ref: d8b1fd4ad0233fc69a58ac6f91e1d154f22c481b
dir: /src/mlp.c/
/* Copyright (c) 2008-2011 Octasic Inc. 2012-2017 Jean-Marc Valin */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <math.h> #include "opus_types.h" #include "opus_defines.h" #include "arch.h" #include "tansig_table.h" #include "mlp.h" static OPUS_INLINE float tansig_approx(float x) { int i; float y, dy; float sign=1; /* Tests are reversed to catch NaNs */ if (!(x<8)) return 1; if (!(x>-8)) return -1; #ifndef FIXED_POINT /* Another check in case of -ffast-math */ if (celt_isnan(x)) return 0; #endif if (x<0) { x=-x; sign=-1; } i = (int)floor(.5f+25*x); x -= .04f*i; y = tansig_table[i]; dy = 1-y*y; y = y + x*dy*(1 - y*x); return sign*y; } static OPUS_INLINE float sigmoid_approx(float x) { return .5f + .5f*tansig_approx(.5f*x); } void compute_dense(const DenseLayer *layer, float *output, const float *input) { int i, j; int N, M; int stride; M = layer->nb_inputs; N = layer->nb_neurons; stride = N; for (i=0;i<N;i++) { /* Compute update gate. */ float sum = layer->bias[i]; for (j=0;j<M;j++) sum += layer->input_weights[j*stride + i]*input[j]; output[i] = WEIGHTS_SCALE*sum; } if (layer->sigmoid) { for (i=0;i<N;i++) output[i] = sigmoid_approx(output[i]); } else { for (i=0;i<N;i++) output[i] = tansig_approx(output[i]); } } void compute_gru(const GRULayer *gru, float *state, const float *input) { int i, j; int N, M; int stride; float z[MAX_NEURONS]; float r[MAX_NEURONS]; float h[MAX_NEURONS]; M = gru->nb_inputs; N = gru->nb_neurons; stride = 3*N; for (i=0;i<N;i++) { /* Compute update gate. */ float sum = gru->bias[i]; for (j=0;j<M;j++) sum += gru->input_weights[j*stride + i]*input[j]; for (j=0;j<N;j++) sum += gru->recurrent_weights[j*stride + i]*state[j]; z[i] = sigmoid_approx(WEIGHTS_SCALE*sum); } for (i=0;i<N;i++) { /* Compute reset gate. */ float sum = gru->bias[N + i]; for (j=0;j<M;j++) sum += gru->input_weights[N + j*stride + i]*input[j]; for (j=0;j<N;j++) sum += gru->recurrent_weights[N + j*stride + i]*state[j]; r[i] = sigmoid_approx(WEIGHTS_SCALE*sum); } for (i=0;i<N;i++) { /* Compute output. */ float sum = gru->bias[2*N + i]; for (j=0;j<M;j++) sum += gru->input_weights[2*N + j*stride + i]*input[j]; for (j=0;j<N;j++) sum += gru->recurrent_weights[2*N + j*stride + i]*state[j]*r[j]; h[i] = z[i]*state[i] + (1-z[i])*tansig_approx(WEIGHTS_SCALE*sum); } for (i=0;i<N;i++) state[i] = h[i]; }