shithub: opus

ref: 9620cf7718d5f3e580b6457cf131ddf424312115
dir: /silk/float/burg_modified_FLP.c/

View raw version
/***********************************************************************
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, (subject to the limitations in the disclaimer below)
are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Skype Limited, nor the names of specific
contributors, may be used to endorse or promote products derived from
this software without specific prior written permission.
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED
BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "SigProc_FLP.h"
#include "tuning_parameters.h"
#include "define.h"

#define MAX_FRAME_SIZE              384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384*/

/* Compute reflection coefficients from input signal */
silk_float silk_burg_modified_FLP(          /* O    returns residual energy                                     */
    silk_float          A[],                /* O    prediction coefficients (length order)                      */
    const silk_float    x[],                /* I    input signal, length: nb_subfr*(D+L_sub)                    */
    const silk_float    minInvGain,         /* I    minimum inverse prediction gain                             */
    const opus_int      subfr_length,       /* I    input signal subframe length (incl. D preceeding samples)   */
    const opus_int      nb_subfr,           /* I    number of subframes stacked in x                            */
    const opus_int      D                   /* I    order                                                       */
)
{
    opus_int         k, n, s, reached_max_gain;
    double           C0, invGain, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2;
    const silk_float *x_ptr;
    double           C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORDER_LPC ];
    double           CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ];
    double           Af[ SILK_MAX_ORDER_LPC ];

    silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );

    /* Compute autocorrelations, added over subframes */
    C0 = silk_energy_FLP( x, nb_subfr * subfr_length );
    silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) );
    for( s = 0; s < nb_subfr; s++ ) {
        x_ptr = x + s * subfr_length;
        for( n = 1; n < D + 1; n++ ) {
            C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n );
        }
    }
    silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) );

    /* Initialize */
    CAb[ 0 ] = CAf[ 0 ] = C0 + FIND_LPC_COND_FAC * C0 + 1e-9f;
    invGain = 1.0f;
    reached_max_gain = 0;
    for( n = 0; n < D; n++ ) {
        /* Update first row of correlation matrix (without first element) */
        /* Update last row of correlation matrix (without last element, stored in reversed order) */
        /* Update C * Af */
        /* Update C * flipud(Af) (stored in reversed order) */
        for( s = 0; s < nb_subfr; s++ ) {
            x_ptr = x + s * subfr_length;
            tmp1 = x_ptr[ n ];
            tmp2 = x_ptr[ subfr_length - n - 1 ];
            for( k = 0; k < n; k++ ) {
                C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ];
                C_last_row[ k ]  -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr_length - n + k ];
                Atmp = Af[ k ];
                tmp1 += x_ptr[ n - k - 1 ] * Atmp;
                tmp2 += x_ptr[ subfr_length - n + k ] * Atmp;
            }
            for( k = 0; k <= n; k++ ) {
                CAf[ k ] -= tmp1 * x_ptr[ n - k ];
                CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ];
            }
        }
        tmp1 = C_first_row[ n ];
        tmp2 = C_last_row[ n ];
        for( k = 0; k < n; k++ ) {
            Atmp = Af[ k ];
            tmp1 += C_last_row[  n - k - 1 ] * Atmp;
            tmp2 += C_first_row[ n - k - 1 ] * Atmp;
        }
        CAf[ n + 1 ] = tmp1;
        CAb[ n + 1 ] = tmp2;

        /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
        num = CAb[ n + 1 ];
        nrg_b = CAb[ 0 ];
        nrg_f = CAf[ 0 ];
        for( k = 0; k < n; k++ ) {
            Atmp = Af[ k ];
            num   += CAb[ n - k ] * Atmp;
            nrg_b += CAb[ k + 1 ] * Atmp;
            nrg_f += CAf[ k + 1 ] * Atmp;
        }
        silk_assert( nrg_f > 0.0 );
        silk_assert( nrg_b > 0.0 );

        /* Calculate the next order reflection (parcor) coefficient */
        rc = -2.0 * num / ( nrg_f + nrg_b );
        silk_assert( rc > -1.0 && rc < 1.0 );

        /* Update inverse prediction gain */
        tmp1 = invGain * ( 1.0 - rc * rc );
        if( tmp1 <= minInvGain ) {
            /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
            rc = sqrt( 1.0 - minInvGain / invGain );
            if( num > 0 ) {
                /* Ensure adjusted reflection coefficients has the original sign */
                rc = -rc;
            }
            invGain = minInvGain;
            reached_max_gain = 1;
        } else {
            invGain = tmp1;
        }

        /* Update the AR coefficients */
        for( k = 0; k < (n + 1) >> 1; k++ ) {
            tmp1 = Af[ k ];
            tmp2 = Af[ n - k - 1 ];
            Af[ k ]         = tmp1 + rc * tmp2;
            Af[ n - k - 1 ] = tmp2 + rc * tmp1;
        }
        Af[ n ] = rc;

        if( reached_max_gain ) {
            /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
            for( k = n + 1; k < D; k++ ) {
                Af[ k ] = 0.0;
            }
            break;
        }

        /* Update C * Af and C * Ab */
        for( k = 0; k <= n + 1; k++ ) {
            tmp1 = CAf[ k ];
            CAf[ k ]          += rc * CAb[ n - k + 1 ];
            CAb[ n - k + 1  ] += rc * tmp1;
        }
    }

    if( reached_max_gain ) {
        /* Convert to silk_float */
        for( k = 0; k < D; k++ ) {
            A[ k ] = (silk_float)( -Af[ k ] );
        }
        /* Subtract energy of preceeding samples from C0 */
        for( s = 0; s < nb_subfr; s++ ) {
            C0 -= silk_energy_FLP( x + s * subfr_length, D );
        }
        /* Approximate residual energy */
        nrg_f = C0 * invGain;
    } else {
        /* Compute residual energy and store coefficients as silk_float */
        nrg_f = CAf[ 0 ];
        tmp1 = 1.0;
        for( k = 0; k < D; k++ ) {
            Atmp = Af[ k ];
            nrg_f += CAf[ k + 1 ] * Atmp;
            tmp1  += Atmp * Atmp;
            A[ k ] = (silk_float)(-Atmp);
        }
        nrg_f -= FIND_LPC_COND_FAC * C0 * tmp1;
    }

    /* Return residual energy */
    return (silk_float)nrg_f;
}