ref: f9b1b3fec85aab07db668b697fa700a94d7f75aa
dir: /silk/float/silk_SigProc_FLP.h/
/*********************************************************************** Copyright (c) 2006-2011, Skype Limited. All rights reserved. Redistribution and use in source and binary forms, with or without modification, (subject to the limitations in the disclaimer below) are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of Skype Limited, nor the names of specific contributors, may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***********************************************************************/ #ifndef _SILK_SIGPROC_FLP_H_ #define _SILK_SIGPROC_FLP_H_ #include "silk_SigProc_FIX.h" #include <math.h> #ifdef __cplusplus extern "C" { #endif /********************************************************************/ /* SIGNAL PROCESSING FUNCTIONS */ /********************************************************************/ /* Chirp (bw expand) LP AR filter */ void silk_bwexpander_FLP( SKP_float *ar, /* io AR filter to be expanded (without leading 1) */ const opus_int d, /* i length of ar */ const SKP_float chirp /* i chirp factor (typically in range (0..1) ) */ ); /* compute inverse of LPC prediction gain, and */ /* test if LPC coefficients are stable (all poles within unit circle) */ /* this code is based on silk_FLP_a2k() */ opus_int silk_LPC_inverse_pred_gain_FLP( /* O: returns 1 if unstable, otherwise 0 */ SKP_float *invGain, /* O: inverse prediction gain, energy domain */ const SKP_float *A, /* I: prediction coefficients [order] */ opus_int32 order /* I: prediction order */ ); SKP_float silk_schur_FLP( /* O returns residual energy */ SKP_float refl_coef[], /* O reflection coefficients (length order) */ const SKP_float auto_corr[], /* I autocorrelation sequence (length order+1) */ opus_int order /* I order */ ); void silk_k2a_FLP( SKP_float *A, /* O: prediction coefficients [order] */ const SKP_float *rc, /* I: reflection coefficients [order] */ opus_int32 order /* I: prediction order */ ); /* Solve the normal equations using the Levinson-Durbin recursion */ SKP_float silk_levinsondurbin_FLP( /* O prediction error energy */ SKP_float A[], /* O prediction coefficients [order] */ const SKP_float corr[], /* I input auto-correlations [order + 1] */ const opus_int order /* I prediction order */ ); /* compute autocorrelation */ void silk_autocorrelation_FLP( SKP_float *results, /* o result (length correlationCount) */ const SKP_float *inputData, /* i input data to correlate */ opus_int inputDataSize, /* i length of input */ opus_int correlationCount /* i number of correlation taps to compute */ ); /* Pitch estimator */ #define SigProc_PE_MIN_COMPLEX 0 #define SigProc_PE_MID_COMPLEX 1 #define SigProc_PE_MAX_COMPLEX 2 opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvoiced */ const SKP_float *signal, /* I signal of length PE_FRAME_LENGTH_MS*Fs_kHz */ opus_int *pitch_out, /* O 4 pitch lag values */ opus_int16 *lagIndex, /* O lag Index */ opus_int8 *contourIndex, /* O pitch contour Index */ SKP_float *LTPCorr, /* I/O normalized correlation; input: value from previous frame */ opus_int prevLag, /* I last lag of previous frame; set to zero is unvoiced */ const SKP_float search_thres1, /* I first stage threshold for lag candidates 0 - 1 */ const SKP_float search_thres2, /* I final threshold for lag candidates 0 - 1 */ const opus_int Fs_kHz, /* I sample frequency (kHz) */ const opus_int complexity, /* I Complexity setting, 0-2, where 2 is highest */ const opus_int nb_subfr /* I number of 5 ms subframes */ ); #define PI (3.1415926536f) void silk_insertion_sort_decreasing_FLP( SKP_float *a, /* I/O: Unsorted / Sorted vector */ opus_int *idx, /* O: Index vector for the sorted elements */ const opus_int L, /* I: Vector length */ const opus_int K /* I: Number of correctly sorted positions */ ); /* Compute reflection coefficients from input signal */ SKP_float silk_burg_modified_FLP( /* O returns residual energy */ SKP_float A[], /* O prediction coefficients (length order) */ const SKP_float x[], /* I input signal, length: nb_subfr*(D+L_sub) */ const opus_int subfr_length, /* I input signal subframe length (including D preceeding samples) */ const opus_int nb_subfr, /* I number of subframes stacked in x */ const SKP_float WhiteNoiseFrac, /* I fraction added to zero-lag autocorrelation */ const opus_int D /* I order */ ); /* multiply a vector by a constant */ void silk_scale_vector_FLP( SKP_float *data1, SKP_float gain, opus_int dataSize ); /* copy and multiply a vector by a constant */ void silk_scale_copy_vector_FLP( SKP_float *data_out, const SKP_float *data_in, SKP_float gain, opus_int dataSize ); /* inner product of two SKP_float arrays, with result as double */ double silk_inner_product_FLP( const SKP_float *data1, const SKP_float *data2, opus_int dataSize ); /* sum of squares of a SKP_float array, with result as double */ double silk_energy_FLP( const SKP_float *data, opus_int dataSize ); /********************************************************************/ /* MACROS */ /********************************************************************/ #define SKP_min_float(a, b) (((a) < (b)) ? (a) : (b)) #define SKP_max_float(a, b) (((a) > (b)) ? (a) : (b)) #define SKP_abs_float(a) ((SKP_float)fabs(a)) #define SKP_LIMIT_float( a, limit1, limit2) ((limit1) > (limit2) ? ((a) > (limit1) ? (limit1) : ((a) < (limit2) ? (limit2) : (a))) \ : ((a) > (limit2) ? (limit2) : ((a) < (limit1) ? (limit1) : (a)))) /* sigmoid function */ SKP_INLINE SKP_float SKP_sigmoid(SKP_float x) { return (SKP_float)(1.0 / (1.0 + exp(-x))); } /* floating-point to integer conversion (rounding) */ SKP_INLINE opus_int32 SKP_float2int(double x) { #ifdef _WIN32 double t = x + 6755399441055744.0; return *((opus_int32 *)( &t )); #else return (opus_int32)( ( x > 0 ) ? x + 0.5 : x - 0.5 ); #endif } /* floating-point to integer conversion (rounding) */ SKP_INLINE void SKP_float2short_array( opus_int16 *out, const SKP_float *in, opus_int32 length ) { opus_int32 k; for (k = length-1; k >= 0; k--) { #ifdef _WIN32 double t = in[k] + 6755399441055744.0; out[k] = (opus_int16)SKP_SAT16(*(( opus_int32 * )( &t ))); #else double x = in[k]; out[k] = (opus_int16)SKP_SAT16( ( x > 0 ) ? x + 0.5 : x - 0.5 ); #endif } } /* integer to floating-point conversion */ SKP_INLINE void SKP_short2float_array( SKP_float *out, const opus_int16 *in, opus_int32 length ) { opus_int32 k; for (k = length-1; k >= 0; k--) { out[k] = (SKP_float)in[k]; } } /* using log2() helps the fixed-point conversion */ SKP_INLINE SKP_float silk_log2( double x ) { return ( SKP_float )( 3.32192809488736 * log10( x ) ); } #ifdef __cplusplus } #endif #endif