ref: bab4fb19e2a9bc9d970e0b17c1c35ba3e2b3aa11
dir: /libcelt/vq.c/
/* (C) 2007 Jean-Marc Valin, CSIRO */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of the Xiph.org Foundation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <math.h> #include <stdlib.h> #include "cwrs.h" #include "vq.h" /* Improved algebraic pulse-base quantiser. The signal x is replaced by the sum of the pitch a combination of pulses such that its norm is still equal to 1. The only difference with the quantiser above is that the search is more complete. */ void alg_quant(float *x, float *W, int N, int K, float *p, float alpha, ec_enc *enc) { int L = 3; //float tata[200]; float y[L][N]; int iy[L][N]; //float tata2[200]; float ny[L][N]; int iny[L][N]; int i, j, m; float xy[L], nxy[L]; float yy[L], nyy[L]; float yp[L], nyp[L]; float best_scores[L]; float Rpp=0, Rxp=0; float gain[L]; int maxL = 1; for (j=0;j<N;j++) Rpp += p[j]*p[j]; //if (Rpp>.01) // alpha = (1-sqrt(1-Rpp))/Rpp; for (j=0;j<N;j++) Rxp += x[j]*p[j]; for (m=0;m<L;m++) for (i=0;i<N;i++) y[m][i] = 0; for (m=0;m<L;m++) for (i=0;i<N;i++) ny[m][i] = 0; for (m=0;m<L;m++) for (i=0;i<N;i++) iy[m][i] = iny[m][i] = 0; for (m=0;m<L;m++) xy[m] = yy[m] = yp[m] = gain[m] = 0; for (i=0;i<K;i++) { int L2 = L; if (L>maxL) { L2 = maxL; maxL *= N; } for (m=0;m<L;m++) best_scores[m] = -1e10; for (m=0;m<L2;m++) { for (j=0;j<N;j++) { int sign; for (sign=-1;sign<=1;sign+=2) { if (iy[m][j]*sign < 0) continue; //fprintf (stderr, "%d/%d %d/%d %d/%d\n", i, K, m, L2, j, N); float tmp_xy, tmp_yy, tmp_yp; float score; float g; float s = sign; tmp_xy = xy[m] + s*x[j] - alpha*s*p[j]*Rxp; tmp_yy = yy[m] + 2*s*y[m][j] + 1 +alpha*alpha*p[j]*p[j]*Rpp - 2*alpha*s*p[j]*yp[m] - 2*alpha*p[j]*p[j]; tmp_yp = yp[m] + s*p[j] *(1-alpha*Rpp); g = (sqrt(tmp_yp*tmp_yp + tmp_yy - tmp_yy*Rpp) - tmp_yp)/tmp_yy; score = 2*g*tmp_xy - g*g*tmp_yy; if (score>best_scores[L-1]) { int k, n; int id = L-1; while (id > 0 && score > best_scores[id-1]) id--; for (k=L-1;k>id;k--) { nxy[k] = nxy[k-1]; nyy[k] = nyy[k-1]; nyp[k] = nyp[k-1]; //fprintf(stderr, "%d %d \n", N, k); for (n=0;n<N;n++) ny[k][n] = ny[k-1][n]; for (n=0;n<N;n++) iny[k][n] = iny[k-1][n]; gain[k] = gain[k-1]; best_scores[k] = best_scores[k-1]; } nxy[id] = tmp_xy; nyy[id] = tmp_yy; nyp[id] = tmp_yp; gain[id] = g; for (n=0;n<N;n++) ny[id][n] = y[m][n]; ny[id][j] += s; for (n=0;n<N;n++) ny[id][n] -= alpha*s*p[j]*p[n]; for (n=0;n<N;n++) iny[id][n] = iy[m][n]; if (s>0) iny[id][j] += 1; else iny[id][j] -= 1; best_scores[id] = score; } } } } int k,n; for (k=0;k<L;k++) { xy[k] = nxy[k]; yy[k] = nyy[k]; yp[k] = nyp[k]; for (n=0;n<N;n++) y[k][n] = ny[k][n]; for (n=0;n<N;n++) iy[k][n] = iny[k][n]; } } for (i=0;i<N;i++) x[i] = p[i]+gain[0]*y[0][i]; if (0) { float E=1e-15; int ABS = 0; for (i=0;i<N;i++) ABS += abs(iy[0][i]); //if (K != ABS) // printf ("%d %d\n", K, ABS); for (i=0;i<N;i++) E += x[i]*x[i]; //printf ("%f\n", E); E = 1/sqrt(E); for (i=0;i<N;i++) x[i] *= E; } int comb[K]; int signs[K]; //for (i=0;i<N;i++) // printf ("%d ", iy[0][i]); pulse2comb(N, K, comb, signs, iy[0]); ec_enc_uint64(enc,icwrs64(N, K, comb, signs),ncwrs64(N, K)); //printf ("%llu ", icwrs64(N, K, comb, signs)); /* Recompute the gain in one pass to reduce the encoder-decoder mismatch due to the recursive computation used in quantisation */ if (1) { float Ryp=0; float Rpp=0; float Ryy=0; float g=0; for (i=0;i<N;i++) Rpp += p[i]*p[i]; for (i=0;i<N;i++) Ryp += iy[0][i]*p[i]; for (i=0;i<N;i++) y[0][i] = iy[0][i] - alpha*Ryp*p[i]; Ryp = 0; for (i=0;i<N;i++) Ryp += y[0][i]*p[i]; for (i=0;i<N;i++) Ryy += y[0][i]*y[0][i]; g = (sqrt(Ryp*Ryp + Ryy - Ryy*Rpp) - Ryp)/Ryy; for (i=0;i<N;i++) x[i] = p[i] + g*y[0][i]; } } void alg_unquant(float *x, int N, int K, float *p, float alpha, ec_dec *dec) { int i; celt_uint64_t id; int comb[K]; int signs[K]; int iy[N]; float y[N]; float Rpp=0, Ryp=0, Ryy=0; float g; id = ec_dec_uint64(dec, ncwrs64(N, K)); //printf ("%llu ", id); cwrsi64(N, K, id, comb, signs); comb2pulse(N, K, iy, comb, signs); //for (i=0;i<N;i++) // printf ("%d ", iy[i]); for (i=0;i<N;i++) Rpp += p[i]*p[i]; for (i=0;i<N;i++) Ryp += iy[i]*p[i]; for (i=0;i<N;i++) y[i] = iy[i] - alpha*Ryp*p[i]; /* Recompute after the projection (I think it's right) */ Ryp = 0; for (i=0;i<N;i++) Ryp += y[i]*p[i]; for (i=0;i<N;i++) Ryy += y[i]*y[i]; g = (sqrt(Ryp*Ryp + Ryy - Ryy*Rpp) - Ryp)/Ryy; for (i=0;i<N;i++) x[i] = p[i] + g*y[i]; } static const float pg[11] = {1.f, .75f, .65f, 0.6f, 0.6f, .6f, .55f, .55f, .5f, .5f, .5f}; void intra_prediction(float *x, float *W, int N, int K, float *Y, float *P, int B, int N0, ec_enc *enc) { int i,j; int best=0; float best_score=0; float s = 1; int sign; float E; for (i=0;i<N0*B-N;i+=B) { int j; float xy=0, yy=0; float score; for (j=0;j<N;j++) { xy += x[j]*Y[i+j]; yy += Y[i+j]*Y[i+j]; } score = xy*xy/(.001+yy); if (score > best_score) { best_score = score; best = i; if (xy>0) s = 1; else s = -1; } } if (s<0) sign = 1; else sign = 0; //printf ("%d %d ", sign, best); ec_enc_uint(enc,sign,2); ec_enc_uint(enc,best/B,N0-N/B); //printf ("%d %f\n", best, best_score); float pred_gain; if (K>10) pred_gain = pg[10]; else pred_gain = pg[K]; E = 1e-10; for (j=0;j<N;j++) { P[j] = s*Y[best+j]; E += P[j]*P[j]; } E = pred_gain/sqrt(E); for (j=0;j<N;j++) P[j] *= E; if (K>0) { for (j=0;j<N;j++) x[j] -= P[j]; } else { for (j=0;j<N;j++) x[j] = P[j]; } //printf ("quant "); //for (j=0;j<N;j++) printf ("%f ", P[j]); } void intra_unquant(float *x, int N, int K, float *Y, float *P, int B, int N0, ec_dec *dec) { int j; int sign; float s; int best; float E; sign = ec_dec_uint(dec, 2); if (sign == 0) s = 1; else s = -1; best = B*ec_dec_uint(dec, N0-N/B); //printf ("%d %d ", sign, best); float pred_gain; if (K>10) pred_gain = pg[10]; else pred_gain = pg[K]; E = 1e-10; for (j=0;j<N;j++) { P[j] = s*Y[best+j]; E += P[j]*P[j]; } E = pred_gain/sqrt(E); for (j=0;j<N;j++) P[j] *= E; if (K==0) { for (j=0;j<N;j++) x[j] = P[j]; } }