ref: aaca4a713f3cc190425b34e0cd4f59fc8e8450a5
dir: /libcelt/rate.c/
/* Copyright (c) 2007-2008 CSIRO Copyright (c) 2007-2009 Xiph.Org Foundation Written by Jean-Marc Valin */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of the Xiph.org Foundation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <math.h> #include "modes.h" #include "cwrs.h" #include "arch.h" #include "os_support.h" #include "entcode.h" #include "rate.h" static const unsigned char LOG2_FRAC_TABLE[24]={ 0, 8,13, 16,19,21,23, 24,26,27,28,29,30,31,32, 32,33,34,34,35,36,36,37,37 }; #ifdef CUSTOM_MODES /*Determines if V(N,K) fits in a 32-bit unsigned integer. N and K are themselves limited to 15 bits.*/ static int fits_in32(int _n, int _k) { static const celt_int16 maxN[15] = { 32767, 32767, 32767, 1476, 283, 109, 60, 40, 29, 24, 20, 18, 16, 14, 13}; static const celt_int16 maxK[15] = { 32767, 32767, 32767, 32767, 1172, 238, 95, 53, 36, 27, 22, 18, 16, 15, 13}; if (_n>=14) { if (_k>=14) return 0; else return _n <= maxN[_k]; } else { return _k <= maxK[_n]; } } void compute_pulse_cache(CELTMode *m, int LM) { int C; int i; int j; int curr=0; int nbEntries=0; int entryN[100], entryK[100], entryI[100]; const celt_int16 *eBands = m->eBands; PulseCache *cache = &m->cache; celt_int16 *cindex; unsigned char *bits; unsigned char *cap; cindex = celt_alloc(sizeof(cache->index[0])*m->nbEBands*(LM+2)); cache->index = cindex; /* Scan for all unique band sizes */ for (i=0;i<=LM+1;i++) { for (j=0;j<m->nbEBands;j++) { int k; int N = (eBands[j+1]-eBands[j])<<i>>1; cindex[i*m->nbEBands+j] = -1; /* Find other bands that have the same size */ for (k=0;k<=i;k++) { int n; for (n=0;n<m->nbEBands && (k!=i || n<j);n++) { if (N == (eBands[n+1]-eBands[n])<<k>>1) { cindex[i*m->nbEBands+j] = cindex[k*m->nbEBands+n]; break; } } } if (cache->index[i*m->nbEBands+j] == -1 && N!=0) { int K; entryN[nbEntries] = N; K = 0; while (fits_in32(N,get_pulses(K+1)) && K<MAX_PSEUDO) K++; entryK[nbEntries] = K; cindex[i*m->nbEBands+j] = curr; entryI[nbEntries] = curr; curr += K+1; nbEntries++; } } } bits = celt_alloc(sizeof(unsigned char)*curr); cache->bits = bits; cache->size = curr; /* Compute the cache for all unique sizes */ for (i=0;i<nbEntries;i++) { unsigned char *ptr = bits+entryI[i]; celt_int16 tmp[MAX_PULSES+1]; get_required_bits(tmp, entryN[i], get_pulses(entryK[i]), BITRES); for (j=1;j<=entryK[i];j++) ptr[j] = tmp[get_pulses(j)]-1; ptr[0] = entryK[i]; } /* Compute the maximum rate for each band at which we'll reliably use as many bits as we ask for. */ cache->caps = cap = celt_alloc(sizeof(cache->caps[0])*(LM+1)*2*m->nbEBands); for (i=0;i<=LM;i++) { for (C=1;C<=2;C++) { int shift; shift = C+i+BITRES-2; for (j=0;j<m->nbEBands;j++) { int N0; int max_bits; int rmask; N0 = m->eBands[j+1]-m->eBands[j]; rmask = N0==1 ? (1<<shift)-1 : 0; /* N=1 bands only have a sign bit and fine bits. */ if (N0<<i == 1) max_bits = C*(1+MAX_FINE_BITS)<<BITRES; else { const unsigned char *pcache; celt_int32 num; celt_int32 den; int LM0; int N; int offset; int ndof; int qb; int k; LM0 = 0; /* Even-sized bands bigger than N=4 can be split one more time (N=4 also _can_ be split, but not without waste: the result can only use 26 bits, but requires an allocation of 32 to trigger the split). */ if (N0 > 4 && !(N0&1)) { N0>>=1; LM0--; } /* N0=1 and N0=2 bands can't be split down to N=2. */ else if (N0 <= 2) { LM0=IMIN(i,3-N0); N0<<=LM0; } /* Compute the cost for the lowest-level PVQ of a fully split band. */ pcache = bits + cindex[(LM0+1)*m->nbEBands+j]; max_bits = pcache[pcache[0]]+1; /* Add in the cost of coding regular splits. */ N = N0; for(k=0;k<i-LM0;k++){ max_bits <<= 1; /* Offset the number of qtheta bits by log2(N)/2 + QTHETA_OFFSET compared to their "fair share" of total/N */ offset = (m->logN[j]+(LM0+k<<BITRES)>>1)-QTHETA_OFFSET; /* The number of qtheta bits we'll allocate if the remainder is to be max_bits. */ num=(celt_int32)((2*N-1)*offset+max_bits)<<9; den=((celt_int32)(2*N-1)<<9)-495; qb = IMIN((num+(den>>1))/den, 8<<BITRES); celt_assert(qb >= 0); /* The average cost for theta when qn==256 is 7.73246 bits for the triangular PDF. */ max_bits += qb*495+256>>9; N <<= 1; } /* Add in the cost of a stereo split, if necessary. */ if (C==2) { max_bits <<= 1; offset = (m->logN[j]+(i<<BITRES)>>1)-QTHETA_OFFSET_STEREO; ndof = 2*N-1-(N==2); num = (celt_int32)(max_bits+ndof*offset)<<7; den = ((celt_int32)ndof<<7)-(N==2?128:125); qb = IMIN((num+(den>>1))/den, 8<<BITRES); celt_assert(qb >= 0); /* The average cost for theta when qn==256, N>2 is 7.8174 bits for the step PDF. */ max_bits += N==2 ? qb : (qb*125+64>>7); } /* Add the fine bits we'll use. */ /* Compensate for the extra DoF in stereo */ ndof = C*N + ((C==2 && N>2) ? 1 : 0); /* Offset the number of fine bits by log2(N)/2 + FINE_OFFSET compared to their "fair share" of total/N */ offset = (m->logN[j] + (i<<BITRES)>>1)-FINE_OFFSET; /* N=2 is the only point that doesn't match the curve */ if (N==2) offset += 1<<BITRES>>2; /* The number of fine bits we'll allocate if the remainder is to be max_bits. */ num = max_bits+ndof*offset; den = ndof-1<<BITRES; qb = IMIN((num+(den>>1))/den, MAX_FINE_BITS); celt_assert(qb >= 0); max_bits += C*qb<<BITRES; } celt_assert(max_bits+rmask>>shift < 256); *cap++ = (unsigned char)(max_bits+rmask>>shift); } } } } #endif /* !CUSTOM_MODES */ #define ALLOC_STEPS 6 static inline int interp_bits2pulses(const CELTMode *m, int start, int end, int skip_start, const int *bits1, const int *bits2, const int *thresh, const int *cap, int total, int skip_rsv, int *intensity, int intensity_rsv, int *dual_stereo, int dual_stereo_rsv, int *bits, int *ebits, int *fine_priority, int _C, int LM, void *ec, int encode, int prev) { int psum; int lo, hi; int i, j; int logM; const int C = CHANNELS(_C); int stereo; int codedBands=-1; int alloc_floor; int left, percoeff; int done; int balance; SAVE_STACK; alloc_floor = C<<BITRES; stereo = C>1; logM = LM<<BITRES; lo = 0; hi = 1<<ALLOC_STEPS; for (i=0;i<ALLOC_STEPS;i++) { int mid = (lo+hi)>>1; psum = 0; done = 0; for (j=end;j-->start;) { int tmp = bits1[j] + (mid*bits2[j]>>ALLOC_STEPS); if (tmp >= thresh[j] || done) { done = 1; /* Don't allocate more than we can actually use */ psum += IMIN(tmp, cap[j]); } else { if (tmp >= alloc_floor) psum += alloc_floor; } } if (psum > total) hi = mid; else lo = mid; } psum = 0; /*printf ("interp bisection gave %d\n", lo);*/ done = 0; for (j=end;j-->start;) { int tmp = bits1[j] + (lo*bits2[j]>>ALLOC_STEPS); if (tmp < thresh[j] && !done) { if (tmp >= alloc_floor) tmp = alloc_floor; else tmp = 0; } else done = 1; /* Don't allocate more than we can actually use */ tmp = IMIN(tmp, cap[j]); bits[j] = tmp; psum += tmp; } /* Decide which bands to skip, working backwards from the end. */ for (codedBands=end;;codedBands--) { int band_width; int band_bits; int rem; j = codedBands-1; /* Never skip the first band, nor a band that has been boosted by dynalloc. In the first case, we'd be coding a bit to signal we're going to waste all the other bits. In the second case, we'd be coding a bit to redistribute all the bits we just signaled should be cocentrated in this band. */ if (j<=skip_start) { /* Give the bit we reserved to end skipping back. */ total += skip_rsv; break; } /*Figure out how many left-over bits we would be adding to this band. This can include bits we've stolen back from higher, skipped bands.*/ left = total-psum; percoeff = left/(m->eBands[codedBands]-m->eBands[start]); left -= (m->eBands[codedBands]-m->eBands[start])*percoeff; rem = IMAX(left-(m->eBands[j]-m->eBands[start]),0); band_width = m->eBands[codedBands]-m->eBands[j]; band_bits = bits[j] + percoeff*band_width + rem; /*Only code a skip decision if we're above the threshold for this band. Otherwise it is force-skipped. This ensures that we have enough bits to code the skip flag.*/ if (band_bits >= IMAX(thresh[j], alloc_floor+(1<<BITRES))) { if (encode) { /*This if() block is the only part of the allocation function that is not a mandatory part of the bitstream: any bands we choose to skip here must be explicitly signaled.*/ /*Choose a threshold with some hysteresis to keep bands from fluctuating in and out.*/ if (band_bits > ((j<prev?7:9)*band_width<<LM<<BITRES)>>4) { ec_enc_bit_logp((ec_enc *)ec, 1, 1); break; } ec_enc_bit_logp((ec_enc *)ec, 0, 1); } else if (ec_dec_bit_logp((ec_dec *)ec, 1)) { break; } /*We used a bit to skip this band.*/ psum += 1<<BITRES; band_bits -= 1<<BITRES; } /*Reclaim the bits originally allocated to this band.*/ psum -= bits[j]+intensity_rsv; if (intensity_rsv > 0) intensity_rsv = LOG2_FRAC_TABLE[j-start]; psum += intensity_rsv; if (band_bits >= alloc_floor) { /*If we have enough for a fine energy bit per channel, use it.*/ psum += alloc_floor; bits[j] = alloc_floor; } else { /*Otherwise this band gets nothing at all.*/ bits[j] = 0; } } celt_assert(codedBands > start); /* Code the intensity and dual stereo parameters. */ if (intensity_rsv > 0) { if (encode) { *intensity = IMIN(*intensity, codedBands); ec_enc_uint((ec_enc *)ec, *intensity-start, codedBands+1-start); } else *intensity = start+ec_dec_uint((ec_dec *)ec, codedBands+1-start); } else *intensity = 0; if (*intensity <= start) { total += dual_stereo_rsv; dual_stereo_rsv = 0; } if (dual_stereo_rsv > 0) { if (encode) ec_enc_bit_logp((ec_enc *)ec, *dual_stereo, 1); else *dual_stereo = ec_dec_bit_logp((ec_dec *)ec, 1); } else *dual_stereo = 0; /* Allocate the remaining bits */ left = total-psum; percoeff = left/(m->eBands[codedBands]-m->eBands[start]); left -= (m->eBands[codedBands]-m->eBands[start])*percoeff; for (j=start;j<codedBands;j++) bits[j] += percoeff*(m->eBands[j+1]-m->eBands[j]); for (j=start;j<codedBands;j++) { int tmp = IMIN(left, m->eBands[j+1]-m->eBands[j]); bits[j] += tmp; left -= tmp; } /*for (j=0;j<end;j++)printf("%d ", bits[j]);printf("\n");*/ balance = 0; for (j=start;j<codedBands;j++) { int N0, N, den; int offset; int NClogN; celt_assert(bits[j] >= 0); N0 = m->eBands[j+1]-m->eBands[j]; N=N0<<LM; if (N>1) { /* Compensate for the extra DoF in stereo */ den=(C*N+ ((C==2 && N>2) ? 1 : 0)); NClogN = den*(m->logN[j] + logM); /* Offset for the number of fine bits by log2(N)/2 + FINE_OFFSET compared to their "fair share" of total/N */ offset = (NClogN>>1)-den*FINE_OFFSET; /* N=2 is the only point that doesn't match the curve */ if (N==2) offset += den<<BITRES>>2; /* Changing the offset for allocating the second and third fine energy bit */ if (bits[j] + offset < den*2<<BITRES) offset += NClogN>>2; else if (bits[j] + offset < den*3<<BITRES) offset += NClogN>>3; /* Divide with rounding */ ebits[j] = IMAX(0, (bits[j] + offset + (den<<(BITRES-1))) / (den<<BITRES)); /* Make sure not to bust */ if (C*ebits[j] > (bits[j]>>BITRES)) ebits[j] = bits[j] >> stereo >> BITRES; /* More than that is useless because that's about as far as PVQ can go */ ebits[j] = IMIN(ebits[j], MAX_FINE_BITS); /* If we rounded down or capped this band, make it a candidate for the final fine energy pass */ fine_priority[j] = ebits[j]*(den<<BITRES) >= bits[j]+offset; } else { /* For N=1, all bits go to fine energy except for a single sign bit */ ebits[j] = IMIN(IMAX(0,(bits[j] >> stereo >> BITRES)-1),MAX_FINE_BITS); fine_priority[j] = (ebits[j]+1)*C<<BITRES >= (bits[j]-balance); /* N=1 bands can't take advantage of the re-balancing in quant_all_bands() because they don't have shape, only fine energy. Instead, do the re-balancing here.*/ balance = IMAX(0,bits[j] - ((ebits[j]+1)*C<<BITRES)); if (j+1<codedBands) { bits[j] -= balance; bits[j+1] += balance; } } /* Sweep any bits over the cap into the first band. They'll be reallocated by the normal rebalancing code, which gives them the best chance to be used _somewhere_. */ { int tmp = IMAX(bits[j]-cap[j],0); bits[j] -= tmp; bits[start] += tmp; } /* Remove the allocated fine bits; the other bits are assigned to PVQ */ bits[j] -= C*ebits[j]<<BITRES; celt_assert(bits[j] >= 0); celt_assert(ebits[j] >= 0); } /* The skipped bands use all their bits for fine energy. */ for (;j<end;j++) { ebits[j] = bits[j] >> stereo >> BITRES; celt_assert(C*ebits[j]<<BITRES == bits[j]); bits[j] = 0; fine_priority[j] = ebits[j]<1; } RESTORE_STACK; return codedBands; } int compute_allocation(const CELTMode *m, int start, int end, const int *offsets, const int *cap, int alloc_trim, int *intensity, int *dual_stereo, int total, int *pulses, int *ebits, int *fine_priority, int _C, int LM, void *ec, int encode, int prev) { int lo, hi, len, j; const int C = CHANNELS(_C); int codedBands; int skip_start; int skip_rsv; int intensity_rsv; int dual_stereo_rsv; VARDECL(int, bits1); VARDECL(int, bits2); VARDECL(int, thresh); VARDECL(int, trim_offset); SAVE_STACK; total = IMAX(total, 0); len = m->nbEBands; skip_start = start; /* Reserve a bit to signal the end of manually skipped bands. */ skip_rsv = total >= 1<<BITRES ? 1<<BITRES : 0; total -= skip_rsv; /* Reserve bits for the intensity and dual stereo parameters. */ intensity_rsv = dual_stereo_rsv = 0; if (C==2) { intensity_rsv = LOG2_FRAC_TABLE[end-start]; if (intensity_rsv>total) intensity_rsv = 0; else { total -= intensity_rsv; dual_stereo_rsv = total>=1<<BITRES ? 1<<BITRES : 0; total -= dual_stereo_rsv; } } ALLOC(bits1, len, int); ALLOC(bits2, len, int); ALLOC(thresh, len, int); ALLOC(trim_offset, len, int); for (j=start;j<end;j++) { /* Below this threshold, we're sure not to allocate any PVQ bits */ thresh[j] = IMAX((C)<<BITRES, (3*(m->eBands[j+1]-m->eBands[j])<<LM<<BITRES)>>4); /* Tilt of the allocation curve */ trim_offset[j] = C*(m->eBands[j+1]-m->eBands[j])*(alloc_trim-5-LM)*(m->nbEBands-j-1) <<(LM+BITRES)>>6; /* Giving less resolution to single-coefficient bands because they get more benefit from having one coarse value per coefficient*/ if ((m->eBands[j+1]-m->eBands[j])<<LM==1) trim_offset[j] -= C<<BITRES; } lo = 1; hi = m->nbAllocVectors - 2; do { int done = 0; int psum = 0; int mid = (lo+hi) >> 1; for (j=end;j-->start;) { int N = m->eBands[j+1]-m->eBands[j]; bits1[j] = C*N*m->allocVectors[mid*len+j]<<LM>>2; if (bits1[j] > 0) bits1[j] = IMAX(0, bits1[j] + trim_offset[j]); bits1[j] += offsets[j]; if (bits1[j] >= thresh[j] || done) { done = 1; /* Don't allocate more than we can actually use */ psum += IMIN(bits1[j], cap[j]); } else { if (bits1[j] >= C<<BITRES) psum += C<<BITRES; } } if (psum > total) hi = mid - 1; else lo = mid + 1; /*printf ("lo = %d, hi = %d\n", lo, hi);*/ } while (lo <= hi); hi = lo--; /*printf ("interp between %d and %d\n", lo, hi);*/ for (j=start;j<end;j++) { int N = m->eBands[j+1]-m->eBands[j]; bits1[j] = C*N*m->allocVectors[lo*len+j]<<LM>>2; bits2[j] = C*N*m->allocVectors[hi*len+j]<<LM>>2; if (bits1[j] > 0) bits1[j] = IMAX(0, bits1[j] + trim_offset[j]); if (bits2[j] > 0) bits2[j] = IMAX(0, bits2[j] + trim_offset[j]); if (lo > 0) bits1[j] += offsets[j]; bits2[j] += offsets[j]; if (offsets[j]>0) skip_start = j; bits2[j] -= bits1[j]; } codedBands = interp_bits2pulses(m, start, end, skip_start, bits1, bits2, thresh, cap, total, skip_rsv, intensity, intensity_rsv, dual_stereo, dual_stereo_rsv, pulses, ebits, fine_priority, C, LM, ec, encode, prev); RESTORE_STACK; return codedBands; }