ref: d7f6700f167d74fa8fc81a03048044b68c9c8d4f
dir: /silk/silk_pitch_analysis_core.c/
/*********************************************************************** Copyright (c) 2006-2011, Skype Limited. All rights reserved. Redistribution and use in source and binary forms, with or without modification, (subject to the limitations in the disclaimer below) are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of Skype Limited, nor the names of specific contributors, may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***********************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif /*********************************************************** * Pitch analyser function ********************************************************** */ #include "silk_SigProc_FIX.h" #include "silk_pitch_est_defines.h" #include "silk_debug.h" #define SCRATCH_SIZE 22 /************************************************************/ /* Internally used functions */ /************************************************************/ void silk_P_Ana_calc_corr_st3( opus_int32 cross_corr_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ],/* (O) 3 DIM correlation array */ const opus_int16 signal[], /* I vector to correlate */ opus_int start_lag, /* I lag offset to search around */ opus_int sf_length, /* I length of a 5 ms subframe */ opus_int nb_subfr, /* I number of subframes */ opus_int complexity /* I Complexity setting */ ); void silk_P_Ana_calc_energy_st3( opus_int32 energies_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ],/* (O) 3 DIM energy array */ const opus_int16 signal[], /* I vector to calc energy in */ opus_int start_lag, /* I lag offset to search around */ opus_int sf_length, /* I length of one 5 ms subframe */ opus_int nb_subfr, /* I number of subframes */ opus_int complexity /* I Complexity setting */ ); opus_int32 silk_P_Ana_find_scaling( const opus_int16 *signal, const opus_int signal_length, const opus_int sum_sqr_len ); /*************************************************************/ /* FIXED POINT CORE PITCH ANALYSIS FUNCTION */ /*************************************************************/ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 voiced, 1 unvoiced */ const opus_int16 *signal, /* I Signal of length PE_FRAME_LENGTH_MS*Fs_kHz */ opus_int *pitch_out, /* O 4 pitch lag values */ opus_int16 *lagIndex, /* O Lag Index */ opus_int8 *contourIndex, /* O Pitch contour Index */ opus_int *LTPCorr_Q15, /* I/O Normalized correlation; input: value from previous frame */ opus_int prevLag, /* I Last lag of previous frame; set to zero is unvoiced */ const opus_int32 search_thres1_Q16, /* I First stage threshold for lag candidates 0 - 1 */ const opus_int search_thres2_Q15, /* I Final threshold for lag candidates 0 - 1 */ const opus_int Fs_kHz, /* I Sample frequency (kHz) */ const opus_int complexity, /* I Complexity setting, 0-2, where 2 is highest */ const opus_int nb_subfr /* I number of 5 ms subframes */ ) { opus_int16 signal_8kHz[ PE_MAX_FRAME_LENGTH_ST_2 ]; opus_int16 signal_4kHz[ PE_MAX_FRAME_LENGTH_ST_1 ]; opus_int32 filt_state[ 6 ]; opus_int32 scratch_mem[ 3 * PE_MAX_FRAME_LENGTH ]; opus_int16 *input_signal_ptr; opus_int i, k, d, j; opus_int16 C[ PE_MAX_NB_SUBFR ][ ( PE_MAX_LAG >> 1 ) + 5 ]; const opus_int16 *target_ptr, *basis_ptr; opus_int32 cross_corr, normalizer, energy, shift, energy_basis, energy_target; opus_int d_srch[ PE_D_SRCH_LENGTH ], Cmax, length_d_srch, length_d_comp; opus_int16 d_comp[ ( PE_MAX_LAG >> 1 ) + 5 ]; opus_int32 sum, threshold, temp32, lag_counter; opus_int CBimax, CBimax_new, CBimax_old, lag, start_lag, end_lag, lag_new; opus_int32 CC[ PE_NB_CBKS_STAGE2_EXT ], CCmax, CCmax_b, CCmax_new_b, CCmax_new; opus_int32 energies_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ]; opus_int32 crosscorr_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ]; opus_int frame_length, frame_length_8kHz, frame_length_4kHz, max_sum_sq_length; opus_int sf_length, sf_length_8kHz, sf_length_4kHz; opus_int min_lag, min_lag_8kHz, min_lag_4kHz; opus_int max_lag, max_lag_8kHz, max_lag_4kHz; opus_int32 contour_bias_Q20, diff, lz, lshift; opus_int nb_cbk_search, cbk_size; opus_int32 delta_lag_log2_sqr_Q7, lag_log2_Q7, prevLag_log2_Q7, prev_lag_bias_Q15, corr_thres_Q15; const opus_int8 *Lag_CB_ptr; /* Check for valid sampling frequency */ SKP_assert( Fs_kHz == 8 || Fs_kHz == 12 || Fs_kHz == 16 ); /* Check for valid complexity setting */ SKP_assert( complexity >= SILK_PE_MIN_COMPLEX ); SKP_assert( complexity <= SILK_PE_MAX_COMPLEX ); SKP_assert( search_thres1_Q16 >= 0 && search_thres1_Q16 <= (1<<16) ); SKP_assert( search_thres2_Q15 >= 0 && search_thres2_Q15 <= (1<<15) ); /* Setup frame lengths max / min lag for the sampling frequency */ frame_length = ( PE_LTP_MEM_LENGTH_MS + nb_subfr * PE_SUBFR_LENGTH_MS ) * Fs_kHz; frame_length_4kHz = ( PE_LTP_MEM_LENGTH_MS + nb_subfr * PE_SUBFR_LENGTH_MS ) * 4; frame_length_8kHz = ( PE_LTP_MEM_LENGTH_MS + nb_subfr * PE_SUBFR_LENGTH_MS ) * 8; sf_length = PE_SUBFR_LENGTH_MS * Fs_kHz; sf_length_4kHz = PE_SUBFR_LENGTH_MS * 4; sf_length_8kHz = PE_SUBFR_LENGTH_MS * 8; min_lag = PE_MIN_LAG_MS * Fs_kHz; min_lag_4kHz = PE_MIN_LAG_MS * 4; min_lag_8kHz = PE_MIN_LAG_MS * 8; max_lag = PE_MAX_LAG_MS * Fs_kHz - 1; max_lag_4kHz = PE_MAX_LAG_MS * 4; max_lag_8kHz = PE_MAX_LAG_MS * 8 - 1; SKP_memset( C, 0, sizeof( opus_int16 ) * nb_subfr * ( ( PE_MAX_LAG >> 1 ) + 5) ); /* Resample from input sampled at Fs_kHz to 8 kHz */ if( Fs_kHz == 16 ) { SKP_memset( filt_state, 0, 2 * sizeof( opus_int32 ) ); silk_resampler_down2( filt_state, signal_8kHz, signal, frame_length ); } else if ( Fs_kHz == 12 ) { SKP_memset( filt_state, 0, 6 * sizeof( opus_int32 ) ); silk_resampler_down2_3( filt_state, signal_8kHz, signal, frame_length ); } else { SKP_assert( Fs_kHz == 8 ); SKP_memcpy( signal_8kHz, signal, frame_length_8kHz * sizeof(opus_int16) ); } /* Decimate again to 4 kHz */ SKP_memset( filt_state, 0, 2 * sizeof( opus_int32 ) );/* Set state to zero */ silk_resampler_down2( filt_state, signal_4kHz, signal_8kHz, frame_length_8kHz ); /* Low-pass filter */ for( i = frame_length_4kHz - 1; i > 0; i-- ) { signal_4kHz[ i ] = SKP_ADD_SAT16( signal_4kHz[ i ], signal_4kHz[ i - 1 ] ); } /******************************************************************************* ** Scale 4 kHz signal down to prevent correlations measures from overflowing ** find scaling as max scaling for each 8kHz(?) subframe *******************************************************************************/ /* Inner product is calculated with different lengths, so scale for the worst case */ max_sum_sq_length = SKP_max_32( sf_length_8kHz, SKP_LSHIFT( sf_length_4kHz, 2 ) ); shift = silk_P_Ana_find_scaling( signal_4kHz, frame_length_4kHz, max_sum_sq_length ); if( shift > 0 ) { for( i = 0; i < frame_length_4kHz; i++ ) { signal_4kHz[ i ] = SKP_RSHIFT( signal_4kHz[ i ], shift ); } } /****************************************************************************** * FIRST STAGE, operating in 4 khz ******************************************************************************/ target_ptr = &signal_4kHz[ SKP_LSHIFT( sf_length_4kHz, 2 ) ]; for( k = 0; k < nb_subfr >> 1; k++ ) { /* Check that we are within range of the array */ SKP_assert( target_ptr >= signal_4kHz ); SKP_assert( target_ptr + sf_length_8kHz <= signal_4kHz + frame_length_4kHz ); basis_ptr = target_ptr - min_lag_4kHz; /* Check that we are within range of the array */ SKP_assert( basis_ptr >= signal_4kHz ); SKP_assert( basis_ptr + sf_length_8kHz <= signal_4kHz + frame_length_4kHz ); normalizer = 0; cross_corr = 0; /* Calculate first vector products before loop */ cross_corr = silk_inner_prod_aligned( target_ptr, basis_ptr, sf_length_8kHz ); normalizer = silk_inner_prod_aligned( basis_ptr, basis_ptr, sf_length_8kHz ); normalizer = SKP_ADD_SAT32( normalizer, SKP_SMULBB( sf_length_8kHz, 4000 ) ); temp32 = SKP_DIV32( cross_corr, silk_SQRT_APPROX( normalizer ) + 1 ); C[ k ][ min_lag_4kHz ] = (opus_int16)SKP_SAT16( temp32 ); /* Q0 */ /* From now on normalizer is computed recursively */ for( d = min_lag_4kHz + 1; d <= max_lag_4kHz; d++ ) { basis_ptr--; /* Check that we are within range of the array */ SKP_assert( basis_ptr >= signal_4kHz ); SKP_assert( basis_ptr + sf_length_8kHz <= signal_4kHz + frame_length_4kHz ); cross_corr = silk_inner_prod_aligned( target_ptr, basis_ptr, sf_length_8kHz ); /* Add contribution of new sample and remove contribution from oldest sample */ normalizer += SKP_SMULBB( basis_ptr[ 0 ], basis_ptr[ 0 ] ) - SKP_SMULBB( basis_ptr[ sf_length_8kHz ], basis_ptr[ sf_length_8kHz ] ); temp32 = SKP_DIV32( cross_corr, silk_SQRT_APPROX( normalizer ) + 1 ); C[ k ][ d ] = (opus_int16)SKP_SAT16( temp32 ); /* Q0 */ } /* Update target pointer */ target_ptr += sf_length_8kHz; } /* Combine two subframes into single correlation measure and apply short-lag bias */ if( nb_subfr == PE_MAX_NB_SUBFR ) { for( i = max_lag_4kHz; i >= min_lag_4kHz; i-- ) { sum = (opus_int32)C[ 0 ][ i ] + (opus_int32)C[ 1 ][ i ]; /* Q0 */ SKP_assert( SKP_RSHIFT( sum, 1 ) == SKP_SAT16( SKP_RSHIFT( sum, 1 ) ) ); sum = SKP_RSHIFT( sum, 1 ); /* Q-1 */ SKP_assert( SKP_LSHIFT( (opus_int32)-i, 4 ) == SKP_SAT16( SKP_LSHIFT( (opus_int32)-i, 4 ) ) ); sum = SKP_SMLAWB( sum, sum, SKP_LSHIFT( -i, 4 ) ); /* Q-1 */ SKP_assert( sum == SKP_SAT16( sum ) ); C[ 0 ][ i ] = (opus_int16)sum; /* Q-1 */ } } else { /* Only short-lag bias */ for( i = max_lag_4kHz; i >= min_lag_4kHz; i-- ) { sum = (opus_int32)C[ 0 ][ i ]; sum = SKP_SMLAWB( sum, sum, SKP_LSHIFT( -i, 4 ) ); /* Q-1 */ C[ 0 ][ i ] = (opus_int16)sum; /* Q-1 */ } } /* Sort */ length_d_srch = SKP_ADD_LSHIFT32( 4, complexity, 1 ); SKP_assert( 3 * length_d_srch <= PE_D_SRCH_LENGTH ); silk_insertion_sort_decreasing_int16( &C[ 0 ][ min_lag_4kHz ], d_srch, max_lag_4kHz - min_lag_4kHz + 1, length_d_srch ); /* Escape if correlation is very low already here */ target_ptr = &signal_4kHz[ SKP_SMULBB( sf_length_4kHz, nb_subfr ) ]; energy = silk_inner_prod_aligned( target_ptr, target_ptr, SKP_LSHIFT( sf_length_4kHz, 2 ) ); energy = SKP_ADD_SAT32( energy, 1000 ); /* Q0 */ Cmax = (opus_int)C[ 0 ][ min_lag_4kHz ]; /* Q-1 */ threshold = SKP_SMULBB( Cmax, Cmax ); /* Q-2 */ /* Compare in Q-2 domain */ if( SKP_RSHIFT( energy, 4 + 2 ) > threshold ) { SKP_memset( pitch_out, 0, nb_subfr * sizeof( opus_int ) ); *LTPCorr_Q15 = 0; *lagIndex = 0; *contourIndex = 0; return 1; } threshold = SKP_SMULWB( search_thres1_Q16, Cmax ); for( i = 0; i < length_d_srch; i++ ) { /* Convert to 8 kHz indices for the sorted correlation that exceeds the threshold */ if( C[ 0 ][ min_lag_4kHz + i ] > threshold ) { d_srch[ i ] = SKP_LSHIFT( d_srch[ i ] + min_lag_4kHz, 1 ); } else { length_d_srch = i; break; } } SKP_assert( length_d_srch > 0 ); for( i = min_lag_8kHz - 5; i < max_lag_8kHz + 5; i++ ) { d_comp[ i ] = 0; } for( i = 0; i < length_d_srch; i++ ) { d_comp[ d_srch[ i ] ] = 1; } /* Convolution */ for( i = max_lag_8kHz + 3; i >= min_lag_8kHz; i-- ) { d_comp[ i ] += d_comp[ i - 1 ] + d_comp[ i - 2 ]; } length_d_srch = 0; for( i = min_lag_8kHz; i < max_lag_8kHz + 1; i++ ) { if( d_comp[ i + 1 ] > 0 ) { d_srch[ length_d_srch ] = i; length_d_srch++; } } /* Convolution */ for( i = max_lag_8kHz + 3; i >= min_lag_8kHz; i-- ) { d_comp[ i ] += d_comp[ i - 1 ] + d_comp[ i - 2 ] + d_comp[ i - 3 ]; } length_d_comp = 0; for( i = min_lag_8kHz; i < max_lag_8kHz + 4; i++ ) { if( d_comp[ i ] > 0 ) { d_comp[ length_d_comp ] = i - 2; length_d_comp++; } } /********************************************************************************** ** SECOND STAGE, operating at 8 kHz, on lag sections with high correlation *************************************************************************************/ /****************************************************************************** ** Scale signal down to avoid correlations measures from overflowing *******************************************************************************/ /* find scaling as max scaling for each subframe */ shift = silk_P_Ana_find_scaling( signal_8kHz, frame_length_8kHz, sf_length_8kHz ); if( shift > 0 ) { for( i = 0; i < frame_length_8kHz; i++ ) { signal_8kHz[ i ] = SKP_RSHIFT( signal_8kHz[ i ], shift ); } } /********************************************************************************* * Find energy of each subframe projected onto its history, for a range of delays *********************************************************************************/ SKP_memset( C, 0, PE_MAX_NB_SUBFR * ( ( PE_MAX_LAG >> 1 ) + 5 ) * sizeof( opus_int16 ) ); target_ptr = &signal_8kHz[ PE_LTP_MEM_LENGTH_MS * 8 ]; for( k = 0; k < nb_subfr; k++ ) { /* Check that we are within range of the array */ SKP_assert( target_ptr >= signal_8kHz ); SKP_assert( target_ptr + sf_length_8kHz <= signal_8kHz + frame_length_8kHz ); energy_target = silk_inner_prod_aligned( target_ptr, target_ptr, sf_length_8kHz ); // ToDo: Calculate 1 / energy_target here and save one division inside next for loop for( j = 0; j < length_d_comp; j++ ) { d = d_comp[ j ]; basis_ptr = target_ptr - d; /* Check that we are within range of the array */ SKP_assert( basis_ptr >= signal_8kHz ); SKP_assert( basis_ptr + sf_length_8kHz <= signal_8kHz + frame_length_8kHz ); cross_corr = silk_inner_prod_aligned( target_ptr, basis_ptr, sf_length_8kHz ); energy_basis = silk_inner_prod_aligned( basis_ptr, basis_ptr, sf_length_8kHz ); if( cross_corr > 0 ) { energy = SKP_max( energy_target, energy_basis ); /* Find max to make sure first division < 1.0 */ lz = silk_CLZ32( cross_corr ); lshift = SKP_LIMIT_32( lz - 1, 0, 15 ); temp32 = SKP_DIV32( SKP_LSHIFT( cross_corr, lshift ), SKP_RSHIFT( energy, 15 - lshift ) + 1 ); /* Q15 */ SKP_assert( temp32 == SKP_SAT16( temp32 ) ); temp32 = SKP_SMULWB( cross_corr, temp32 ); /* Q(-1), cc * ( cc / max(b, t) ) */ temp32 = SKP_ADD_SAT32( temp32, temp32 ); /* Q(0) */ lz = silk_CLZ32( temp32 ); lshift = SKP_LIMIT_32( lz - 1, 0, 15 ); energy = SKP_min( energy_target, energy_basis ); C[ k ][ d ] = SKP_DIV32( SKP_LSHIFT( temp32, lshift ), SKP_RSHIFT( energy, 15 - lshift ) + 1 ); // Q15 } else { C[ k ][ d ] = 0; } } target_ptr += sf_length_8kHz; } /* search over lag range and lags codebook */ /* scale factor for lag codebook, as a function of center lag */ CCmax = SKP_int32_MIN; CCmax_b = SKP_int32_MIN; CBimax = 0; /* To avoid returning undefined lag values */ lag = -1; /* To check if lag with strong enough correlation has been found */ if( prevLag > 0 ) { if( Fs_kHz == 12 ) { prevLag = SKP_DIV32_16( SKP_LSHIFT( prevLag, 1 ), 3 ); } else if( Fs_kHz == 16 ) { prevLag = SKP_RSHIFT( prevLag, 1 ); } prevLag_log2_Q7 = silk_lin2log( (opus_int32)prevLag ); } else { prevLag_log2_Q7 = 0; } SKP_assert( search_thres2_Q15 == SKP_SAT16( search_thres2_Q15 ) ); /* Setup stage 2 codebook based on number of subframes */ if( nb_subfr == PE_MAX_NB_SUBFR ) { cbk_size = PE_NB_CBKS_STAGE2_EXT; Lag_CB_ptr = &silk_CB_lags_stage2[ 0 ][ 0 ]; if( Fs_kHz == 8 && complexity > SILK_PE_MIN_COMPLEX ) { /* If input is 8 khz use a larger codebook here because it is last stage */ nb_cbk_search = PE_NB_CBKS_STAGE2_EXT; } else { nb_cbk_search = PE_NB_CBKS_STAGE2; } corr_thres_Q15 = SKP_RSHIFT( SKP_SMULBB( search_thres2_Q15, search_thres2_Q15 ), 13 ); } else { cbk_size = PE_NB_CBKS_STAGE2_10MS; Lag_CB_ptr = &silk_CB_lags_stage2_10_ms[ 0 ][ 0 ]; nb_cbk_search = PE_NB_CBKS_STAGE2_10MS; corr_thres_Q15 = SKP_RSHIFT( SKP_SMULBB( search_thres2_Q15, search_thres2_Q15 ), 14 ); } for( k = 0; k < length_d_srch; k++ ) { d = d_srch[ k ]; for( j = 0; j < nb_cbk_search; j++ ) { CC[ j ] = 0; for( i = 0; i < nb_subfr; i++ ) { /* Try all codebooks */ CC[ j ] = CC[ j ] + (opus_int32)C[ i ][ d + matrix_ptr( Lag_CB_ptr, i, j, cbk_size )]; } } /* Find best codebook */ CCmax_new = SKP_int32_MIN; CBimax_new = 0; for( i = 0; i < nb_cbk_search; i++ ) { if( CC[ i ] > CCmax_new ) { CCmax_new = CC[ i ]; CBimax_new = i; } } /* Bias towards shorter lags */ lag_log2_Q7 = silk_lin2log( (opus_int32)d ); /* Q7 */ SKP_assert( lag_log2_Q7 == SKP_SAT16( lag_log2_Q7 ) ); SKP_assert( nb_subfr * SILK_FIX_CONST( PE_SHORTLAG_BIAS, 15 ) == SKP_SAT16( nb_subfr * SILK_FIX_CONST( PE_SHORTLAG_BIAS, 15 ) ) ); CCmax_new_b = CCmax_new - SKP_RSHIFT( SKP_SMULBB( nb_subfr * SILK_FIX_CONST( PE_SHORTLAG_BIAS, 15 ), lag_log2_Q7 ), 7 ); /* Q15 */ /* Bias towards previous lag */ SKP_assert( nb_subfr * SILK_FIX_CONST( PE_PREVLAG_BIAS, 15 ) == SKP_SAT16( nb_subfr * SILK_FIX_CONST( PE_PREVLAG_BIAS, 15 ) ) ); if( prevLag > 0 ) { delta_lag_log2_sqr_Q7 = lag_log2_Q7 - prevLag_log2_Q7; SKP_assert( delta_lag_log2_sqr_Q7 == SKP_SAT16( delta_lag_log2_sqr_Q7 ) ); delta_lag_log2_sqr_Q7 = SKP_RSHIFT( SKP_SMULBB( delta_lag_log2_sqr_Q7, delta_lag_log2_sqr_Q7 ), 7 ); prev_lag_bias_Q15 = SKP_RSHIFT( SKP_SMULBB( nb_subfr * SILK_FIX_CONST( PE_PREVLAG_BIAS, 15 ), *LTPCorr_Q15 ), 15 ); /* Q15 */ prev_lag_bias_Q15 = SKP_DIV32( SKP_MUL( prev_lag_bias_Q15, delta_lag_log2_sqr_Q7 ), delta_lag_log2_sqr_Q7 + ( 1 << 6 ) ); CCmax_new_b -= prev_lag_bias_Q15; /* Q15 */ } if ( CCmax_new_b > CCmax_b && /* Find maximum biased correlation */ CCmax_new > corr_thres_Q15 && /* Correlation needs to be high enough to be voiced */ silk_CB_lags_stage2[ 0 ][ CBimax_new ] <= min_lag_8kHz /* Lag must be in range */ ) { CCmax_b = CCmax_new_b; CCmax = CCmax_new; lag = d; CBimax = CBimax_new; } } if( lag == -1 ) { /* No suitable candidate found */ SKP_memset( pitch_out, 0, nb_subfr * sizeof( opus_int ) ); *LTPCorr_Q15 = 0; *lagIndex = 0; *contourIndex = 0; return 1; } if( Fs_kHz > 8 ) { /****************************************************************************** ** Scale input signal down to avoid correlations measures from overflowing *******************************************************************************/ /* find scaling as max scaling for each subframe */ shift = silk_P_Ana_find_scaling( signal, frame_length, sf_length ); if( shift > 0 ) { /* Move signal to scratch mem because the input signal should be unchanged */ /* Reuse the 32 bit scratch mem vector, use a 16 bit pointer from now */ input_signal_ptr = (opus_int16*)scratch_mem; for( i = 0; i < frame_length; i++ ) { input_signal_ptr[ i ] = SKP_RSHIFT( signal[ i ], shift ); } } else { input_signal_ptr = (opus_int16*)signal; } /*********************************************************************************/ /* Search in original signal */ CBimax_old = CBimax; /* Compensate for decimation */ SKP_assert( lag == SKP_SAT16( lag ) ); if( Fs_kHz == 12 ) { lag = SKP_RSHIFT( SKP_SMULBB( lag, 3 ), 1 ); } else if( Fs_kHz == 16 ) { lag = SKP_LSHIFT( lag, 1 ); } else { lag = SKP_SMULBB( lag, 3 ); } lag = SKP_LIMIT_int( lag, min_lag, max_lag ); start_lag = SKP_max_int( lag - 2, min_lag ); end_lag = SKP_min_int( lag + 2, max_lag ); lag_new = lag; /* to avoid undefined lag */ CBimax = 0; /* to avoid undefined lag */ SKP_assert( SKP_LSHIFT( CCmax, 13 ) >= 0 ); *LTPCorr_Q15 = (opus_int)silk_SQRT_APPROX( SKP_LSHIFT( CCmax, 13 ) ); /* Output normalized correlation */ CCmax = SKP_int32_MIN; /* pitch lags according to second stage */ for( k = 0; k < nb_subfr; k++ ) { pitch_out[ k ] = lag + 2 * silk_CB_lags_stage2[ k ][ CBimax_old ]; } /* Calculate the correlations and energies needed in stage 3 */ silk_P_Ana_calc_corr_st3( crosscorr_st3, input_signal_ptr, start_lag, sf_length, nb_subfr, complexity ); silk_P_Ana_calc_energy_st3( energies_st3, input_signal_ptr, start_lag, sf_length, nb_subfr, complexity ); lag_counter = 0; SKP_assert( lag == SKP_SAT16( lag ) ); contour_bias_Q20 = SKP_DIV32_16( SILK_FIX_CONST( PE_FLATCONTOUR_BIAS, 20 ), lag ); /* Setup cbk parameters acording to complexity setting and frame length */ if( nb_subfr == PE_MAX_NB_SUBFR ) { nb_cbk_search = (opus_int)silk_nb_cbk_searchs_stage3[ complexity ]; cbk_size = PE_NB_CBKS_STAGE3_MAX; Lag_CB_ptr = &silk_CB_lags_stage3[ 0 ][ 0 ]; } else { nb_cbk_search = PE_NB_CBKS_STAGE3_10MS; cbk_size = PE_NB_CBKS_STAGE3_10MS; Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ]; } for( d = start_lag; d <= end_lag; d++ ) { for( j = 0; j < nb_cbk_search; j++ ) { cross_corr = 0; energy = 0; for( k = 0; k < nb_subfr; k++ ) { SKP_assert( PE_MAX_NB_SUBFR == 4 ); energy += SKP_RSHIFT( energies_st3[ k ][ j ][ lag_counter ], 2 ); /* use mean, to avoid overflow */ SKP_assert( energy >= 0 ); cross_corr += SKP_RSHIFT( crosscorr_st3[ k ][ j ][ lag_counter ], 2 ); /* use mean, to avoid overflow */ } if( cross_corr > 0 ) { /* Divide cross_corr / energy and get result in Q15 */ lz = silk_CLZ32( cross_corr ); /* Divide with result in Q13, cross_corr could be larger than energy */ lshift = SKP_LIMIT_32( lz - 1, 0, 13 ); CCmax_new = SKP_DIV32( SKP_LSHIFT( cross_corr, lshift ), SKP_RSHIFT( energy, 13 - lshift ) + 1 ); CCmax_new = SKP_SAT16( CCmax_new ); CCmax_new = SKP_SMULWB( cross_corr, CCmax_new ); /* Saturate */ if( CCmax_new > SKP_RSHIFT( SKP_int32_MAX, 3 ) ) { CCmax_new = SKP_int32_MAX; } else { CCmax_new = SKP_LSHIFT( CCmax_new, 3 ); } /* Reduce depending on flatness of contour */ diff = SKP_int16_MAX - SKP_RSHIFT( SKP_MUL( contour_bias_Q20, j ), 5 ); /* Q20 -> Q15 */ SKP_assert( diff == SKP_SAT16( diff ) ); CCmax_new = SKP_LSHIFT( SKP_SMULWB( CCmax_new, diff ), 1 ); } else { CCmax_new = 0; } if( CCmax_new > CCmax && ( d + silk_CB_lags_stage3[ 0 ][ j ] ) <= max_lag ) { CCmax = CCmax_new; lag_new = d; CBimax = j; } } lag_counter++; } for( k = 0; k < nb_subfr; k++ ) { pitch_out[ k ] = lag_new + matrix_ptr( Lag_CB_ptr, k, CBimax, cbk_size ); } *lagIndex = (opus_int16)( lag_new - min_lag); *contourIndex = (opus_int8)CBimax; } else { /* Save Lags and correlation */ CCmax = SKP_max( CCmax, 0 ); *LTPCorr_Q15 = (opus_int)silk_SQRT_APPROX( SKP_LSHIFT( CCmax, 13 ) ); /* Output normalized correlation */ for( k = 0; k < nb_subfr; k++ ) { pitch_out[ k ] = lag + matrix_ptr( Lag_CB_ptr, k, CBimax, cbk_size ); } *lagIndex = (opus_int16)( lag - min_lag_8kHz ); *contourIndex = (opus_int8)CBimax; } SKP_assert( *lagIndex >= 0 ); /* return as voiced */ return 0; } /*************************************************************************/ /* Calculates the correlations used in stage 3 search. In order to cover */ /* the whole lag codebook for all the searched offset lags (lag +- 2), */ /*************************************************************************/ void silk_P_Ana_calc_corr_st3( opus_int32 cross_corr_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ],/* (O) 3 DIM correlation array */ const opus_int16 signal[], /* I vector to correlate */ opus_int start_lag, /* I lag offset to search around */ opus_int sf_length, /* I length of a 5 ms subframe */ opus_int nb_subfr, /* I number of subframes */ opus_int complexity /* I Complexity setting */ ) { const opus_int16 *target_ptr, *basis_ptr; opus_int32 cross_corr; opus_int i, j, k, lag_counter, lag_low, lag_high; opus_int nb_cbk_search, delta, idx, cbk_size; opus_int32 scratch_mem[ SCRATCH_SIZE ]; const opus_int8 *Lag_range_ptr, *Lag_CB_ptr; SKP_assert( complexity >= SILK_PE_MIN_COMPLEX ); SKP_assert( complexity <= SILK_PE_MAX_COMPLEX ); if( nb_subfr == PE_MAX_NB_SUBFR ){ Lag_range_ptr = &silk_Lag_range_stage3[ complexity ][ 0 ][ 0 ]; Lag_CB_ptr = &silk_CB_lags_stage3[ 0 ][ 0 ]; nb_cbk_search = silk_nb_cbk_searchs_stage3[ complexity ]; cbk_size = PE_NB_CBKS_STAGE3_MAX; } else { SKP_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1); Lag_range_ptr = &silk_Lag_range_stage3_10_ms[ 0 ][ 0 ]; Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ]; nb_cbk_search = PE_NB_CBKS_STAGE3_10MS; cbk_size = PE_NB_CBKS_STAGE3_10MS; } target_ptr = &signal[ SKP_LSHIFT( sf_length, 2 ) ]; /* Pointer to middle of frame */ for( k = 0; k < nb_subfr; k++ ) { lag_counter = 0; /* Calculate the correlations for each subframe */ lag_low = matrix_ptr( Lag_range_ptr, k, 0, 2 ); lag_high = matrix_ptr( Lag_range_ptr, k, 1, 2 ); for( j = lag_low; j <= lag_high; j++ ) { basis_ptr = target_ptr - ( start_lag + j ); cross_corr = silk_inner_prod_aligned( (opus_int16*)target_ptr, (opus_int16*)basis_ptr, sf_length ); SKP_assert( lag_counter < SCRATCH_SIZE ); scratch_mem[ lag_counter ] = cross_corr; lag_counter++; } delta = matrix_ptr( Lag_range_ptr, k, 0, 2 ); for( i = 0; i < nb_cbk_search; i++ ) { /* Fill out the 3 dim array that stores the correlations for */ /* each code_book vector for each start lag */ idx = matrix_ptr( Lag_CB_ptr, k, i, cbk_size ) - delta; for( j = 0; j < PE_NB_STAGE3_LAGS; j++ ) { SKP_assert( idx + j < SCRATCH_SIZE ); SKP_assert( idx + j < lag_counter ); cross_corr_st3[ k ][ i ][ j ] = scratch_mem[ idx + j ]; } } target_ptr += sf_length; } } /********************************************************************/ /* Calculate the energies for first two subframes. The energies are */ /* calculated recursively. */ /********************************************************************/ void silk_P_Ana_calc_energy_st3( opus_int32 energies_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ],/* (O) 3 DIM energy array */ const opus_int16 signal[], /* I vector to calc energy in */ opus_int start_lag, /* I lag offset to search around */ opus_int sf_length, /* I length of one 5 ms subframe */ opus_int nb_subfr, /* I number of subframes */ opus_int complexity /* I Complexity setting */ ) { const opus_int16 *target_ptr, *basis_ptr; opus_int32 energy; opus_int k, i, j, lag_counter; opus_int nb_cbk_search, delta, idx, cbk_size, lag_diff; opus_int32 scratch_mem[ SCRATCH_SIZE ]; const opus_int8 *Lag_range_ptr, *Lag_CB_ptr; SKP_assert( complexity >= SILK_PE_MIN_COMPLEX ); SKP_assert( complexity <= SILK_PE_MAX_COMPLEX ); if( nb_subfr == PE_MAX_NB_SUBFR ){ Lag_range_ptr = &silk_Lag_range_stage3[ complexity ][ 0 ][ 0 ]; Lag_CB_ptr = &silk_CB_lags_stage3[ 0 ][ 0 ]; nb_cbk_search = silk_nb_cbk_searchs_stage3[ complexity ]; cbk_size = PE_NB_CBKS_STAGE3_MAX; } else { SKP_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1); Lag_range_ptr = &silk_Lag_range_stage3_10_ms[ 0 ][ 0 ]; Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ]; nb_cbk_search = PE_NB_CBKS_STAGE3_10MS; cbk_size = PE_NB_CBKS_STAGE3_10MS; } target_ptr = &signal[ SKP_LSHIFT( sf_length, 2 ) ]; for( k = 0; k < nb_subfr; k++ ) { lag_counter = 0; /* Calculate the energy for first lag */ basis_ptr = target_ptr - ( start_lag + matrix_ptr( Lag_range_ptr, k, 0, 2 ) ); energy = silk_inner_prod_aligned( basis_ptr, basis_ptr, sf_length ); SKP_assert( energy >= 0 ); scratch_mem[ lag_counter ] = energy; lag_counter++; lag_diff = ( matrix_ptr( Lag_range_ptr, k, 1, 2 ) - matrix_ptr( Lag_range_ptr, k, 0, 2 ) + 1 ); for( i = 1; i < lag_diff; i++ ) { /* remove part outside new window */ energy -= SKP_SMULBB( basis_ptr[ sf_length - i ], basis_ptr[ sf_length - i ] ); SKP_assert( energy >= 0 ); /* add part that comes into window */ energy = SKP_ADD_SAT32( energy, SKP_SMULBB( basis_ptr[ -i ], basis_ptr[ -i ] ) ); SKP_assert( energy >= 0 ); SKP_assert( lag_counter < SCRATCH_SIZE ); scratch_mem[ lag_counter ] = energy; lag_counter++; } delta = matrix_ptr( Lag_range_ptr, k, 0, 2 ); for( i = 0; i < nb_cbk_search; i++ ) { /* Fill out the 3 dim array that stores the correlations for */ /* each code_book vector for each start lag */ idx = matrix_ptr( Lag_CB_ptr, k, i, cbk_size ) - delta; for( j = 0; j < PE_NB_STAGE3_LAGS; j++ ) { SKP_assert( idx + j < SCRATCH_SIZE ); SKP_assert( idx + j < lag_counter ); energies_st3[ k ][ i ][ j ] = scratch_mem[ idx + j ]; SKP_assert( energies_st3[ k ][ i ][ j ] >= 0 ); } } target_ptr += sf_length; } } opus_int32 silk_P_Ana_find_scaling( const opus_int16 *signal, const opus_int signal_length, const opus_int sum_sqr_len ) { opus_int32 nbits, x_max; x_max = silk_int16_array_maxabs( signal, signal_length ); if( x_max < SKP_int16_MAX ) { /* Number of bits needed for the sum of the squares */ nbits = 32 - silk_CLZ32( SKP_SMULBB( x_max, x_max ) ); } else { /* Here we don't know if x_max should have been SKP_int16_MAX + 1, so we expect the worst case */ nbits = 30; } nbits += 17 - silk_CLZ16( sum_sqr_len ); /* Without a guarantee of saturation, we need to keep the 31st bit free */ if( nbits < 31 ) { return 0; } else { return( nbits - 30 ); } }