SKP_int SKP_Silk_setup_LBRR( SKP_Silk_encoder_state_FLP *psEnc, /* I/O */ SKP_int INBandFEC_enabled /* I */ ); /* Control encoder SNR */ SKP_int SKP_Silk_control_encoder_FLP( SKP_Silk_encoder_state_FLP *psEnc, /* I/O Pointer to Silk encoder state FLP */ const SKP_int32 API_fs_Hz, /* I External (API) sampling rate (Hz) */ const SKP_int max_internal_fs_kHz,/* I Maximum internal sampling rate (kHz) */ const SKP_int PacketSize_ms, /* I Packet length (ms) */ SKP_int32 TargetRate_bps, /* I Target max bitrate (if SNR_dB == 0) */ const SKP_int PacketLoss_perc, /* I Packet loss rate (in percent) */ const SKP_int INBandFEC_enabled, /* I Enable (1) / disable (0) inband FEC */ const SKP_int DTX_enabled, /* I Enable / disable DTX */ const SKP_int InputFramesize_ms, /* I Inputframe in ms */ const SKP_int Complexity /* I Complexity (0->low; 1->medium; 2->high) */ ) { SKP_int fs_kHz, ret = 0; /* State machine for the SWB/WB switching */ fs_kHz = psEnc->sCmn.fs_kHz; /* Only switch during low speech activity, when no frames are sitting in the payload buffer */ if( API_fs_Hz == 8000 || fs_kHz == 0 || API_fs_Hz < fs_kHz * 1000 || fs_kHz > max_internal_fs_kHz ) { /* Switching is not possible, encoder just initialized, internal mode higher than external, */ /* or internal mode higher than maximum allowed internal mode */ fs_kHz = SKP_min( SKP_DIV32_16( API_fs_Hz, 1000 ), max_internal_fs_kHz ); } else { /* Accumulate the difference between the target rate and limit for switching down */ psEnc->sCmn.bitrateDiff += SKP_MUL( InputFramesize_ms, TargetRate_bps - psEnc->sCmn.bitrate_threshold_down ); psEnc->sCmn.bitrateDiff = SKP_min( psEnc->sCmn.bitrateDiff, 0 ); if( psEnc->speech_activity < 0.5f && psEnc->sCmn.nFramesInPayloadBuf == 0 ) { /* Low speech activity and payload buffer empty */ /* Check if we should switch down */ #if SWITCH_TRANSITION_FILTERING if( ( psEnc->sCmn.sLP.transition_frame_no == 0 ) && /* Transition phase not active */ ( psEnc->sCmn.bitrateDiff <= -ACCUM_BITS_DIFF_THRESHOLD || /* Bitrate threshold is met */ ( psEnc->sCmn.sSWBdetect.WB_detected * psEnc->sCmn.fs_kHz == 24 ) ) ) { /* Forced down-switching due to WB input */ psEnc->sCmn.sLP.transition_frame_no = 1; /* Begin transition phase */ psEnc->sCmn.sLP.mode = 0; /* Switch down */ } else if( ( psEnc->sCmn.sLP.transition_frame_no >= TRANSITION_FRAMES_DOWN ) && /* Transition phase complete */ ( psEnc->sCmn.sLP.mode == 0 ) ) { /* Ready to switch down */ psEnc->sCmn.sLP.transition_frame_no = 0; /* Ready for new transition phase */ #else if( psEnc->sCmn.bitrateDiff <= -ACCUM_BITS_DIFF_THRESHOLD ) { /* Bitrate threshold is met */ #endif psEnc->sCmn.bitrateDiff = 0; /* Switch to a lower sample frequency */ if( psEnc->sCmn.fs_kHz == 24 ) { fs_kHz = 16; } else if( psEnc->sCmn.fs_kHz == 16 ) { fs_kHz = 12; } else { SKP_assert( psEnc->sCmn.fs_kHz == 12 ); fs_kHz = 8; } } /* Check if we should switch up */ if( ( ( psEnc->sCmn.fs_kHz * 1000 < API_fs_Hz ) && ( TargetRate_bps >= psEnc->sCmn.bitrate_threshold_up ) && ( psEnc->sCmn.sSWBdetect.WB_detected * psEnc->sCmn.fs_kHz != 16 ) ) && ( ( psEnc->sCmn.fs_kHz == 16 ) && ( max_internal_fs_kHz >= 24 ) || ( psEnc->sCmn.fs_kHz == 12 ) && ( max_internal_fs_kHz >= 16 ) || ( psEnc->sCmn.fs_kHz == 8 ) && ( max_internal_fs_kHz >= 12 ) ) #if SWITCH_TRANSITION_FILTERING && ( psEnc->sCmn.sLP.transition_frame_no == 0 ) ) { /* No transition phase running, ready to switch */ psEnc->sCmn.sLP.mode = 1; /* Switch up */ #else ) { #endif psEnc->sCmn.bitrateDiff = 0; /* Switch to a higher sample frequency */ if( psEnc->sCmn.fs_kHz == 8 ) { fs_kHz = 12; } else if( psEnc->sCmn.fs_kHz == 12 ) { fs_kHz = 16; } else { SKP_assert( psEnc->sCmn.fs_kHz == 16 ); fs_kHz = 24; } } } } #if SWITCH_TRANSITION_FILTERING /* After switching up, stop transition filter during speech inactivity */ if( ( psEnc->sCmn.sLP.mode == 1 ) && ( psEnc->sCmn.sLP.transition_frame_no >= TRANSITION_FRAMES_UP ) && ( psEnc->speech_activity < 0.5f ) && ( psEnc->sCmn.nFramesInPayloadBuf == 0 ) ) { psEnc->sCmn.sLP.transition_frame_no = 0; /* Reset transition filter state */ SKP_memset( psEnc->sCmn.sLP.In_LP_State, 0, 2 * sizeof( SKP_int32 ) ); } #endif /********************************************/ /* Prepare resampler and buffered data */ /********************************************/ SKP_Silk_setup_resamplers( psEnc, API_fs_Hz, fs_kHz ); /********************************************/ /* Set packet size */ /********************************************/ ret += SKP_Silk_setup_packetsize( psEnc, PacketSize_ms ); /********************************************/ /* Set internal sampling frequency */ /********************************************/ ret += SKP_Silk_setup_fs( psEnc, fs_kHz ); /********************************************/ /* Set encoding complexity */ /********************************************/ ret += SKP_Silk_setup_complexity( psEnc, Complexity ); /********************************************/ /* Set bitrate/coding quality */ /********************************************/ ret += SKP_Silk_setup_rate( psEnc, TargetRate_bps ); /********************************************/ /* Set packet loss rate measured by farend */ /********************************************/ if( ( PacketLoss_perc < 0 ) || ( PacketLoss_perc > 100 ) ) { ret = SKP_SILK_ENC_INVALID_LOSS_RATE; } psEnc->sCmn.PacketLoss_perc = PacketLoss_perc; /********************************************/ /* Set LBRR usage */ /********************************************/ ret += SKP_Silk_setup_LBRR( psEnc, INBandFEC_enabled ); /********************************************/ /* Set DTX mode */ /********************************************/ if( DTX_enabled < 0 || DTX_enabled > 1 ) { ret = SKP_SILK_ENC_INVALID_DTX_SETTING; } psEnc->sCmn.useDTX = DTX_enabled; return ret; } /* Control low bitrate redundancy usage */ void SKP_Silk_LBRR_ctrl_FLP( SKP_Silk_encoder_state_FLP *psEnc, /* I Encoder state FLP */ SKP_Silk_encoder_control *psEncCtrl /* I/O Encoder control */ ) { SKP_int LBRR_usage; if( psEnc->sCmn.LBRR_enabled ) { /* Control LBRR */ /* Usage Control based on sensitivity and packet loss caracteristics */ /* For now only enable adding to next for active frames. Make more complex later */ LBRR_usage = SKP_SILK_NO_LBRR; if( psEnc->speech_activity > LBRR_SPEECH_ACTIVITY_THRES && psEnc->sCmn.PacketLoss_perc > LBRR_LOSS_THRES ) { // nb! maybe multiply loss prob and speech activity LBRR_usage = SKP_SILK_ADD_LBRR_TO_PLUS1; } psEncCtrl->LBRR_usage = LBRR_usage; } else { psEncCtrl->LBRR_usage = SKP_SILK_NO_LBRR; } } SKP_INLINE SKP_int SKP_Silk_setup_packetsize( SKP_Silk_encoder_state_FLP *psEnc, /* I/O */ SKP_int PacketSize_ms /* I */ ) { SKP_int ret = SKP_SILK_NO_ERROR; if( ( PacketSize_ms != 10 ) && ( PacketSize_ms != 20 ) && ( PacketSize_ms != 40 ) && ( PacketSize_ms != 60 ) && ( PacketSize_ms != 80 ) && ( PacketSize_ms != 100 ) ) { ret = SKP_SILK_ENC_PACKET_SIZE_NOT_SUPPORTED; } else { if( PacketSize_ms != psEnc->sCmn.PacketSize_ms ) { if( PacketSize_ms == 10 ) { if( psEnc->sCmn.nFramesInPayloadBuf == 0 ) { /* Only allowed when the payload buffer is empty */ psEnc->sCmn.nb_subfr = MAX_NB_SUBFR >> 1; psEnc->sCmn.frame_length = SKP_SMULBB( psEnc->sCmn.subfr_length, psEnc->sCmn.nb_subfr ); psEnc->sCmn.PacketSize_ms = PacketSize_ms; psEnc->sPred.pitch_LPC_win_length = SKP_SMULBB( FIND_PITCH_LPC_WIN_MS_2_SF, psEnc->sCmn.fs_kHz ); /* Packet length changes. Reset LBRR buffer */ SKP_Silk_LBRR_reset( &psEnc->sCmn ); } } else{ psEnc->sCmn.nb_subfr = MAX_NB_SUBFR; psEnc->sCmn.frame_length = SKP_SMULBB( psEnc->sCmn.subfr_length, psEnc->sCmn.nb_subfr ); psEnc->sCmn.PacketSize_ms = PacketSize_ms; psEnc->sPred.pitch_LPC_win_length = SKP_SMULBB( FIND_PITCH_LPC_WIN_MS, psEnc->sCmn.fs_kHz ); /* Packet length changes. Reset LBRR buffer */ SKP_Silk_LBRR_reset( &psEnc->sCmn ); } } } return(ret); } SKP_INLINE SKP_int SKP_Silk_setup_resamplers( SKP_Silk_encoder_state_FLP *psEnc, /* I/O */ SKP_int API_fs_Hz, /* I */ SKP_int fs_kHz /* I */ ) { SKP_int ret = SKP_SILK_NO_ERROR; if( psEnc->sCmn.fs_kHz != fs_kHz || psEnc->sCmn.prev_API_fs_Hz != API_fs_Hz ) { /* Allocate space for worst case temporary upsampling, 8 to 48 kHz, so a factor 6 */ SKP_int16 x_buf_API_fs_Hz[ ( MAX_API_FS_KHZ / 8 ) * ( 2 * MAX_FRAME_LENGTH + LA_SHAPE_MAX ) ]; SKP_int16 x_bufFIX[ 2 * MAX_FRAME_LENGTH + LA_SHAPE_MAX ]; SKP_int32 nSamples_temp = 2 * psEnc->sCmn.frame_length + psEnc->sCmn.la_shape; SKP_float2short_array( x_bufFIX, psEnc->x_buf, 2 * MAX_FRAME_LENGTH + LA_SHAPE_MAX ); if( fs_kHz * 1000 < API_fs_Hz && psEnc->sCmn.fs_kHz != 0 ) { /* Resample buffered data in x_buf to API_fs_Hz */ SKP_Silk_resampler_state_struct temp_resampler_state; /* Initialize resampler for temporary resampling of x_buf data to API_fs_Hz */ ret += SKP_Silk_resampler_init( &temp_resampler_state, psEnc->sCmn.fs_kHz * 1000, API_fs_Hz ); /* Temporary resampling of x_buf data to API_fs_Hz */ ret += SKP_Silk_resampler( &temp_resampler_state, x_buf_API_fs_Hz, x_bufFIX, nSamples_temp ); /* Calculate number of samples that has been temporarily upsampled */ nSamples_temp = SKP_DIV32_16( nSamples_temp * API_fs_Hz, psEnc->sCmn.fs_kHz * 1000 ); /* Initialize the resampler for enc_API.c preparing resampling from API_fs_Hz to fs_kHz */ ret += SKP_Silk_resampler_init( &psEnc->sCmn.resampler_state, API_fs_Hz, fs_kHz * 1000 ); } else { /* Copy data */ SKP_memcpy( x_buf_API_fs_Hz, x_bufFIX, nSamples_temp * sizeof( SKP_int16 ) ); } if( 1000 * fs_kHz != API_fs_Hz ) { /* Correct resampler state (unless resampling by a factor 1) by resampling buffered data from API_fs_Hz to fs_kHz */ ret += SKP_Silk_resampler( &psEnc->sCmn.resampler_state, x_bufFIX, x_buf_API_fs_Hz, nSamples_temp ); } SKP_short2float_array( psEnc->x_buf, x_bufFIX, 2 * MAX_FRAME_LENGTH + LA_SHAPE_MAX ); } psEnc->sCmn.prev_API_fs_Hz = API_fs_Hz; return(ret); } SKP_INLINE SKP_int SKP_Silk_setup_fs( SKP_Silk_encoder_state_FLP *psEnc, /* I/O */ SKP_int fs_kHz /* I */ ) { SKP_int ret = SKP_SILK_NO_ERROR; /* Set internal sampling frequency */ if( psEnc->sCmn.fs_kHz != fs_kHz ) { /* reset part of the state */ SKP_memset( &psEnc->sShape, 0, sizeof( SKP_Silk_shape_state_FLP ) ); SKP_memset( &psEnc->sPrefilt, 0, sizeof( SKP_Silk_prefilter_state_FLP ) ); SKP_memset( &psEnc->sNSQ, 0, sizeof( SKP_Silk_nsq_state ) ); SKP_memset( &psEnc->sPred, 0, sizeof( SKP_Silk_predict_state_FLP ) ); SKP_memset( psEnc->sNSQ.xq, 0, ( 2 * MAX_FRAME_LENGTH ) * sizeof( SKP_int16 ) ); SKP_memset( psEnc->sNSQ_LBRR.xq, 0, ( 2 * MAX_FRAME_LENGTH ) * sizeof( SKP_int16 ) ); SKP_memset( psEnc->sCmn.LBRR_buffer, 0, MAX_LBRR_DELAY * sizeof( SKP_SILK_LBRR_struct ) ); #if SWITCH_TRANSITION_FILTERING SKP_memset( psEnc->sCmn.sLP.In_LP_State, 0, 2 * sizeof( SKP_int32 ) ); if( psEnc->sCmn.sLP.mode == 1 ) { /* Begin transition phase */ psEnc->sCmn.sLP.transition_frame_no = 1; } else { /* End transition phase */ psEnc->sCmn.sLP.transition_frame_no = 0; } #endif psEnc->sCmn.inputBufIx = 0; psEnc->sCmn.nFramesInPayloadBuf = 0; psEnc->sCmn.nBytesInPayloadBuf = 0; psEnc->sCmn.oldest_LBRR_idx = 0; psEnc->sCmn.TargetRate_bps = 0; /* Ensures that psEnc->SNR_dB is recomputed */ SKP_memset( psEnc->sPred.prev_NLSFq, 0, MAX_LPC_ORDER * sizeof( SKP_float ) ); /* Initialize non-zero parameters */ psEnc->sCmn.prevLag = 100; psEnc->sCmn.prev_sigtype = SIG_TYPE_UNVOICED; psEnc->sCmn.first_frame_after_reset = 1; psEnc->sPrefilt.lagPrev = 100; psEnc->sShape.LastGainIndex = 1; psEnc->sNSQ.lagPrev = 100; psEnc->sNSQ.prev_inv_gain_Q16 = 65536; psEnc->sNSQ_LBRR.prev_inv_gain_Q16 = 65536; psEnc->sCmn.fs_kHz = fs_kHz; if( psEnc->sCmn.fs_kHz == 8 ) { psEnc->sCmn.predictLPCOrder = MIN_LPC_ORDER; psEnc->sCmn.psNLSF_CB[ 0 ] = &SKP_Silk_NLSF_CB0_10; psEnc->sCmn.psNLSF_CB[ 1 ] = &SKP_Silk_NLSF_CB1_10; psEnc->psNLSF_CB_FLP[ 0 ] = &SKP_Silk_NLSF_CB0_10_FLP; psEnc->psNLSF_CB_FLP[ 1 ] = &SKP_Silk_NLSF_CB1_10_FLP; } else { psEnc->sCmn.predictLPCOrder = MAX_LPC_ORDER; psEnc->sCmn.psNLSF_CB[ 0 ] = &SKP_Silk_NLSF_CB0_16; psEnc->sCmn.psNLSF_CB[ 1 ] = &SKP_Silk_NLSF_CB1_16; psEnc->psNLSF_CB_FLP[ 0 ] = &SKP_Silk_NLSF_CB0_16_FLP; psEnc->psNLSF_CB_FLP[ 1 ] = &SKP_Silk_NLSF_CB1_16_FLP; } psEnc->sCmn.subfr_length = SUB_FRAME_LENGTH_MS * fs_kHz; psEnc->sCmn.frame_length = psEnc->sCmn.subfr_length * psEnc->sCmn.nb_subfr; psEnc->sCmn.ltp_mem_length = LTP_MEM_LENGTH_MS * fs_kHz; psEnc->sCmn.la_pitch = LA_PITCH_MS * fs_kHz; psEnc->sCmn.la_shape = LA_SHAPE_MS * fs_kHz; psEnc->sPred.min_pitch_lag = 3 * fs_kHz; psEnc->sPred.max_pitch_lag = 18 * fs_kHz; if( psEnc->sCmn.nb_subfr == MAX_NB_SUBFR ){ psEnc->sPred.pitch_LPC_win_length = SKP_SMULBB( FIND_PITCH_LPC_WIN_MS, fs_kHz ); } else { psEnc->sPred.pitch_LPC_win_length = SKP_SMULBB( FIND_PITCH_LPC_WIN_MS_2_SF, fs_kHz ); } if( psEnc->sCmn.fs_kHz == 24 ) { psEnc->mu_LTP = MU_LTP_QUANT_SWB; psEnc->sCmn.bitrate_threshold_up = SKP_int32_MAX; psEnc->sCmn.bitrate_threshold_down = SWB2WB_BITRATE_BPS; } else if( psEnc->sCmn.fs_kHz == 16 ) { psEnc->mu_LTP = MU_LTP_QUANT_WB; psEnc->sCmn.bitrate_threshold_up = WB2SWB_BITRATE_BPS; psEnc->sCmn.bitrate_threshold_down = WB2MB_BITRATE_BPS; } else if( psEnc->sCmn.fs_kHz == 12 ) { psEnc->mu_LTP = MU_LTP_QUANT_MB; psEnc->sCmn.bitrate_threshold_up = MB2WB_BITRATE_BPS; psEnc->sCmn.bitrate_threshold_down = MB2NB_BITRATE_BPS; } else { psEnc->mu_LTP = MU_LTP_QUANT_NB; psEnc->sCmn.bitrate_threshold_up = NB2MB_BITRATE_BPS; psEnc->sCmn.bitrate_threshold_down = 0; } psEnc->sCmn.fs_kHz_changed = 1; /* Check that settings are valid */ SKP_assert( ( psEnc->sCmn.subfr_length * psEnc->sCmn.nb_subfr ) == psEnc->sCmn.frame_length ); } return( ret ); } SKP_INLINE SKP_int SKP_Silk_setup_complexity( SKP_Silk_encoder_state_FLP *psEnc, /* I/O */ SKP_int Complexity /* I */ ) { SKP_int ret = SKP_SILK_NO_ERROR; /* Check that settings are valid */ if( LOW_COMPLEXITY_ONLY && Complexity != 0 ) { ret = SKP_SILK_ENC_INVALID_COMPLEXITY_SETTING; } /* Set encoding complexity */ if( Complexity == 0 || LOW_COMPLEXITY_ONLY ) { /* Low complexity */ psEnc->sCmn.Complexity = 0; psEnc->sCmn.pitchEstimationComplexity = PITCH_EST_COMPLEXITY_LC_MODE; psEnc->pitchEstimationThreshold = FIND_PITCH_CORRELATION_THRESHOLD_LC_MODE; psEnc->sCmn.pitchEstimationLPCOrder = 8; psEnc->sCmn.shapingLPCOrder = 8; psEnc->sCmn.nStatesDelayedDecision = 1; psEnc->sCmn.useInterpolatedNLSFs = 0; psEnc->sCmn.LTPQuantLowComplexity = 1; psEnc->sCmn.NLSF_MSVQ_Survivors = MAX_NLSF_MSVQ_SURVIVORS_LC_MODE; } else if( Complexity == 1 ) { /* Medium complexity */ psEnc->sCmn.Complexity = 1; psEnc->sCmn.pitchEstimationComplexity = PITCH_EST_COMPLEXITY_MC_MODE; psEnc->pitchEstimationThreshold = FIND_PITCH_CORRELATION_THRESHOLD_MC_MODE; psEnc->sCmn.pitchEstimationLPCOrder = 12; psEnc->sCmn.shapingLPCOrder = 12; psEnc->sCmn.nStatesDelayedDecision = 2; psEnc->sCmn.useInterpolatedNLSFs = 0; psEnc->sCmn.LTPQuantLowComplexity = 0; psEnc->sCmn.NLSF_MSVQ_Survivors = MAX_NLSF_MSVQ_SURVIVORS_MC_MODE; } else if( Complexity == 2 ) { /* High complexity */ psEnc->sCmn.Complexity = 2; psEnc->sCmn.pitchEstimationComplexity = PITCH_EST_COMPLEXITY_HC_MODE; psEnc->pitchEstimationThreshold = FIND_PITCH_CORRELATION_THRESHOLD_HC_MODE; psEnc->sCmn.pitchEstimationLPCOrder = 16; psEnc->sCmn.shapingLPCOrder = 16; psEnc->sCmn.nStatesDelayedDecision = 4; psEnc->sCmn.useInterpolatedNLSFs = 1; psEnc->sCmn.LTPQuantLowComplexity = 0; psEnc->sCmn.NLSF_MSVQ_Survivors = MAX_NLSF_MSVQ_SURVIVORS; } else { ret = SKP_SILK_ENC_INVALID_COMPLEXITY_SETTING; } /* Do not allow higher pitch estimation LPC order than predict LPC order */ psEnc->sCmn.pitchEstimationLPCOrder = SKP_min_int( psEnc->sCmn.pitchEstimationLPCOrder, psEnc->sCmn.predictLPCOrder ); SKP_assert( psEnc->sCmn.pitchEstimationLPCOrder <= MAX_FIND_PITCH_LPC_ORDER ); SKP_assert( psEnc->sCmn.shapingLPCOrder <= MAX_SHAPE_LPC_ORDER ); SKP_assert( psEnc->sCmn.nStatesDelayedDecision <= MAX_DEL_DEC_STATES ); return( ret ); } SKP_INLINE SKP_int SKP_Silk_setup_rate( SKP_Silk_encoder_state_FLP *psEnc, /* I/O */ SKP_int TargetRate_bps /* I */ ) { SKP_int k, ret = SKP_SILK_NO_ERROR; SKP_float frac; const SKP_int32 *rateTable; /* Set bitrate/coding quality */ TargetRate_bps = SKP_min( TargetRate_bps, 100000 ); if( psEnc->sCmn.fs_kHz == 8 ) { TargetRate_bps = SKP_max( TargetRate_bps, MIN_TARGET_RATE_NB_BPS ); } else if( psEnc->sCmn.fs_kHz == 12 ) { TargetRate_bps = SKP_max( TargetRate_bps, MIN_TARGET_RATE_MB_BPS ); } else if( psEnc->sCmn.fs_kHz == 16 ) { TargetRate_bps = SKP_max( TargetRate_bps, MIN_TARGET_RATE_WB_BPS ); } else { TargetRate_bps = SKP_max( TargetRate_bps, MIN_TARGET_RATE_SWB_BPS ); } if( TargetRate_bps != psEnc->sCmn.TargetRate_bps ) { psEnc->sCmn.TargetRate_bps = TargetRate_bps; /* If new TargetRate_bps, translate to SNR_dB value */ if( psEnc->sCmn.fs_kHz == 8 ) { rateTable = TargetRate_table_NB; } else if( psEnc->sCmn.fs_kHz == 12 ) { rateTable = TargetRate_table_MB; } else if( psEnc->sCmn.fs_kHz == 16 ) { rateTable = TargetRate_table_WB; } else { rateTable = TargetRate_table_SWB; } for( k = 1; k < TARGET_RATE_TAB_SZ; k++ ) { /* Find bitrate interval in table and interpolate */ if( TargetRate_bps < rateTable[ k ] ) { frac = (SKP_float)( TargetRate_bps - rateTable[ k - 1 ] ) / (SKP_float)( rateTable[ k ] - rateTable[ k - 1 ] ); psEnc->SNR_dB = 0.5f * ( SNR_table_Q1[ k - 1 ] + frac * ( SNR_table_Q1[ k ] - SNR_table_Q1[ k - 1 ] ) ); break; } } } return( ret ); } SKP_INLINE SKP_int SKP_Silk_setup_LBRR( SKP_Silk_encoder_state_FLP *psEnc, /* I/O */ SKP_int INBandFEC_enabled /* I */ ) { SKP_int ret = SKP_SILK_NO_ERROR; SKP_int32 LBRRRate_thres_bps; #if USE_LBRR if( INBandFEC_enabled < 0 || INBandFEC_enabled > 1 ) { ret = SKP_SILK_ENC_INVALID_INBAND_FEC_SETTING; } /* Only change settings if first frame in packet */ if( psEnc->sCmn.nFramesInPayloadBuf == 0 ) { psEnc->sCmn.LBRR_enabled = INBandFEC_enabled; if( psEnc->sCmn.fs_kHz == 8 ) { LBRRRate_thres_bps = INBAND_FEC_MIN_RATE_BPS - 9000; } else if( psEnc->sCmn.fs_kHz == 12 ) { LBRRRate_thres_bps = INBAND_FEC_MIN_RATE_BPS - 6000;; } else if( psEnc->sCmn.fs_kHz == 16 ) { LBRRRate_thres_bps = INBAND_FEC_MIN_RATE_BPS - 3000; } else { LBRRRate_thres_bps = INBAND_FEC_MIN_RATE_BPS; } if( psEnc->sCmn.TargetRate_bps >= LBRRRate_thres_bps ) { /* Set gain increase / rate reduction for LBRR usage */ /* Coarsely tuned with PESQ for now. */ /* Linear regression coefs G = 8 - 0.5 * loss */ /* Meaning that at 16% loss main rate and redundant rate is the same, -> G = 0 */ psEnc->sCmn.LBRR_GainIncreases = SKP_max_int( 8 - SKP_RSHIFT( psEnc->sCmn.PacketLoss_perc, 1 ), 0 ); /* Set main stream rate compensation */ if( psEnc->sCmn.LBRR_enabled && psEnc->sCmn.PacketLoss_perc > LBRR_LOSS_THRES ) { /* Tuned to give aprox same mean / weighted bitrate as no inband FEC */ psEnc->inBandFEC_SNR_comp = 6.0f - 0.5f * psEnc->sCmn.LBRR_GainIncreases; } else { psEnc->inBandFEC_SNR_comp = 0; psEnc->sCmn.LBRR_enabled = 0; } } else { psEnc->inBandFEC_SNR_comp = 0; psEnc->sCmn.LBRR_enabled = 0; } } #else if( INBandFEC_enabled != 0 ) { ret = SKP_SILK_ENC_INVALID_INBAND_FEC_SETTING; } psEnc->sCmn.LBRR_enabled = 0; #endif return( ret ); }