ref: f18acee4a6206eb66894ba078df1f8708139fd48
dir: /celt/celt_encoder.c/
/* Copyright (c) 2007-2008 CSIRO Copyright (c) 2007-2010 Xiph.Org Foundation Copyright (c) 2008 Gregory Maxwell Written by Jean-Marc Valin and Gregory Maxwell */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #define CELT_ENCODER_C #include "os_support.h" #include "mdct.h" #include <math.h> #include "celt.h" #include "pitch.h" #include "bands.h" #include "modes.h" #include "entcode.h" #include "quant_bands.h" #include "rate.h" #include "stack_alloc.h" #include "mathops.h" #include "float_cast.h" #include <stdarg.h> #include "celt_lpc.h" #include "vq.h" /** Encoder state @brief Encoder state */ struct OpusCustomEncoder { const OpusCustomMode *mode; /**< Mode used by the encoder */ int overlap; int channels; int stream_channels; int force_intra; int clip; int disable_pf; int complexity; int upsample; int start, end; opus_int32 bitrate; int vbr; int signalling; int constrained_vbr; /* If zero, VBR can do whatever it likes with the rate */ int loss_rate; int lsb_depth; /* Everything beyond this point gets cleared on a reset */ #define ENCODER_RESET_START rng opus_uint32 rng; int spread_decision; opus_val32 delayedIntra; int tonal_average; int lastCodedBands; int hf_average; int tapset_decision; int prefilter_period; opus_val16 prefilter_gain; int prefilter_tapset; #ifdef RESYNTH int prefilter_period_old; opus_val16 prefilter_gain_old; int prefilter_tapset_old; #endif int consec_transient; AnalysisInfo analysis; opus_val32 preemph_memE[2]; opus_val32 preemph_memD[2]; /* VBR-related parameters */ opus_int32 vbr_reservoir; opus_int32 vbr_drift; opus_int32 vbr_offset; opus_int32 vbr_count; opus_val16 overlap_max; opus_val16 stereo_saving; int intensity; #ifdef RESYNTH /* +MAX_PERIOD/2 to make space for overlap */ celt_sig syn_mem[2][2*MAX_PERIOD+MAX_PERIOD/2]; #endif celt_sig in_mem[1]; /* Size = channels*mode->overlap */ /* celt_sig prefilter_mem[], Size = channels*COMBFILTER_MAXPERIOD */ /* opus_val16 oldBandE[], Size = channels*mode->nbEBands */ /* opus_val16 oldLogE[], Size = channels*mode->nbEBands */ /* opus_val16 oldLogE2[], Size = channels*mode->nbEBands */ }; int celt_encoder_get_size(int channels) { CELTMode *mode = opus_custom_mode_create(48000, 960, NULL); return opus_custom_encoder_get_size(mode, channels); } OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_get_size(const CELTMode *mode, int channels) { int size = sizeof(struct CELTEncoder) + (channels*mode->overlap-1)*sizeof(celt_sig) /* celt_sig in_mem[channels*mode->overlap]; */ + channels*COMBFILTER_MAXPERIOD*sizeof(celt_sig) /* celt_sig prefilter_mem[channels*COMBFILTER_MAXPERIOD]; */ + 3*channels*mode->nbEBands*sizeof(opus_val16); /* opus_val16 oldBandE[channels*mode->nbEBands]; */ /* opus_val16 oldLogE[channels*mode->nbEBands]; */ /* opus_val16 oldLogE2[channels*mode->nbEBands]; */ return size; } #ifdef CUSTOM_MODES CELTEncoder *opus_custom_encoder_create(const CELTMode *mode, int channels, int *error) { int ret; CELTEncoder *st = (CELTEncoder *)opus_alloc(opus_custom_encoder_get_size(mode, channels)); /* init will handle the NULL case */ ret = opus_custom_encoder_init(st, mode, channels); if (ret != OPUS_OK) { opus_custom_encoder_destroy(st); st = NULL; } if (error) *error = ret; return st; } #endif /* CUSTOM_MODES */ int celt_encoder_init(CELTEncoder *st, opus_int32 sampling_rate, int channels) { int ret; ret = opus_custom_encoder_init(st, opus_custom_mode_create(48000, 960, NULL), channels); if (ret != OPUS_OK) return ret; st->upsample = resampling_factor(sampling_rate); return OPUS_OK; } OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_init(CELTEncoder *st, const CELTMode *mode, int channels) { if (channels < 0 || channels > 2) return OPUS_BAD_ARG; if (st==NULL || mode==NULL) return OPUS_ALLOC_FAIL; OPUS_CLEAR((char*)st, opus_custom_encoder_get_size(mode, channels)); st->mode = mode; st->overlap = mode->overlap; st->stream_channels = st->channels = channels; st->upsample = 1; st->start = 0; st->end = st->mode->effEBands; st->signalling = 1; st->constrained_vbr = 1; st->clip = 1; st->bitrate = OPUS_BITRATE_MAX; st->vbr = 0; st->force_intra = 0; st->complexity = 5; st->lsb_depth=24; opus_custom_encoder_ctl(st, OPUS_RESET_STATE); return OPUS_OK; } #ifdef CUSTOM_MODES void opus_custom_encoder_destroy(CELTEncoder *st) { opus_free(st); } #endif /* CUSTOM_MODES */ static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int C, opus_val16 *tf_estimate, int *tf_chan) { int i; VARDECL(opus_val16, tmp); opus_val32 mem0,mem1; int is_transient = 0; opus_int32 mask_metric = 0; int c; opus_val16 tf_max; int len2; /* Table of 6*64/x, trained on real data to minimize the average error */ static const unsigned char inv_table[128] = { 255,255,156,110, 86, 70, 59, 51, 45, 40, 37, 33, 31, 28, 26, 25, 23, 22, 21, 20, 19, 18, 17, 16, 16, 15, 15, 14, 13, 13, 12, 12, 12, 12, 11, 11, 11, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, }; SAVE_STACK; ALLOC(tmp, len, opus_val16); len2=len/2; tf_max = 0; for (c=0;c<C;c++) { opus_val32 mean; opus_int32 unmask=0; opus_val32 norm; opus_val16 maxE; mem0=0; mem1=0; /* High-pass filter: (1 - 2*z^-1 + z^-2) / (1 - z^-1 + .5*z^-2) */ for (i=0;i<len;i++) { opus_val32 x,y; x = SHR32(in[i+c*len],SIG_SHIFT); y = ADD32(mem0, x); #ifdef FIXED_POINT mem0 = mem1 + y - SHL32(x,1); mem1 = x - SHR32(y,1); #else mem0 = mem1 + y - 2*x; mem1 = x - .5f*y; #endif tmp[i] = EXTRACT16(SHR32(y,2)); /*printf("%f ", tmp[i]);*/ } /*printf("\n");*/ /* First few samples are bad because we don't propagate the memory */ for (i=0;i<12;i++) tmp[i] = 0; #ifdef FIXED_POINT /* Normalize tmp to max range */ { int shift=0; shift = 14-celt_ilog2(1+celt_maxabs16(tmp, len)); if (shift!=0) { for (i=0;i<len;i++) tmp[i] = SHL16(tmp[i], shift); } } #endif mean=0; mem0=0; /* Grouping by two to reduce complexity */ /* Forward pass to compute the post-echo threshold*/ for (i=0;i<len2;i++) { opus_val16 x2 = PSHR32(MULT16_16(tmp[2*i],tmp[2*i]) + MULT16_16(tmp[2*i+1],tmp[2*i+1]),16); mean += x2; #ifdef FIXED_POINT /* FIXME: Use PSHR16() instead */ tmp[i] = mem0 + PSHR32(x2-mem0,4); #else tmp[i] = mem0 + MULT16_16_P15(QCONST16(.0625f,15),x2-mem0); #endif mem0 = tmp[i]; } mem0=0; maxE=0; /* Backward pass to compute the pre-echo threshold */ for (i=len2-1;i>=0;i--) { #ifdef FIXED_POINT /* FIXME: Use PSHR16() instead */ tmp[i] = mem0 + PSHR32(tmp[i]-mem0,3); #else tmp[i] = mem0 + MULT16_16_P15(QCONST16(0.125f,15),tmp[i]-mem0); #endif mem0 = tmp[i]; maxE = MAX16(maxE, mem0); } /*for (i=0;i<len2;i++)printf("%f ", tmp[i]/mean);printf("\n");*/ /* Compute the ratio of the "frame energy" over the harmonic mean of the energy. This essentially corresponds to a bitrate-normalized temporal noise-to-mask ratio */ /* As a compromise with the old transient detector, frame energy is the geometric mean of the energy and half the max */ #ifdef FIXED_POINT /* Costs two sqrt() to avoid overflows */ mean = MULT16_16(celt_sqrt(mean), celt_sqrt(MULT16_16(maxE,len2>>1))); #else mean = celt_sqrt(mean * maxE*.5*len2); #endif /* Inverse of the mean energy in Q15+6 */ norm = SHL32(EXTEND32(len2),6+14)/ADD32(EPSILON,SHR32(mean,1)); /* Compute harmonic mean discarding the unreliable boundaries The data is smooth, so we only take 1/4th of the samples */ unmask=0; for (i=12;i<len2-5;i+=4) { int id; #ifdef FIXED_POINT id = IMAX(0,IMIN(127,MULT16_32_Q15(tmp[i],norm))); /* Do not round to nearest */ #else id = IMAX(0,IMIN(127,(int)floor(64*norm*tmp[i]))); /* Do not round to nearest */ #endif unmask += inv_table[id]; } /*printf("%d\n", unmask);*/ /* Normalize, compensate for the 1/4th of the sample and the factor of 6 in the inverse table */ unmask = 64*unmask*4/(6*(len2-17)); if (unmask>mask_metric) { *tf_chan = c; mask_metric = unmask; } } is_transient = mask_metric>200; /* Arbitrary metric for VBR boost */ tf_max = MAX16(0,celt_sqrt(27*mask_metric)-42); /* *tf_estimate = 1 + MIN16(1, sqrt(MAX16(0, tf_max-30))/20); */ *tf_estimate = celt_sqrt(MAX16(0, SHL32(MULT16_16(QCONST16(0.0069,14),MIN16(163,tf_max)),14)-QCONST32(0.139,28))); /*printf("%d %f\n", tf_max, mask_metric);*/ RESTORE_STACK; #ifdef FUZZING is_transient = rand()&0x1; #endif /*printf("%d %f %d\n", is_transient, (float)*tf_estimate, tf_max);*/ return is_transient; } /** Apply window and compute the MDCT for all sub-frames and all channels in a frame */ static void compute_mdcts(const CELTMode *mode, int shortBlocks, celt_sig * OPUS_RESTRICT in, celt_sig * OPUS_RESTRICT out, int C, int LM) { const int overlap = OVERLAP(mode); int N; int B; int shift; int b, c; if (shortBlocks) { B = shortBlocks; N = mode->shortMdctSize; shift = mode->maxLM; } else { B = 1; N = mode->shortMdctSize<<LM; shift = mode->maxLM-LM; } c=0; do { for (b=0;b<B;b++) { /* Interleaving the sub-frames while doing the MDCTs */ clt_mdct_forward(&mode->mdct, in+c*(B*N+overlap)+b*N, &out[b+c*N*B], mode->window, overlap, shift, B); } } while (++c<C); } static void preemphasis(const opus_val16 * OPUS_RESTRICT pcmp, celt_sig * OPUS_RESTRICT inp, int N, int CC, int upsample, const opus_val16 *coef, celt_sig *mem, int clip) { int i; opus_val16 coef0, coef1; celt_sig m; int Nu; coef0 = coef[0]; coef1 = coef[1]; Nu = N/upsample; if (upsample!=1) { for (i=0;i<N;i++) inp[i] = 0; } for (i=0;i<Nu;i++) { celt_sig x; x = SCALEIN(pcmp[CC*i]); #ifndef FIXED_POINT /* Replace NaNs with zeros */ if (!(x==x)) x = 0; #endif inp[i*upsample] = x; } #ifndef FIXED_POINT if (clip) { /* Clip input to avoid encoding non-portable files */ for (i=0;i<Nu;i++) inp[i*upsample] = MAX32(-65536.f, MIN32(65536.f,inp[i*upsample])); } #endif m = *mem; if (coef1 == 0) { for (i=0;i<N;i++) { celt_sig x; x = SHL32(inp[i], SIG_SHIFT); /* Apply pre-emphasis */ inp[i] = x + m; m = - MULT16_32_Q15(coef0, x); } } else { opus_val16 coef2 = coef[2]; for (i=0;i<N;i++) { opus_val16 x, tmp; x = inp[i]; /* Apply pre-emphasis */ tmp = MULT16_16(coef2, x); inp[i] = tmp + m; m = MULT16_32_Q15(coef1, inp[i]) - MULT16_32_Q15(coef0, tmp); } } *mem = m; } static opus_val32 l1_metric(const celt_norm *tmp, int N, int LM, opus_val16 bias) { int i; opus_val32 L1; L1 = 0; for (i=0;i<N;i++) L1 += EXTEND32(ABS16(tmp[i])); /* When in doubt, prefer good freq resolution */ L1 = MAC16_32_Q15(L1, LM*bias, L1); return L1; } static int tf_analysis(const CELTMode *m, int len, int isTransient, int *tf_res, int lambda, celt_norm *X, int N0, int LM, int *tf_sum, opus_val16 tf_estimate, int tf_chan) { int i; VARDECL(int, metric); int cost0; int cost1; VARDECL(int, path0); VARDECL(int, path1); VARDECL(celt_norm, tmp); VARDECL(celt_norm, tmp_1); int sel; int selcost[2]; int tf_select=0; opus_val16 bias; SAVE_STACK; bias = MULT16_16_Q14(QCONST16(.04f,15), MAX16(-QCONST16(.25f,14), QCONST16(.5f,14)-tf_estimate)); /*printf("%f ", bias);*/ ALLOC(metric, len, int); ALLOC(tmp, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm); ALLOC(tmp_1, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm); ALLOC(path0, len, int); ALLOC(path1, len, int); *tf_sum = 0; for (i=0;i<len;i++) { int j, k, N; int narrow; opus_val32 L1, best_L1; int best_level=0; N = (m->eBands[i+1]-m->eBands[i])<<LM; /* band is too narrow to be split down to LM=-1 */ narrow = (m->eBands[i+1]-m->eBands[i])==1; for (j=0;j<N;j++) tmp[j] = X[tf_chan*N0 + j+(m->eBands[i]<<LM)]; /* Just add the right channel if we're in stereo */ /*if (C==2) for (j=0;j<N;j++) tmp[j] = ADD16(SHR16(tmp[j], 1),SHR16(X[N0+j+(m->eBands[i]<<LM)], 1));*/ L1 = l1_metric(tmp, N, isTransient ? LM : 0, bias); best_L1 = L1; /* Check the -1 case for transients */ if (isTransient && !narrow) { for (j=0;j<N;j++) tmp_1[j] = tmp[j]; haar1(tmp_1, N>>LM, 1<<LM); L1 = l1_metric(tmp_1, N, LM+1, bias); if (L1<best_L1) { best_L1 = L1; best_level = -1; } } /*printf ("%f ", L1);*/ for (k=0;k<LM+!(isTransient||narrow);k++) { int B; if (isTransient) B = (LM-k-1); else B = k+1; haar1(tmp, N>>k, 1<<k); L1 = l1_metric(tmp, N, B, bias); if (L1 < best_L1) { best_L1 = L1; best_level = k+1; } } /*printf ("%d ", isTransient ? LM-best_level : best_level);*/ /* metric is in Q1 to be able to select the mid-point (-0.5) for narrower bands */ if (isTransient) metric[i] = 2*best_level; else metric[i] = -2*best_level; *tf_sum += (isTransient ? LM : 0) - metric[i]/2; /* For bands that can't be split to -1, set the metric to the half-way point to avoid biasing the decision */ if (narrow && (metric[i]==0 || metric[i]==-2*LM)) metric[i]-=1; /*printf("%d ", metric[i]);*/ } /*printf("\n");*/ /* Search for the optimal tf resolution, including tf_select */ tf_select = 0; for (sel=0;sel<2;sel++) { cost0 = 0; cost1 = isTransient ? 0 : lambda; for (i=1;i<len;i++) { int curr0, curr1; curr0 = IMIN(cost0, cost1 + lambda); curr1 = IMIN(cost0 + lambda, cost1); cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+0]); cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*sel+1]); } cost0 = IMIN(cost0, cost1); selcost[sel]=cost0; } /* For now, we're conservative and only allow tf_select=1 for transients. * If tests confirm it's useful for non-transients, we could allow it. */ if (selcost[1]<selcost[0] && isTransient) tf_select=1; cost0 = 0; cost1 = isTransient ? 0 : lambda; /* Viterbi forward pass */ for (i=1;i<len;i++) { int curr0, curr1; int from0, from1; from0 = cost0; from1 = cost1 + lambda; if (from0 < from1) { curr0 = from0; path0[i]= 0; } else { curr0 = from1; path0[i]= 1; } from0 = cost0 + lambda; from1 = cost1; if (from0 < from1) { curr1 = from0; path1[i]= 0; } else { curr1 = from1; path1[i]= 1; } cost0 = curr0 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+0]); cost1 = curr1 + abs(metric[i]-2*tf_select_table[LM][4*isTransient+2*tf_select+1]); } tf_res[len-1] = cost0 < cost1 ? 0 : 1; /* Viterbi backward pass to check the decisions */ for (i=len-2;i>=0;i--) { if (tf_res[i+1] == 1) tf_res[i] = path1[i+1]; else tf_res[i] = path0[i+1]; } /*printf("%d %f\n", *tf_sum, tf_estimate);*/ RESTORE_STACK; #ifdef FUZZING tf_select = rand()&0x1; tf_res[0] = rand()&0x1; for (i=1;i<len;i++) tf_res[i] = tf_res[i-1] ^ ((rand()&0xF) == 0); #endif return tf_select; } static void tf_encode(int start, int end, int isTransient, int *tf_res, int LM, int tf_select, ec_enc *enc) { int curr, i; int tf_select_rsv; int tf_changed; int logp; opus_uint32 budget; opus_uint32 tell; budget = enc->storage*8; tell = ec_tell(enc); logp = isTransient ? 2 : 4; /* Reserve space to code the tf_select decision. */ tf_select_rsv = LM>0 && tell+logp+1 <= budget; budget -= tf_select_rsv; curr = tf_changed = 0; for (i=start;i<end;i++) { if (tell+logp<=budget) { ec_enc_bit_logp(enc, tf_res[i] ^ curr, logp); tell = ec_tell(enc); curr = tf_res[i]; tf_changed |= curr; } else tf_res[i] = curr; logp = isTransient ? 4 : 5; } /* Only code tf_select if it would actually make a difference. */ if (tf_select_rsv && tf_select_table[LM][4*isTransient+0+tf_changed]!= tf_select_table[LM][4*isTransient+2+tf_changed]) ec_enc_bit_logp(enc, tf_select, 1); else tf_select = 0; for (i=start;i<end;i++) tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]]; /*for(i=0;i<end;i++)printf("%d ", isTransient ? tf_res[i] : LM+tf_res[i]);printf("\n");*/ } static int alloc_trim_analysis(const CELTMode *m, const celt_norm *X, const opus_val16 *bandLogE, int end, int LM, int C, int N0, AnalysisInfo *analysis, opus_val16 *stereo_saving, opus_val16 tf_estimate, int intensity) { int i; opus_val32 diff=0; int c; int trim_index = 5; opus_val16 trim = QCONST16(5.f, 8); opus_val16 logXC, logXC2; if (C==2) { opus_val16 sum = 0; /* Q10 */ opus_val16 minXC; /* Q10 */ /* Compute inter-channel correlation for low frequencies */ for (i=0;i<8;i++) { int j; opus_val32 partial = 0; for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) partial = MAC16_16(partial, X[j], X[N0+j]); sum = ADD16(sum, EXTRACT16(SHR32(partial, 18))); } sum = MULT16_16_Q15(QCONST16(1.f/8, 15), sum); sum = MIN16(QCONST16(1.f, 10), ABS16(sum)); minXC = sum; for (i=8;i<intensity;i++) { int j; opus_val32 partial = 0; for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) partial = MAC16_16(partial, X[j], X[N0+j]); minXC = MIN16(minXC, ABS16(EXTRACT16(SHR32(partial, 18)))); } minXC = MIN16(QCONST16(1.f, 10), ABS16(minXC)); /*printf ("%f\n", sum);*/ if (sum > QCONST16(.995f,10)) trim_index-=4; else if (sum > QCONST16(.92f,10)) trim_index-=3; else if (sum > QCONST16(.85f,10)) trim_index-=2; else if (sum > QCONST16(.8f,10)) trim_index-=1; /* mid-side savings estimations based on the LF average*/ logXC = celt_log2(QCONST32(1.001f, 20)-MULT16_16(sum, sum)); /* mid-side savings estimations based on min correlation */ logXC2 = MAX16(HALF16(logXC), celt_log2(QCONST32(1.001f, 20)-MULT16_16(minXC, minXC))); #ifdef FIXED_POINT /* Compensate for Q20 vs Q14 input and convert output to Q8 */ logXC = PSHR32(logXC-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8); logXC2 = PSHR32(logXC2-QCONST16(6.f, DB_SHIFT),DB_SHIFT-8); #endif trim += MAX16(-QCONST16(4.f, 8), MULT16_16_Q15(QCONST16(.75f,15),logXC)); *stereo_saving = MIN16(*stereo_saving + QCONST16(0.25f, 8), -HALF16(logXC2)); } /* Estimate spectral tilt */ c=0; do { for (i=0;i<end-1;i++) { diff += bandLogE[i+c*m->nbEBands]*(opus_int32)(2+2*i-end); } } while (++c<C); diff /= C*(end-1); /*printf("%f\n", diff);*/ if (diff > QCONST16(2.f, DB_SHIFT)) trim_index--; if (diff > QCONST16(8.f, DB_SHIFT)) trim_index--; if (diff < -QCONST16(4.f, DB_SHIFT)) trim_index++; if (diff < -QCONST16(10.f, DB_SHIFT)) trim_index++; trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), SHR16(diff+QCONST16(1.f, DB_SHIFT),DB_SHIFT-8)/6 )); trim -= 2*SHR16(tf_estimate, 14-8); #ifndef FIXED_POINT if (analysis->valid) { trim -= MAX16(-QCONST16(2.f, 8), MIN16(QCONST16(2.f, 8), 2*(analysis->tonality_slope+.05f))); } #endif #ifdef FIXED_POINT trim_index = PSHR32(trim, 8); #else trim_index = (int)floor(.5f+trim); #endif if (trim_index<0) trim_index = 0; if (trim_index>10) trim_index = 10; /*printf("%d\n", trim_index);*/ #ifdef FUZZING trim_index = rand()%11; #endif return trim_index; } static int stereo_analysis(const CELTMode *m, const celt_norm *X, int LM, int N0) { int i; int thetas; opus_val32 sumLR = EPSILON, sumMS = EPSILON; /* Use the L1 norm to model the entropy of the L/R signal vs the M/S signal */ for (i=0;i<13;i++) { int j; for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) { opus_val32 L, R, M, S; /* We cast to 32-bit first because of the -32768 case */ L = EXTEND32(X[j]); R = EXTEND32(X[N0+j]); M = ADD32(L, R); S = SUB32(L, R); sumLR = ADD32(sumLR, ADD32(ABS32(L), ABS32(R))); sumMS = ADD32(sumMS, ADD32(ABS32(M), ABS32(S))); } } sumMS = MULT16_32_Q15(QCONST16(0.707107f, 15), sumMS); thetas = 13; /* We don't need thetas for lower bands with LM<=1 */ if (LM<=1) thetas -= 8; return MULT16_32_Q15((m->eBands[13]<<(LM+1))+thetas, sumMS) > MULT16_32_Q15(m->eBands[13]<<(LM+1), sumLR); } static opus_val16 dynalloc_analysis(const opus_val16 *bandLogE, const opus_val16 *bandLogE2, int nbEBands, int start, int end, int C, int *offsets, int lsb_depth, const opus_int16 *logN, int isTransient, int vbr, int constrained_vbr, const opus_int16 *eBands, int LM, int effectiveBytes, opus_int32 *tot_boost_) { int i, c; opus_int32 tot_boost=0; opus_val16 maxDepth; VARDECL(opus_val16, follower); VARDECL(opus_val16, noise_floor); SAVE_STACK; ALLOC(follower, C*nbEBands, opus_val16); ALLOC(noise_floor, C*nbEBands, opus_val16); for (i=0;i<nbEBands;i++) offsets[i] = 0; /* Dynamic allocation code */ maxDepth=-QCONST16(32.f, DB_SHIFT); for (i=0;i<end;i++) { /* Noise floor must take into account eMeans, the depth, the width of the bands and the preemphasis filter (approx. square of bark band ID) */ noise_floor[i] = MULT16_16(QCONST16(0.0625f, DB_SHIFT),logN[i]) +QCONST16(.5f,DB_SHIFT)+SHL16(9-lsb_depth,DB_SHIFT)-SHL16(eMeans[i],6) +MULT16_16(QCONST16(.0062,DB_SHIFT),(i+5)*(i+5)); } c=0;do { for (i=0;i<end;i++) maxDepth = MAX16(maxDepth, bandLogE[c*nbEBands+i]-noise_floor[i]); } while (++c<C); /* Make sure that dynamic allocation can't make us bust the budget */ if (effectiveBytes > 50 && LM>=1) { int last=0; c=0;do { follower[c*nbEBands] = bandLogE2[c*nbEBands]; for (i=1;i<end;i++) { /* The last band to be at least 3 dB higher than the previous one is the last we'll consider. Otherwise, we run into problems on bandlimited signals. */ if (bandLogE2[c*nbEBands+i] > bandLogE2[c*nbEBands+i-1]+QCONST16(.5f,DB_SHIFT)) last=i; follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i-1]+QCONST16(1.5f,DB_SHIFT), bandLogE2[c*nbEBands+i]); } for (i=last-1;i>=0;i--) follower[c*nbEBands+i] = MIN16(follower[c*nbEBands+i], MIN16(follower[c*nbEBands+i+1]+QCONST16(2.f,DB_SHIFT), bandLogE2[c*nbEBands+i])); for (i=0;i<end;i++) follower[c*nbEBands+i] = MAX16(follower[c*nbEBands+i], noise_floor[i]); } while (++c<C); if (C==2) { for (i=start;i<end;i++) { /* Consider 24 dB "cross-talk" */ follower[nbEBands+i] = MAX16(follower[nbEBands+i], follower[ i]-QCONST16(4.f,DB_SHIFT)); follower[ i] = MAX16(follower[ i], follower[nbEBands+i]-QCONST16(4.f,DB_SHIFT)); follower[i] = HALF16(MAX16(0, bandLogE[i]-follower[i]) + MAX16(0, bandLogE[nbEBands+i]-follower[nbEBands+i])); } } else { for (i=start;i<end;i++) { follower[i] = MAX16(0, bandLogE[i]-follower[i]); } } /* For non-transient CBR/CVBR frames, halve the dynalloc contribution */ if ((!vbr || constrained_vbr)&&!isTransient) { for (i=start;i<end;i++) follower[i] = HALF16(follower[i]); } for (i=start;i<end;i++) { int width; int boost; int boost_bits; if (i<8) follower[i] *= 2; if (i>=12) follower[i] = HALF16(follower[i]); follower[i] = MIN16(follower[i], QCONST16(4, DB_SHIFT)); width = C*(eBands[i+1]-eBands[i])<<LM; if (width<6) { boost = (int)SHR32(EXTEND32(follower[i]),DB_SHIFT); boost_bits = boost*width<<BITRES; } else if (width > 48) { boost = (int)SHR32(EXTEND32(follower[i])*8,DB_SHIFT); boost_bits = (boost*width<<BITRES)/8; } else { boost = (int)SHR32(EXTEND32(follower[i])*width/6,DB_SHIFT); boost_bits = boost*6<<BITRES; } /* For CBR and non-transient CVBR frames, limit dynalloc to 1/4 of the bits */ if ((!vbr || (constrained_vbr&&!isTransient)) && (tot_boost+boost_bits)>>BITRES>>3 > effectiveBytes/4) { offsets[i] = 0; break; } else { offsets[i] = boost; tot_boost += boost_bits; } } } *tot_boost_ = tot_boost; RESTORE_STACK; return maxDepth; } static int run_prefilter(CELTEncoder *st, celt_sig *in, celt_sig *prefilter_mem, int CC, int N, int prefilter_tapset, int *pitch, opus_val16 *gain, int *qgain, int enabled, int nbAvailableBytes) { int c; VARDECL(celt_sig, _pre); celt_sig *pre[2]; const CELTMode *mode; int pitch_index; opus_val16 gain1; opus_val16 pf_threshold; int pf_on; int qg; SAVE_STACK; mode = st->mode; ALLOC(_pre, CC*(N+COMBFILTER_MAXPERIOD), celt_sig); pre[0] = _pre; pre[1] = _pre + (N+COMBFILTER_MAXPERIOD); c=0; do { OPUS_COPY(pre[c], prefilter_mem+c*COMBFILTER_MAXPERIOD, COMBFILTER_MAXPERIOD); OPUS_COPY(pre[c]+COMBFILTER_MAXPERIOD, in+c*(N+st->overlap)+st->overlap, N); } while (++c<CC); if (enabled) { VARDECL(opus_val16, pitch_buf); ALLOC(pitch_buf, (COMBFILTER_MAXPERIOD+N)>>1, opus_val16); pitch_downsample(pre, pitch_buf, COMBFILTER_MAXPERIOD+N, CC); /* Don't search for the fir last 1.5 octave of the range because there's too many false-positives due to short-term correlation */ pitch_search(pitch_buf+(COMBFILTER_MAXPERIOD>>1), pitch_buf, N, COMBFILTER_MAXPERIOD-3*COMBFILTER_MINPERIOD, &pitch_index); pitch_index = COMBFILTER_MAXPERIOD-pitch_index; gain1 = remove_doubling(pitch_buf, COMBFILTER_MAXPERIOD, COMBFILTER_MINPERIOD, N, &pitch_index, st->prefilter_period, st->prefilter_gain); if (pitch_index > COMBFILTER_MAXPERIOD-2) pitch_index = COMBFILTER_MAXPERIOD-2; gain1 = MULT16_16_Q15(QCONST16(.7f,15),gain1); /*printf("%d %d %f %f\n", pitch_change, pitch_index, gain1, st->analysis.tonality);*/ if (st->loss_rate>2) gain1 = HALF32(gain1); if (st->loss_rate>4) gain1 = HALF32(gain1); if (st->loss_rate>8) gain1 = 0; } else { gain1 = 0; pitch_index = COMBFILTER_MINPERIOD; } /* Gain threshold for enabling the prefilter/postfilter */ pf_threshold = QCONST16(.2f,15); /* Adjusting the threshold based on rate and continuity */ if (abs(pitch_index-st->prefilter_period)*10>pitch_index) pf_threshold += QCONST16(.2f,15); if (nbAvailableBytes<25) pf_threshold += QCONST16(.1f,15); if (nbAvailableBytes<35) pf_threshold += QCONST16(.1f,15); if (st->prefilter_gain > QCONST16(.4f,15)) pf_threshold -= QCONST16(.1f,15); if (st->prefilter_gain > QCONST16(.55f,15)) pf_threshold -= QCONST16(.1f,15); /* Hard threshold at 0.2 */ pf_threshold = MAX16(pf_threshold, QCONST16(.2f,15)); if (gain1<pf_threshold) { gain1 = 0; pf_on = 0; qg = 0; } else { /*This block is not gated by a total bits check only because of the nbAvailableBytes check above.*/ if (ABS16(gain1-st->prefilter_gain)<QCONST16(.1f,15)) gain1=st->prefilter_gain; #ifdef FIXED_POINT qg = ((gain1+1536)>>10)/3-1; #else qg = (int)floor(.5f+gain1*32/3)-1; #endif qg = IMAX(0, IMIN(7, qg)); gain1 = QCONST16(0.09375f,15)*(qg+1); pf_on = 1; } /*printf("%d %f\n", pitch_index, gain1);*/ c=0; do { int offset = mode->shortMdctSize-st->overlap; st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD); OPUS_COPY(in+c*(N+st->overlap), st->in_mem+c*(st->overlap), st->overlap); if (offset) comb_filter(in+c*(N+st->overlap)+st->overlap, pre[c]+COMBFILTER_MAXPERIOD, st->prefilter_period, st->prefilter_period, offset, -st->prefilter_gain, -st->prefilter_gain, st->prefilter_tapset, st->prefilter_tapset, NULL, 0); comb_filter(in+c*(N+st->overlap)+st->overlap+offset, pre[c]+COMBFILTER_MAXPERIOD+offset, st->prefilter_period, pitch_index, N-offset, -st->prefilter_gain, -gain1, st->prefilter_tapset, prefilter_tapset, mode->window, st->overlap); OPUS_COPY(st->in_mem+c*(st->overlap), in+c*(N+st->overlap)+N, st->overlap); if (N>COMBFILTER_MAXPERIOD) { OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, pre[c]+N, COMBFILTER_MAXPERIOD); } else { OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, prefilter_mem+c*COMBFILTER_MAXPERIOD+N, COMBFILTER_MAXPERIOD-N); OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD+COMBFILTER_MAXPERIOD-N, pre[c]+COMBFILTER_MAXPERIOD, N); } } while (++c<CC); RESTORE_STACK; *gain = gain1; *pitch = pitch_index; *qgain = qg; return pf_on; } int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes, ec_enc *enc) { int i, c, N; opus_int32 bits; ec_enc _enc; VARDECL(celt_sig, in); VARDECL(celt_sig, freq); VARDECL(celt_norm, X); VARDECL(celt_ener, bandE); VARDECL(opus_val16, bandLogE); VARDECL(opus_val16, bandLogE2); VARDECL(int, fine_quant); VARDECL(opus_val16, error); VARDECL(int, pulses); VARDECL(int, cap); VARDECL(int, offsets); VARDECL(int, fine_priority); VARDECL(int, tf_res); VARDECL(unsigned char, collapse_masks); celt_sig *prefilter_mem; opus_val16 *oldBandE, *oldLogE, *oldLogE2; int shortBlocks=0; int isTransient=0; const int CC = st->channels; const int C = st->stream_channels; int LM, M; int tf_select; int nbFilledBytes, nbAvailableBytes; int effEnd; int codedBands; int tf_sum; int alloc_trim; int pitch_index=COMBFILTER_MINPERIOD; opus_val16 gain1 = 0; int dual_stereo=0; int effectiveBytes; int dynalloc_logp; opus_int32 vbr_rate; opus_int32 total_bits; opus_int32 total_boost; opus_int32 balance; opus_int32 tell; int prefilter_tapset=0; int pf_on; int anti_collapse_rsv; int anti_collapse_on=0; int silence=0; int tf_chan = 0; opus_val16 tf_estimate; int pitch_change=0; opus_int32 tot_boost; opus_val16 sample_max; opus_val16 maxDepth; const OpusCustomMode *mode; int nbEBands; int overlap; const opus_int16 *eBands; int secondMdct; int signalBandwidth; ALLOC_STACK; mode = st->mode; nbEBands = mode->nbEBands; overlap = mode->overlap; eBands = mode->eBands; tf_estimate = 0; if (nbCompressedBytes<2 || pcm==NULL) return OPUS_BAD_ARG; frame_size *= st->upsample; for (LM=0;LM<=mode->maxLM;LM++) if (mode->shortMdctSize<<LM==frame_size) break; if (LM>mode->maxLM) return OPUS_BAD_ARG; M=1<<LM; N = M*mode->shortMdctSize; prefilter_mem = st->in_mem+CC*(st->overlap); oldBandE = (opus_val16*)(st->in_mem+CC*(st->overlap+COMBFILTER_MAXPERIOD)); oldLogE = oldBandE + CC*nbEBands; oldLogE2 = oldLogE + CC*nbEBands; if (enc==NULL) { tell=1; nbFilledBytes=0; } else { tell=ec_tell(enc); nbFilledBytes=(tell+4)>>3; } #ifdef CUSTOM_MODES if (st->signalling && enc==NULL) { int tmp = (mode->effEBands-st->end)>>1; st->end = IMAX(1, mode->effEBands-tmp); compressed[0] = tmp<<5; compressed[0] |= LM<<3; compressed[0] |= (C==2)<<2; /* Convert "standard mode" to Opus header */ if (mode->Fs==48000 && mode->shortMdctSize==120) { int c0 = toOpus(compressed[0]); if (c0<0) return OPUS_BAD_ARG; compressed[0] = c0; } compressed++; nbCompressedBytes--; } #else celt_assert(st->signalling==0); #endif /* Can't produce more than 1275 output bytes */ nbCompressedBytes = IMIN(nbCompressedBytes,1275); nbAvailableBytes = nbCompressedBytes - nbFilledBytes; if (st->vbr && st->bitrate!=OPUS_BITRATE_MAX) { opus_int32 den=mode->Fs>>BITRES; vbr_rate=(st->bitrate*frame_size+(den>>1))/den; #ifdef CUSTOM_MODES if (st->signalling) vbr_rate -= 8<<BITRES; #endif effectiveBytes = vbr_rate>>(3+BITRES); } else { opus_int32 tmp; vbr_rate = 0; tmp = st->bitrate*frame_size; if (tell>1) tmp += tell; if (st->bitrate!=OPUS_BITRATE_MAX) nbCompressedBytes = IMAX(2, IMIN(nbCompressedBytes, (tmp+4*mode->Fs)/(8*mode->Fs)-!!st->signalling)); effectiveBytes = nbCompressedBytes; } if (enc==NULL) { ec_enc_init(&_enc, compressed, nbCompressedBytes); enc = &_enc; } if (vbr_rate>0) { /* Computes the max bit-rate allowed in VBR mode to avoid violating the target rate and buffering. We must do this up front so that bust-prevention logic triggers correctly if we don't have enough bits. */ if (st->constrained_vbr) { opus_int32 vbr_bound; opus_int32 max_allowed; /* We could use any multiple of vbr_rate as bound (depending on the delay). This is clamped to ensure we use at least two bytes if the encoder was entirely empty, but to allow 0 in hybrid mode. */ vbr_bound = vbr_rate; max_allowed = IMIN(IMAX(tell==1?2:0, (vbr_rate+vbr_bound-st->vbr_reservoir)>>(BITRES+3)), nbAvailableBytes); if(max_allowed < nbAvailableBytes) { nbCompressedBytes = nbFilledBytes+max_allowed; nbAvailableBytes = max_allowed; ec_enc_shrink(enc, nbCompressedBytes); } } } total_bits = nbCompressedBytes*8; effEnd = st->end; if (effEnd > mode->effEBands) effEnd = mode->effEBands; ALLOC(in, CC*(N+st->overlap), celt_sig); sample_max=MAX16(st->overlap_max, celt_maxabs16(pcm, C*(N-overlap)/st->upsample)); st->overlap_max=celt_maxabs16(pcm+C*(N-overlap)/st->upsample, C*overlap/st->upsample); sample_max=MAX16(sample_max, st->overlap_max); #ifdef FIXED_POINT silence = (sample_max==0); #else silence = (sample_max <= (opus_val16)1/(1<<st->lsb_depth)); #endif #ifdef FUZZING if ((rand()&0x3F)==0) silence = 1; #endif if (tell==1) ec_enc_bit_logp(enc, silence, 15); else silence=0; if (silence) { /*In VBR mode there is no need to send more than the minimum. */ if (vbr_rate>0) { effectiveBytes=nbCompressedBytes=IMIN(nbCompressedBytes, nbFilledBytes+2); total_bits=nbCompressedBytes*8; nbAvailableBytes=2; ec_enc_shrink(enc, nbCompressedBytes); } /* Pretend we've filled all the remaining bits with zeros (that's what the initialiser did anyway) */ tell = nbCompressedBytes*8; enc->nbits_total+=tell-ec_tell(enc); } c=0; do { preemphasis(pcm+c, in+c*(N+st->overlap)+st->overlap, N, CC, st->upsample, mode->preemph, st->preemph_memE+c, st->clip); } while (++c<CC); /* Find pitch period and gain */ { int enabled; int qg; enabled = nbAvailableBytes>12*C && st->start==0 && !silence && !st->disable_pf && st->complexity >= 5; prefilter_tapset = st->tapset_decision; pf_on = run_prefilter(st, in, prefilter_mem, CC, N, prefilter_tapset, &pitch_index, &gain1, &qg, enabled, nbAvailableBytes); if ((gain1 > QCONST16(.4f,15) || st->prefilter_gain > QCONST16(.4f,15)) && st->analysis.tonality > .3 && (pitch_index > 1.26*st->prefilter_period || pitch_index < .79*st->prefilter_period)) pitch_change = 1; if (pf_on==0) { if(st->start==0 && tell+16<=total_bits) ec_enc_bit_logp(enc, 0, 1); } else { /*This block is not gated by a total bits check only because of the nbAvailableBytes check above.*/ int octave; ec_enc_bit_logp(enc, 1, 1); pitch_index += 1; octave = EC_ILOG(pitch_index)-5; ec_enc_uint(enc, octave, 6); ec_enc_bits(enc, pitch_index-(16<<octave), 4+octave); pitch_index -= 1; ec_enc_bits(enc, qg, 3); ec_enc_icdf(enc, prefilter_tapset, tapset_icdf, 2); } } isTransient = 0; shortBlocks = 0; if (LM>0 && ec_tell(enc)+3<=total_bits) { if (st->complexity >= 1) { isTransient = transient_analysis(in, N+st->overlap, CC, &tf_estimate, &tf_chan); if (isTransient) shortBlocks = M; } ec_enc_bit_logp(enc, isTransient, 3); } ALLOC(freq, CC*N, celt_sig); /**< Interleaved signal MDCTs */ ALLOC(bandE,nbEBands*CC, celt_ener); ALLOC(bandLogE,nbEBands*CC, opus_val16); secondMdct = shortBlocks && st->complexity>=8; ALLOC(bandLogE2, C*nbEBands, opus_val16); if (secondMdct) { compute_mdcts(mode, 0, in, freq, CC, LM); if (CC==2&&C==1) { for (i=0;i<N;i++) freq[i] = ADD32(HALF32(freq[i]), HALF32(freq[N+i])); } if (st->upsample != 1) { c=0; do { int bound = N/st->upsample; for (i=0;i<bound;i++) freq[c*N+i] *= st->upsample; for (;i<N;i++) freq[c*N+i] = 0; } while (++c<C); } compute_band_energies(mode, freq, bandE, effEnd, C, M); amp2Log2(mode, effEnd, st->end, bandE, bandLogE2, C); for (i=0;i<C*nbEBands;i++) bandLogE2[i] += HALF16(SHL16(LM, DB_SHIFT)); } compute_mdcts(mode, shortBlocks, in, freq, CC, LM); if (CC==2&&C==1) { for (i=0;i<N;i++) freq[i] = ADD32(HALF32(freq[i]), HALF32(freq[N+i])); tf_chan = 0; } if (st->upsample != 1) { c=0; do { int bound = N/st->upsample; for (i=0;i<bound;i++) freq[c*N+i] *= st->upsample; for (;i<N;i++) freq[c*N+i] = 0; } while (++c<C); } compute_band_energies(mode, freq, bandE, effEnd, C, M); amp2Log2(mode, effEnd, st->end, bandE, bandLogE, C); /*for (i=0;i<21;i++) printf("%f ", bandLogE[i]); printf("\n");*/ if (!secondMdct) { for (i=0;i<C*nbEBands;i++) bandLogE2[i] = bandLogE[i]; } ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */ /* Band normalisation */ normalise_bands(mode, freq, X, bandE, effEnd, C, M); ALLOC(tf_res, nbEBands, int); /* Disable variable tf resolution for hybrid and at very low bitrate */ if (effectiveBytes>=15*C && st->start==0 && st->complexity>=2) { int lambda; if (effectiveBytes<40) lambda = 12; else if (effectiveBytes<60) lambda = 6; else if (effectiveBytes<100) lambda = 4; else lambda = 3; lambda*=2; tf_select = tf_analysis(mode, effEnd, isTransient, tf_res, lambda, X, N, LM, &tf_sum, tf_estimate, tf_chan); for (i=effEnd;i<st->end;i++) tf_res[i] = tf_res[effEnd-1]; } else { tf_sum = 0; for (i=0;i<st->end;i++) tf_res[i] = isTransient; tf_select=0; } ALLOC(error, C*nbEBands, opus_val16); quant_coarse_energy(mode, st->start, st->end, effEnd, bandLogE, oldBandE, total_bits, error, enc, C, LM, nbAvailableBytes, st->force_intra, &st->delayedIntra, st->complexity >= 4, st->loss_rate); tf_encode(st->start, st->end, isTransient, tf_res, LM, tf_select, enc); if (ec_tell(enc)+4<=total_bits) { if (shortBlocks || st->complexity < 3 || nbAvailableBytes < 10*C || st->start != 0) { if (st->complexity == 0) st->spread_decision = SPREAD_NONE; else st->spread_decision = SPREAD_NORMAL; } else { /* Disable new spreading+tapset estimator until we can show it works better than the old one. So far it seems like spreading_decision() works best. */ if (0&&st->analysis.valid) { static const opus_val16 spread_thresholds[3] = {-QCONST16(.6f, 15), -QCONST16(.2f, 15), -QCONST16(.07f, 15)}; static const opus_val16 spread_histeresis[3] = {QCONST16(.15f, 15), QCONST16(.07f, 15), QCONST16(.02f, 15)}; static const opus_val16 tapset_thresholds[2] = {QCONST16(.0f, 15), QCONST16(.15f, 15)}; static const opus_val16 tapset_histeresis[2] = {QCONST16(.1f, 15), QCONST16(.05f, 15)}; st->spread_decision = hysteresis_decision(-st->analysis.tonality, spread_thresholds, spread_histeresis, 3, st->spread_decision); st->tapset_decision = hysteresis_decision(st->analysis.tonality_slope, tapset_thresholds, tapset_histeresis, 2, st->tapset_decision); } else { st->spread_decision = spreading_decision(mode, X, &st->tonal_average, st->spread_decision, &st->hf_average, &st->tapset_decision, pf_on&&!shortBlocks, effEnd, C, M); } /*printf("%d %d\n", st->tapset_decision, st->spread_decision);*/ /*printf("%f %d %f %d\n\n", st->analysis.tonality, st->spread_decision, st->analysis.tonality_slope, st->tapset_decision);*/ } ec_enc_icdf(enc, st->spread_decision, spread_icdf, 5); } ALLOC(offsets, nbEBands, int); maxDepth = dynalloc_analysis(bandLogE, bandLogE2, nbEBands, st->start, st->end, C, offsets, st->lsb_depth, mode->logN, isTransient, st->vbr, st->constrained_vbr, eBands, LM, effectiveBytes, &tot_boost); ALLOC(cap, nbEBands, int); init_caps(mode,cap,LM,C); dynalloc_logp = 6; total_bits<<=BITRES; total_boost = 0; tell = ec_tell_frac(enc); for (i=st->start;i<st->end;i++) { int width, quanta; int dynalloc_loop_logp; int boost; int j; width = C*(eBands[i+1]-eBands[i])<<LM; /* quanta is 6 bits, but no more than 1 bit/sample and no less than 1/8 bit/sample */ quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width)); dynalloc_loop_logp = dynalloc_logp; boost = 0; for (j = 0; tell+(dynalloc_loop_logp<<BITRES) < total_bits-total_boost && boost < cap[i]; j++) { int flag; flag = j<offsets[i]; ec_enc_bit_logp(enc, flag, dynalloc_loop_logp); tell = ec_tell_frac(enc); if (!flag) break; boost += quanta; total_boost += quanta; dynalloc_loop_logp = 1; } /* Making dynalloc more likely */ if (j) dynalloc_logp = IMAX(2, dynalloc_logp-1); offsets[i] = boost; } if (C==2) { int effectiveRate; static const opus_val16 intensity_thresholds[21]= /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 off*/ { 16,21,23,25,27,29,31,33,35,38,42,46,50,54,58,63,68,75,84,102,130}; static const opus_val16 intensity_histeresis[21]= { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5, 6, 8, 12}; /* Always use MS for 2.5 ms frames until we can do a better analysis */ if (LM!=0) dual_stereo = stereo_analysis(mode, X, LM, N); /* Account for coarse energy */ effectiveRate = (8*effectiveBytes - 80)>>LM; /* effectiveRate in kb/s */ effectiveRate = 2*effectiveRate/5; st->intensity = hysteresis_decision((opus_val16)effectiveRate, intensity_thresholds, intensity_histeresis, 21, st->intensity); st->intensity = IMIN(st->end,IMAX(st->start, st->intensity)); } alloc_trim = 5; if (tell+(6<<BITRES) <= total_bits - total_boost) { alloc_trim = alloc_trim_analysis(mode, X, bandLogE, st->end, LM, C, N, &st->analysis, &st->stereo_saving, tf_estimate, st->intensity); ec_enc_icdf(enc, alloc_trim, trim_icdf, 7); tell = ec_tell_frac(enc); } /* Variable bitrate */ if (vbr_rate>0) { opus_val16 alpha; opus_int32 delta; /* The target rate in 8th bits per frame */ opus_int32 target, base_target; opus_int32 min_allowed; int coded_bins; int coded_bands; int lm_diff = mode->maxLM - LM; coded_bands = st->lastCodedBands ? st->lastCodedBands : nbEBands; coded_bins = eBands[coded_bands]<<LM; if (C==2) coded_bins += eBands[IMIN(st->intensity, coded_bands)]<<LM; /* Don't attempt to use more than 510 kb/s, even for frames smaller than 20 ms. The CELT allocator will just not be able to use more than that anyway. */ nbCompressedBytes = IMIN(nbCompressedBytes,1275>>(3-LM)); target = vbr_rate - ((40*C+20)<<BITRES); base_target = target; if (st->constrained_vbr) target += (st->vbr_offset>>lm_diff); /*printf("%f %f %f %f %d %d ", st->analysis.activity, st->analysis.tonality, tf_estimate, st->stereo_saving, tot_boost, coded_bands);*/ #ifndef FIXED_POINT if (st->analysis.valid && st->analysis.activity<.4) target -= (opus_int32)((coded_bins<<BITRES)*(.4f-st->analysis.activity)); #endif /* Stereo savings */ if (C==2) { int coded_stereo_bands; int coded_stereo_dof; opus_val16 max_frac; coded_stereo_bands = IMIN(st->intensity, coded_bands); coded_stereo_dof = (eBands[coded_stereo_bands]<<LM)-coded_stereo_bands; /* Maximum fraction of the bits we can save if the signal is mono. */ max_frac = DIV32_16(MULT16_16(QCONST16(0.8f, 15), coded_stereo_dof), coded_bins); /*printf("%d %d %d ", coded_stereo_dof, coded_bins, tot_boost);*/ target -= (opus_int32)MIN32(MULT16_32_Q15(max_frac,target), SHR16(MULT16_16(st->stereo_saving-QCONST16(0.1f,8),(coded_stereo_dof<<BITRES)),8)); } /* Boost the rate according to dynalloc (minus the dynalloc average for calibration). */ target += tot_boost-(16<<LM); /* Apply transient boost, compensating for average boost. */ target += (opus_int32)SHL32(MULT16_32_Q15(tf_estimate-QCONST16(0.04f,14), target),1); #ifndef FIXED_POINT /* Apply tonality boost */ if (st->analysis.valid) { opus_int32 tonal_target; float tonal; /* Tonality boost (compensating for the average). */ tonal = MAX16(0.f,st->analysis.tonality-.15f)-0.09f; tonal_target = target + (opus_int32)((coded_bins<<BITRES)*1.2f*tonal); if (pitch_change) tonal_target += (opus_int32)((coded_bins<<BITRES)*.8f); /*printf("%f %f ", st->analysis.tonality, tonal);*/ target = tonal_target; } #endif { opus_int32 floor_depth; int bins; bins = eBands[nbEBands-2]<<LM; /*floor_depth = SHR32(MULT16_16((C*bins<<BITRES),celt_log2(SHL32(MAX16(1,sample_max),13))), DB_SHIFT);*/ floor_depth = (opus_int32)SHR32(MULT16_16((C*bins<<BITRES),maxDepth), DB_SHIFT); floor_depth = IMAX(floor_depth, target>>2); target = IMIN(target, floor_depth); /*printf("%f %d\n", maxDepth, floor_depth);*/ } if (st->constrained_vbr || st->bitrate<64000) { opus_val16 rate_factor; #ifdef FIXED_POINT rate_factor = MAX16(0,(st->bitrate-32000)); #else rate_factor = MAX16(0,(1.f/32768)*(st->bitrate-32000)); #endif if (st->constrained_vbr) rate_factor = MIN16(rate_factor, QCONST16(0.67f, 15)); target = base_target + (opus_int32)MULT16_32_Q15(rate_factor, target-base_target); } /* Don't allow more than doubling the rate */ target = IMIN(2*base_target, target); /* The current offset is removed from the target and the space used so far is added*/ target=target+tell; /* In VBR mode the frame size must not be reduced so much that it would result in the encoder running out of bits. The margin of 2 bytes ensures that none of the bust-prevention logic in the decoder will have triggered so far. */ min_allowed = ((tell+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3)) + 2 - nbFilledBytes; nbAvailableBytes = (target+(1<<(BITRES+2)))>>(BITRES+3); nbAvailableBytes = IMAX(min_allowed,nbAvailableBytes); nbAvailableBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes) - nbFilledBytes; /* By how much did we "miss" the target on that frame */ delta = target - vbr_rate; target=nbAvailableBytes<<(BITRES+3); /*If the frame is silent we don't adjust our drift, otherwise the encoder will shoot to very high rates after hitting a span of silence, but we do allow the bitres to refill. This means that we'll undershoot our target in CVBR/VBR modes on files with lots of silence. */ if(silence) { nbAvailableBytes = 2; target = 2*8<<BITRES; delta = 0; } if (st->vbr_count < 970) { st->vbr_count++; alpha = celt_rcp(SHL32(EXTEND32(st->vbr_count+20),16)); } else alpha = QCONST16(.001f,15); /* How many bits have we used in excess of what we're allowed */ if (st->constrained_vbr) st->vbr_reservoir += target - vbr_rate; /*printf ("%d\n", st->vbr_reservoir);*/ /* Compute the offset we need to apply in order to reach the target */ if (st->constrained_vbr) { st->vbr_drift += (opus_int32)MULT16_32_Q15(alpha,(delta*(1<<lm_diff))-st->vbr_offset-st->vbr_drift); st->vbr_offset = -st->vbr_drift; } /*printf ("%d\n", st->vbr_drift);*/ if (st->constrained_vbr && st->vbr_reservoir < 0) { /* We're under the min value -- increase rate */ int adjust = (-st->vbr_reservoir)/(8<<BITRES); /* Unless we're just coding silence */ nbAvailableBytes += silence?0:adjust; st->vbr_reservoir = 0; /*printf ("+%d\n", adjust);*/ } nbCompressedBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes); /*printf("%d\n", nbCompressedBytes*50*8);*/ /* This moves the raw bits to take into account the new compressed size */ ec_enc_shrink(enc, nbCompressedBytes); } /* Bit allocation */ ALLOC(fine_quant, nbEBands, int); ALLOC(pulses, nbEBands, int); ALLOC(fine_priority, nbEBands, int); /* bits = packet size - where we are - safety*/ bits = (((opus_int32)nbCompressedBytes*8)<<BITRES) - ec_tell_frac(enc) - 1; anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0; bits -= anti_collapse_rsv; signalBandwidth = st->end-1; #ifndef FIXED_POINT if (st->analysis.valid) signalBandwidth = st->analysis.bandwidth; #endif codedBands = compute_allocation(mode, st->start, st->end, offsets, cap, alloc_trim, &st->intensity, &dual_stereo, bits, &balance, pulses, fine_quant, fine_priority, C, LM, enc, 1, st->lastCodedBands, signalBandwidth); st->lastCodedBands = codedBands; quant_fine_energy(mode, st->start, st->end, oldBandE, error, fine_quant, enc, C); #ifdef MEASURE_NORM_MSE float X0[3000]; float bandE0[60]; c=0; do for (i=0;i<N;i++) X0[i+c*N] = X[i+c*N]; while (++c<C); for (i=0;i<C*nbEBands;i++) bandE0[i] = bandE[i]; #endif /* Residual quantisation */ ALLOC(collapse_masks, C*nbEBands, unsigned char); quant_all_bands(1, mode, st->start, st->end, X, C==2 ? X+N : NULL, collapse_masks, bandE, pulses, shortBlocks, st->spread_decision, dual_stereo, st->intensity, tf_res, nbCompressedBytes*(8<<BITRES)-anti_collapse_rsv, balance, enc, LM, codedBands, &st->rng); if (anti_collapse_rsv > 0) { anti_collapse_on = st->consec_transient<2; #ifdef FUZZING anti_collapse_on = rand()&0x1; #endif ec_enc_bits(enc, anti_collapse_on, 1); } quant_energy_finalise(mode, st->start, st->end, oldBandE, error, fine_quant, fine_priority, nbCompressedBytes*8-ec_tell(enc), enc, C); if (silence) { for (i=0;i<C*nbEBands;i++) oldBandE[i] = -QCONST16(28.f,DB_SHIFT); } #ifdef RESYNTH /* Re-synthesis of the coded audio if required */ { celt_sig *out_mem[2]; log2Amp(mode, st->start, st->end, bandE, oldBandE, C); if (silence) { for (i=0;i<C*nbEBands;i++) bandE[i] = 0; } #ifdef MEASURE_NORM_MSE measure_norm_mse(mode, X, X0, bandE, bandE0, M, N, C); #endif if (anti_collapse_on) { anti_collapse(mode, X, collapse_masks, LM, C, N, st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng); } /* Synthesis */ denormalise_bands(mode, X, freq, bandE, st->start, effEnd, C, M); c=0; do { OPUS_MOVE(st->syn_mem[c], st->syn_mem[c]+N, 2*MAX_PERIOD-N+overlap/2); } while (++c<CC); if (CC==2&&C==1) { for (i=0;i<N;i++) freq[N+i] = freq[i]; } c=0; do { out_mem[c] = st->syn_mem[c]+2*MAX_PERIOD-N; } while (++c<CC); compute_inv_mdcts(mode, shortBlocks, freq, out_mem, CC, LM); c=0; do { st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD); st->prefilter_period_old=IMAX(st->prefilter_period_old, COMBFILTER_MINPERIOD); comb_filter(out_mem[c], out_mem[c], st->prefilter_period_old, st->prefilter_period, mode->shortMdctSize, st->prefilter_gain_old, st->prefilter_gain, st->prefilter_tapset_old, st->prefilter_tapset, mode->window, st->overlap); if (LM!=0) comb_filter(out_mem[c]+mode->shortMdctSize, out_mem[c]+mode->shortMdctSize, st->prefilter_period, pitch_index, N-mode->shortMdctSize, st->prefilter_gain, gain1, st->prefilter_tapset, prefilter_tapset, mode->window, overlap); } while (++c<CC); /* We reuse freq[] as scratch space for the de-emphasis */ deemphasis(out_mem, (opus_val16*)pcm, N, CC, st->upsample, mode->preemph, st->preemph_memD, freq); st->prefilter_period_old = st->prefilter_period; st->prefilter_gain_old = st->prefilter_gain; st->prefilter_tapset_old = st->prefilter_tapset; } #endif st->prefilter_period = pitch_index; st->prefilter_gain = gain1; st->prefilter_tapset = prefilter_tapset; #ifdef RESYNTH if (LM!=0) { st->prefilter_period_old = st->prefilter_period; st->prefilter_gain_old = st->prefilter_gain; st->prefilter_tapset_old = st->prefilter_tapset; } #endif if (CC==2&&C==1) { for (i=0;i<nbEBands;i++) oldBandE[nbEBands+i]=oldBandE[i]; } if (!isTransient) { for (i=0;i<CC*nbEBands;i++) oldLogE2[i] = oldLogE[i]; for (i=0;i<CC*nbEBands;i++) oldLogE[i] = oldBandE[i]; } else { for (i=0;i<CC*nbEBands;i++) oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]); } /* In case start or end were to change */ c=0; do { for (i=0;i<st->start;i++) { oldBandE[c*nbEBands+i]=0; oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT); } for (i=st->end;i<nbEBands;i++) { oldBandE[c*nbEBands+i]=0; oldLogE[c*nbEBands+i]=oldLogE2[c*nbEBands+i]=-QCONST16(28.f,DB_SHIFT); } } while (++c<CC); if (isTransient) st->consec_transient++; else st->consec_transient=0; st->rng = enc->rng; /* If there's any room left (can only happen for very high rates), it's already filled with zeros */ ec_enc_done(enc); #ifdef CUSTOM_MODES if (st->signalling) nbCompressedBytes++; #endif RESTORE_STACK; if (ec_get_error(enc)) return OPUS_INTERNAL_ERROR; else return nbCompressedBytes; } #ifdef CUSTOM_MODES #ifdef FIXED_POINT int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) { return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL); } #ifndef DISABLE_FLOAT_API int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) { int j, ret, C, N; VARDECL(opus_int16, in); ALLOC_STACK; if (pcm==NULL) return OPUS_BAD_ARG; C = st->channels; N = frame_size; ALLOC(in, C*N, opus_int16); for (j=0;j<C*N;j++) in[j] = FLOAT2INT16(pcm[j]); ret=celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL); #ifdef RESYNTH for (j=0;j<C*N;j++) ((float*)pcm)[j]=in[j]*(1.f/32768.f); #endif RESTORE_STACK; return ret; } #endif /* DISABLE_FLOAT_API */ #else int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) { int j, ret, C, N; VARDECL(celt_sig, in); ALLOC_STACK; if (pcm==NULL) return OPUS_BAD_ARG; C=st->channels; N=frame_size; ALLOC(in, C*N, celt_sig); for (j=0;j<C*N;j++) { in[j] = SCALEOUT(pcm[j]); } ret = celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL); #ifdef RESYNTH for (j=0;j<C*N;j++) ((opus_int16*)pcm)[j] = FLOAT2INT16(in[j]); #endif RESTORE_STACK; return ret; } int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes) { return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL); } #endif #endif /* CUSTOM_MODES */ int opus_custom_encoder_ctl(CELTEncoder * OPUS_RESTRICT st, int request, ...) { va_list ap; va_start(ap, request); switch (request) { case OPUS_SET_COMPLEXITY_REQUEST: { int value = va_arg(ap, opus_int32); if (value<0 || value>10) goto bad_arg; st->complexity = value; } break; case CELT_SET_START_BAND_REQUEST: { opus_int32 value = va_arg(ap, opus_int32); if (value<0 || value>=st->mode->nbEBands) goto bad_arg; st->start = value; } break; case CELT_SET_END_BAND_REQUEST: { opus_int32 value = va_arg(ap, opus_int32); if (value<1 || value>st->mode->nbEBands) goto bad_arg; st->end = value; } break; case CELT_SET_PREDICTION_REQUEST: { int value = va_arg(ap, opus_int32); if (value<0 || value>2) goto bad_arg; st->disable_pf = value<=1; st->force_intra = value==0; } break; case OPUS_SET_PACKET_LOSS_PERC_REQUEST: { int value = va_arg(ap, opus_int32); if (value<0 || value>100) goto bad_arg; st->loss_rate = value; } break; case OPUS_SET_VBR_CONSTRAINT_REQUEST: { opus_int32 value = va_arg(ap, opus_int32); st->constrained_vbr = value; } break; case OPUS_SET_VBR_REQUEST: { opus_int32 value = va_arg(ap, opus_int32); st->vbr = value; } break; case OPUS_SET_BITRATE_REQUEST: { opus_int32 value = va_arg(ap, opus_int32); if (value<=500 && value!=OPUS_BITRATE_MAX) goto bad_arg; value = IMIN(value, 260000*st->channels); st->bitrate = value; } break; case CELT_SET_CHANNELS_REQUEST: { opus_int32 value = va_arg(ap, opus_int32); if (value<1 || value>2) goto bad_arg; st->stream_channels = value; } break; case OPUS_SET_LSB_DEPTH_REQUEST: { opus_int32 value = va_arg(ap, opus_int32); if (value<8 || value>24) goto bad_arg; st->lsb_depth=value; } break; case OPUS_GET_LSB_DEPTH_REQUEST: { opus_int32 *value = va_arg(ap, opus_int32*); *value=st->lsb_depth; } break; case OPUS_RESET_STATE: { int i; opus_val16 *oldBandE, *oldLogE, *oldLogE2; oldBandE = (opus_val16*)(st->in_mem+st->channels*(st->overlap+COMBFILTER_MAXPERIOD)); oldLogE = oldBandE + st->channels*st->mode->nbEBands; oldLogE2 = oldLogE + st->channels*st->mode->nbEBands; OPUS_CLEAR((char*)&st->ENCODER_RESET_START, opus_custom_encoder_get_size(st->mode, st->channels)- ((char*)&st->ENCODER_RESET_START - (char*)st)); for (i=0;i<st->channels*st->mode->nbEBands;i++) oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT); st->vbr_offset = 0; st->delayedIntra = 1; st->spread_decision = SPREAD_NORMAL; st->tonal_average = 256; st->hf_average = 0; st->tapset_decision = 0; } break; #ifdef CUSTOM_MODES case CELT_SET_INPUT_CLIPPING_REQUEST: { opus_int32 value = va_arg(ap, opus_int32); st->clip = value; } break; #endif case CELT_SET_SIGNALLING_REQUEST: { opus_int32 value = va_arg(ap, opus_int32); st->signalling = value; } break; case CELT_SET_ANALYSIS_REQUEST: { AnalysisInfo *info = va_arg(ap, AnalysisInfo *); if (info) OPUS_COPY(&st->analysis, info, 1); } break; case CELT_GET_MODE_REQUEST: { const CELTMode ** value = va_arg(ap, const CELTMode**); if (value==0) goto bad_arg; *value=st->mode; } break; case OPUS_GET_FINAL_RANGE_REQUEST: { opus_uint32 * value = va_arg(ap, opus_uint32 *); if (value==0) goto bad_arg; *value=st->rng; } break; default: goto bad_request; } va_end(ap); return OPUS_OK; bad_arg: va_end(ap); return OPUS_BAD_ARG; bad_request: va_end(ap); return OPUS_UNIMPLEMENTED; }