ref: b3c9e79a8291e85c0cd5f91b55d1e856edd95ac1
dir: /silk/float/LPC_inv_pred_gain_FLP.c/
/*********************************************************************** Copyright (c) 2006-2011, Skype Limited. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of Internet Society, IETF or IETF Trust, nor the names of specific contributors, may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***********************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "SigProc_FIX.h" #include "SigProc_FLP.h" #include "define.h" /* compute inverse of LPC prediction gain, and */ /* test if LPC coefficients are stable (all poles within unit circle) */ /* this code is based on silk_a2k_FLP() */ silk_float silk_LPC_inverse_pred_gain_FLP( /* O return inverse prediction gain, energy domain */ const silk_float *A, /* I prediction coefficients [order] */ opus_int32 order /* I prediction order */ ) { opus_int k, n; double invGain, rc, rc_mult1, rc_mult2, tmp1, tmp2; silk_float Atmp[ SILK_MAX_ORDER_LPC ]; silk_memcpy( Atmp, A, order * sizeof(silk_float) ); invGain = 1.0; for( k = order - 1; k > 0; k-- ) { rc = -Atmp[ k ]; rc_mult1 = 1.0f - rc * rc; invGain *= rc_mult1; if( invGain * MAX_PREDICTION_POWER_GAIN < 1.0f ) { return 0.0f; } rc_mult2 = 1.0f / rc_mult1; for( n = 0; n < (k + 1) >> 1; n++ ) { tmp1 = Atmp[ n ]; tmp2 = Atmp[ k - n - 1 ]; Atmp[ n ] = (silk_float)( ( tmp1 - tmp2 * rc ) * rc_mult2 ); Atmp[ k - n - 1 ] = (silk_float)( ( tmp2 - tmp1 * rc ) * rc_mult2 ); } } rc = -Atmp[ 0 ]; rc_mult1 = 1.0f - rc * rc; invGain *= rc_mult1; if( invGain * MAX_PREDICTION_POWER_GAIN < 1.0f ) { return 0.0f; } return (silk_float)invGain; }