ref: a0737d1fcfcc099ae72d23c127d11bfa0a0b8879
dir: /silk/float/burg_modified_FLP.c/
/*********************************************************************** Copyright (c) 2006-2011, Skype Limited. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of Internet Society, IETF or IETF Trust, nor the names of specific contributors, may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***********************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "SigProc_FLP.h" #include "tuning_parameters.h" #include "define.h" #define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384*/ /* Compute reflection coefficients from input signal */ silk_float silk_burg_modified_FLP( /* O returns residual energy */ silk_float A[], /* O prediction coefficients (length order) */ const silk_float x[], /* I input signal, length: nb_subfr*(D+L_sub) */ const silk_float minInvGain, /* I minimum inverse prediction gain */ const opus_int subfr_length, /* I input signal subframe length (incl. D preceding samples) */ const opus_int nb_subfr, /* I number of subframes stacked in x */ const opus_int D /* I order */ ) { opus_int k, n, s, reached_max_gain; double C0, invGain, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2; const silk_float *x_ptr; double C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORDER_LPC ]; double CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ]; double Af[ SILK_MAX_ORDER_LPC ]; silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); /* Compute autocorrelations, added over subframes */ C0 = silk_energy_FLP( x, nb_subfr * subfr_length ); silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) ); for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; for( n = 1; n < D + 1; n++ ) { C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n ); } } silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) ); /* Initialize */ CAb[ 0 ] = CAf[ 0 ] = C0 + FIND_LPC_COND_FAC * C0 + 1e-9f; invGain = 1.0f; reached_max_gain = 0; for( n = 0; n < D; n++ ) { /* Update first row of correlation matrix (without first element) */ /* Update last row of correlation matrix (without last element, stored in reversed order) */ /* Update C * Af */ /* Update C * flipud(Af) (stored in reversed order) */ for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; tmp1 = x_ptr[ n ]; tmp2 = x_ptr[ subfr_length - n - 1 ]; for( k = 0; k < n; k++ ) { C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ]; C_last_row[ k ] -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr_length - n + k ]; Atmp = Af[ k ]; tmp1 += x_ptr[ n - k - 1 ] * Atmp; tmp2 += x_ptr[ subfr_length - n + k ] * Atmp; } for( k = 0; k <= n; k++ ) { CAf[ k ] -= tmp1 * x_ptr[ n - k ]; CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ]; } } tmp1 = C_first_row[ n ]; tmp2 = C_last_row[ n ]; for( k = 0; k < n; k++ ) { Atmp = Af[ k ]; tmp1 += C_last_row[ n - k - 1 ] * Atmp; tmp2 += C_first_row[ n - k - 1 ] * Atmp; } CAf[ n + 1 ] = tmp1; CAb[ n + 1 ] = tmp2; /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */ num = CAb[ n + 1 ]; nrg_b = CAb[ 0 ]; nrg_f = CAf[ 0 ]; for( k = 0; k < n; k++ ) { Atmp = Af[ k ]; num += CAb[ n - k ] * Atmp; nrg_b += CAb[ k + 1 ] * Atmp; nrg_f += CAf[ k + 1 ] * Atmp; } silk_assert( nrg_f > 0.0 ); silk_assert( nrg_b > 0.0 ); /* Calculate the next order reflection (parcor) coefficient */ rc = -2.0 * num / ( nrg_f + nrg_b ); silk_assert( rc > -1.0 && rc < 1.0 ); /* Update inverse prediction gain */ tmp1 = invGain * ( 1.0 - rc * rc ); if( tmp1 <= minInvGain ) { /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */ rc = sqrt( 1.0 - minInvGain / invGain ); if( num > 0 ) { /* Ensure adjusted reflection coefficients has the original sign */ rc = -rc; } invGain = minInvGain; reached_max_gain = 1; } else { invGain = tmp1; } /* Update the AR coefficients */ for( k = 0; k < (n + 1) >> 1; k++ ) { tmp1 = Af[ k ]; tmp2 = Af[ n - k - 1 ]; Af[ k ] = tmp1 + rc * tmp2; Af[ n - k - 1 ] = tmp2 + rc * tmp1; } Af[ n ] = rc; if( reached_max_gain ) { /* Reached max prediction gain; set remaining coefficients to zero and exit loop */ for( k = n + 1; k < D; k++ ) { Af[ k ] = 0.0; } break; } /* Update C * Af and C * Ab */ for( k = 0; k <= n + 1; k++ ) { tmp1 = CAf[ k ]; CAf[ k ] += rc * CAb[ n - k + 1 ]; CAb[ n - k + 1 ] += rc * tmp1; } } if( reached_max_gain ) { /* Convert to silk_float */ for( k = 0; k < D; k++ ) { A[ k ] = (silk_float)( -Af[ k ] ); } /* Subtract energy of preceding samples from C0 */ for( s = 0; s < nb_subfr; s++ ) { C0 -= silk_energy_FLP( x + s * subfr_length, D ); } /* Approximate residual energy */ nrg_f = C0 * invGain; } else { /* Compute residual energy and store coefficients as silk_float */ nrg_f = CAf[ 0 ]; tmp1 = 1.0; for( k = 0; k < D; k++ ) { Atmp = Af[ k ]; nrg_f += CAf[ k + 1 ] * Atmp; tmp1 += Atmp * Atmp; A[ k ] = (silk_float)(-Atmp); } nrg_f -= FIND_LPC_COND_FAC * C0 * tmp1; } /* Return residual energy */ return (silk_float)nrg_f; }