ref: ae035a540bb682740dc365bcc5558601a77d2857
dir: /libcelt/bands.h/
/* Copyright (c) 2007-2008 CSIRO Copyright (c) 2007-2009 Xiph.Org Foundation Copyright (c) 2008-2009 Gregory Maxwell Written by Jean-Marc Valin and Gregory Maxwell */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of the Xiph.org Foundation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef BANDS_H #define BANDS_H #include "arch.h" #include "modes.h" #include "entenc.h" #include "entdec.h" #include "rate.h" /** Compute the amplitude (sqrt energy) in each of the bands * @param m Mode data * @param X Spectrum * @param bands Square root of the energy for each band (returned) */ void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bands, int end, int _C, int M); /*void compute_noise_energies(const CELTMode *m, const celt_sig *X, const celt_word16 *tonality, celt_ener *bank);*/ /** Normalise each band of X such that the energy in each band is equal to 1 * @param m Mode data * @param X Spectrum (returned normalised) * @param bands Square root of the energy for each band */ void normalise_bands(const CELTMode *m, const celt_sig * restrict freq, celt_norm * restrict X, const celt_ener *bands, int end, int _C, int M); void renormalise_bands(const CELTMode *m, celt_norm * restrict X, int end, int _C, int M); /** Denormalise each band of X to restore full amplitude * @param m Mode data * @param X Spectrum (returned de-normalised) * @param bands Square root of the energy for each band */ void denormalise_bands(const CELTMode *m, const celt_norm * restrict X, celt_sig * restrict freq, const celt_ener *bands, int end, int _C, int M); int folding_decision(const CELTMode *m, celt_norm *X, celt_word16 *average, int *last_decision, int end, int _C, int M); #ifdef MEASURE_NORM_MSE void measure_norm_mse(const CELTMode *m, float *X, float *X0, float *bandE, float *bandE0, int M, int N, int C); #endif /** Quantisation/encoding of the residual spectrum * @param m Mode data * @param X Residual (normalised) * @param total_bits Total number of bits that can be used for the frame (including the ones already spent) * @param enc Entropy encoder */ void quant_all_bands(int encode, const CELTMode *m, int start, int end, celt_norm * X, celt_norm * Y, const celt_ener *bandE, int *pulses, int time_domain, int fold, int *tf_res, int resynth, int total_bits, void *enc, int M); void stereo_decision(const CELTMode *m, celt_norm * restrict X, int *stereo_mode, int len, int M); #endif /* BANDS_H */