ref: 904e7a87009d3f7fba6a4124cb8fdf0cf3fca2c4
dir: /silk/float/silk_pitch_analysis_core_FLP.c/
/*********************************************************************** Copyright (c) 2006-2011, Skype Limited. All rights reserved. Redistribution and use in source and binary forms, with or without modification, (subject to the limitations in the disclaimer below) are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of Skype Limited, nor the names of specific contributors, may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***********************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif /***************************************************************************** * * Pitch analyser function * ******************************************************************************/ #include "silk_SigProc_FLP.h" #include "silk_SigProc_FIX.h" #include "silk_pitch_est_defines.h" #define SCRATCH_SIZE 22 /************************************************************/ /* Definitions */ /************************************************************/ #define eps 1.192092896e-07f /************************************************************/ /* Internally used functions */ /************************************************************/ static void silk_P_Ana_calc_corr_st3( SKP_float cross_corr_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ], /* O 3 DIM correlation array */ const SKP_float frame[], /* I vector to correlate */ opus_int start_lag, /* I start lag */ opus_int sf_length, /* I sub frame length */ opus_int nb_subfr, /* I number of subframes */ opus_int complexity /* I Complexity setting */ ); static void silk_P_Ana_calc_energy_st3( SKP_float energies_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ], /* O 3 DIM correlation array */ const SKP_float frame[], /* I vector to correlate */ opus_int start_lag, /* I start lag */ opus_int sf_length, /* I sub frame length */ opus_int nb_subfr, /* I number of subframes */ opus_int complexity /* I Complexity setting */ ); /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % CORE PITCH ANALYSIS FUNCTION % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */ opus_int silk_pitch_analysis_core_FLP( /* O voicing estimate: 0 voiced, 1 unvoiced */ const SKP_float *frame, /* I signal of length PE_FRAME_LENGTH_MS*Fs_kHz */ opus_int *pitch_out, /* O 4 pitch lag values */ opus_int16 *lagIndex, /* O lag Index */ opus_int8 *contourIndex, /* O pitch contour Index */ SKP_float *LTPCorr, /* I/O normalized correlation; input: value from previous frame */ opus_int prevLag, /* I last lag of previous frame; set to zero is unvoiced */ const SKP_float search_thres1, /* I first stage threshold for lag candidates 0 - 1 */ const SKP_float search_thres2, /* I final threshold for lag candidates 0 - 1 */ const opus_int Fs_kHz, /* I sample frequency (kHz) */ const opus_int complexity, /* I Complexity setting, 0-2, where 2 is highest */ const opus_int nb_subfr /* I number of 5 ms subframes */ ) { opus_int i, k, d, j; SKP_float frame_8kHz[ PE_MAX_FRAME_LENGTH_MS * 8 ]; SKP_float frame_4kHz[ PE_MAX_FRAME_LENGTH_MS * 4 ]; opus_int16 frame_8_FIX[ PE_MAX_FRAME_LENGTH_MS * 8 ]; opus_int16 frame_4_FIX[ PE_MAX_FRAME_LENGTH_MS * 4 ]; opus_int32 filt_state[ 6 ]; SKP_float threshold, contour_bias; SKP_float C[ PE_MAX_NB_SUBFR][ (PE_MAX_LAG >> 1) + 5 ]; SKP_float CC[ PE_NB_CBKS_STAGE2_EXT ]; const SKP_float *target_ptr, *basis_ptr; double cross_corr, normalizer, energy, energy_tmp; opus_int d_srch[ PE_D_SRCH_LENGTH ]; opus_int16 d_comp[ (PE_MAX_LAG >> 1) + 5 ]; opus_int length_d_srch, length_d_comp; SKP_float Cmax, CCmax, CCmax_b, CCmax_new_b, CCmax_new; opus_int CBimax, CBimax_new, lag, start_lag, end_lag, lag_new; opus_int cbk_size; SKP_float lag_log2, prevLag_log2, delta_lag_log2_sqr; SKP_float energies_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ]; SKP_float cross_corr_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ]; opus_int lag_counter; opus_int frame_length, frame_length_8kHz, frame_length_4kHz; opus_int sf_length, sf_length_8kHz, sf_length_4kHz; opus_int min_lag, min_lag_8kHz, min_lag_4kHz; opus_int max_lag, max_lag_8kHz, max_lag_4kHz; opus_int nb_cbk_search; const opus_int8 *Lag_CB_ptr; /* Check for valid sampling frequency */ SKP_assert( Fs_kHz == 8 || Fs_kHz == 12 || Fs_kHz == 16 ); /* Check for valid complexity setting */ SKP_assert( complexity >= SigProc_PE_MIN_COMPLEX ); SKP_assert( complexity <= SigProc_PE_MAX_COMPLEX ); SKP_assert( search_thres1 >= 0.0f && search_thres1 <= 1.0f ); SKP_assert( search_thres2 >= 0.0f && search_thres2 <= 1.0f ); /* Setup frame lengths max / min lag for the sampling frequency */ frame_length = ( PE_LTP_MEM_LENGTH_MS + nb_subfr * PE_SUBFR_LENGTH_MS ) * Fs_kHz; frame_length_4kHz = ( PE_LTP_MEM_LENGTH_MS + nb_subfr * PE_SUBFR_LENGTH_MS ) * 4; frame_length_8kHz = ( PE_LTP_MEM_LENGTH_MS + nb_subfr * PE_SUBFR_LENGTH_MS ) * 8; sf_length = PE_SUBFR_LENGTH_MS * Fs_kHz; sf_length_4kHz = PE_SUBFR_LENGTH_MS * 4; sf_length_8kHz = PE_SUBFR_LENGTH_MS * 8; min_lag = PE_MIN_LAG_MS * Fs_kHz; min_lag_4kHz = PE_MIN_LAG_MS * 4; min_lag_8kHz = PE_MIN_LAG_MS * 8; max_lag = PE_MAX_LAG_MS * Fs_kHz - 1; max_lag_4kHz = PE_MAX_LAG_MS * 4; max_lag_8kHz = PE_MAX_LAG_MS * 8 - 1; SKP_memset(C, 0, sizeof(SKP_float) * nb_subfr * ((PE_MAX_LAG >> 1) + 5)); /* Resample from input sampled at Fs_kHz to 8 kHz */ if( Fs_kHz == 16 ) { /* Resample to 16 -> 8 khz */ opus_int16 frame_16_FIX[ 16 * PE_MAX_FRAME_LENGTH_MS ]; SKP_float2short_array( frame_16_FIX, frame, frame_length ); SKP_memset( filt_state, 0, 2 * sizeof( opus_int32 ) ); silk_resampler_down2( filt_state, frame_8_FIX, frame_16_FIX, frame_length ); SKP_short2float_array( frame_8kHz, frame_8_FIX, frame_length_8kHz ); } else if( Fs_kHz == 12 ) { /* Resample to 12 -> 8 khz */ opus_int16 frame_12_FIX[ 12 * PE_MAX_FRAME_LENGTH_MS ]; SKP_float2short_array( frame_12_FIX, frame, frame_length ); SKP_memset( filt_state, 0, 6 * sizeof( opus_int32 ) ); silk_resampler_down2_3( filt_state, frame_8_FIX, frame_12_FIX, frame_length ); SKP_short2float_array( frame_8kHz, frame_8_FIX, frame_length_8kHz ); } else { SKP_assert( Fs_kHz == 8 ); SKP_float2short_array( frame_8_FIX, frame, frame_length_8kHz ); } /* Decimate again to 4 kHz */ SKP_memset( filt_state, 0, 2 * sizeof( opus_int32 ) ); silk_resampler_down2( filt_state, frame_4_FIX, frame_8_FIX, frame_length_8kHz ); SKP_short2float_array( frame_4kHz, frame_4_FIX, frame_length_4kHz ); /* Low-pass filter */ for( i = frame_length_4kHz - 1; i > 0; i-- ) { frame_4kHz[ i ] += frame_4kHz[ i - 1 ]; } /****************************************************************************** * FIRST STAGE, operating in 4 khz ******************************************************************************/ target_ptr = &frame_4kHz[ SKP_LSHIFT( sf_length_4kHz, 2 ) ]; for( k = 0; k < nb_subfr >> 1; k++ ) { /* Check that we are within range of the array */ SKP_assert( target_ptr >= frame_4kHz ); SKP_assert( target_ptr + sf_length_8kHz <= frame_4kHz + frame_length_4kHz ); basis_ptr = target_ptr - min_lag_4kHz; /* Check that we are within range of the array */ SKP_assert( basis_ptr >= frame_4kHz ); SKP_assert( basis_ptr + sf_length_8kHz <= frame_4kHz + frame_length_4kHz ); /* Calculate first vector products before loop */ cross_corr = silk_inner_product_FLP( target_ptr, basis_ptr, sf_length_8kHz ); normalizer = silk_energy_FLP( basis_ptr, sf_length_8kHz ) + sf_length_8kHz * 4000.0f; C[ 0 ][ min_lag_4kHz ] += (SKP_float)(cross_corr / sqrt(normalizer)); /* From now on normalizer is computed recursively */ for(d = min_lag_4kHz + 1; d <= max_lag_4kHz; d++) { basis_ptr--; /* Check that we are within range of the array */ SKP_assert( basis_ptr >= frame_4kHz ); SKP_assert( basis_ptr + sf_length_8kHz <= frame_4kHz + frame_length_4kHz ); cross_corr = silk_inner_product_FLP(target_ptr, basis_ptr, sf_length_8kHz); /* Add contribution of new sample and remove contribution from oldest sample */ normalizer += basis_ptr[ 0 ] * basis_ptr[ 0 ] - basis_ptr[ sf_length_8kHz ] * basis_ptr[ sf_length_8kHz ]; C[ 0 ][ d ] += (SKP_float)(cross_corr / sqrt( normalizer )); } /* Update target pointer */ target_ptr += sf_length_8kHz; } /* Apply short-lag bias */ for( i = max_lag_4kHz; i >= min_lag_4kHz; i-- ) { C[ 0 ][ i ] -= C[ 0 ][ i ] * i / 4096.0f; } /* Sort */ length_d_srch = 4 + 2 * complexity; SKP_assert( 3 * length_d_srch <= PE_D_SRCH_LENGTH ); silk_insertion_sort_decreasing_FLP( &C[ 0 ][ min_lag_4kHz ], d_srch, max_lag_4kHz - min_lag_4kHz + 1, length_d_srch ); /* Escape if correlation is very low already here */ Cmax = C[ 0 ][ min_lag_4kHz ]; target_ptr = &frame_4kHz[ SKP_SMULBB( sf_length_4kHz, nb_subfr ) ]; energy = 1000.0f; for( i = 0; i < SKP_LSHIFT( sf_length_4kHz, 2 ); i++ ) { energy += target_ptr[i] * target_ptr[i]; } threshold = Cmax * Cmax; if( energy / 16.0f > threshold ) { SKP_memset( pitch_out, 0, nb_subfr * sizeof( opus_int ) ); *LTPCorr = 0.0f; *lagIndex = 0; *contourIndex = 0; return 1; } threshold = search_thres1 * Cmax; for( i = 0; i < length_d_srch; i++ ) { /* Convert to 8 kHz indices for the sorted correlation that exceeds the threshold */ if( C[ 0 ][ min_lag_4kHz + i ] > threshold ) { d_srch[ i ] = SKP_LSHIFT( d_srch[ i ] + min_lag_4kHz, 1 ); } else { length_d_srch = i; break; } } SKP_assert( length_d_srch > 0 ); for( i = min_lag_8kHz - 5; i < max_lag_8kHz + 5; i++ ) { d_comp[ i ] = 0; } for( i = 0; i < length_d_srch; i++ ) { d_comp[ d_srch[ i ] ] = 1; } /* Convolution */ for( i = max_lag_8kHz + 3; i >= min_lag_8kHz; i-- ) { d_comp[ i ] += d_comp[ i - 1 ] + d_comp[ i - 2 ]; } length_d_srch = 0; for( i = min_lag_8kHz; i < max_lag_8kHz + 1; i++ ) { if( d_comp[ i + 1 ] > 0 ) { d_srch[ length_d_srch ] = i; length_d_srch++; } } /* Convolution */ for( i = max_lag_8kHz + 3; i >= min_lag_8kHz; i-- ) { d_comp[ i ] += d_comp[ i - 1 ] + d_comp[ i - 2 ] + d_comp[ i - 3 ]; } length_d_comp = 0; for( i = min_lag_8kHz; i < max_lag_8kHz + 4; i++ ) { if( d_comp[ i ] > 0 ) { d_comp[ length_d_comp ] = (opus_int16)( i - 2 ); length_d_comp++; } } /********************************************************************************** ** SECOND STAGE, operating at 8 kHz, on lag sections with high correlation *************************************************************************************/ /********************************************************************************* * Find energy of each subframe projected onto its history, for a range of delays *********************************************************************************/ SKP_memset( C, 0, PE_MAX_NB_SUBFR*((PE_MAX_LAG >> 1) + 5) * sizeof(SKP_float)); /* Is this needed?*/ if( Fs_kHz == 8 ) { target_ptr = &frame[ PE_LTP_MEM_LENGTH_MS * 8 ]; } else { target_ptr = &frame_8kHz[ PE_LTP_MEM_LENGTH_MS * 8 ]; } for( k = 0; k < nb_subfr; k++ ) { energy_tmp = silk_energy_FLP( target_ptr, sf_length_8kHz ); for( j = 0; j < length_d_comp; j++ ) { d = d_comp[ j ]; basis_ptr = target_ptr - d; cross_corr = silk_inner_product_FLP( basis_ptr, target_ptr, sf_length_8kHz ); energy = silk_energy_FLP( basis_ptr, sf_length_8kHz ); if (cross_corr > 0.0f) { C[ k ][ d ] = (SKP_float)(cross_corr * cross_corr / (energy * energy_tmp + eps)); } else { C[ k ][ d ] = 0.0f; } } target_ptr += sf_length_8kHz; } /* search over lag range and lags codebook */ /* scale factor for lag codebook, as a function of center lag */ CCmax = 0.0f; /* This value doesn't matter */ CCmax_b = -1000.0f; CBimax = 0; /* To avoid returning undefined lag values */ lag = -1; /* To check if lag with strong enough correlation has been found */ if( prevLag > 0 ) { if( Fs_kHz == 12 ) { prevLag = SKP_LSHIFT( prevLag, 1 ) / 3; } else if( Fs_kHz == 16 ) { prevLag = SKP_RSHIFT( prevLag, 1 ); } prevLag_log2 = silk_log2((SKP_float)prevLag); } else { prevLag_log2 = 0; } /* Setup stage 2 codebook based on number of subframes */ if( nb_subfr == PE_MAX_NB_SUBFR ) { cbk_size = PE_NB_CBKS_STAGE2_EXT; Lag_CB_ptr = &silk_CB_lags_stage2[ 0 ][ 0 ]; if( Fs_kHz == 8 && complexity > SigProc_PE_MIN_COMPLEX ) { /* If input is 8 khz use a larger codebook here because it is last stage */ nb_cbk_search = PE_NB_CBKS_STAGE2_EXT; } else { nb_cbk_search = PE_NB_CBKS_STAGE2; } } else { cbk_size = PE_NB_CBKS_STAGE2_10MS; Lag_CB_ptr = &silk_CB_lags_stage2_10_ms[ 0 ][ 0 ]; nb_cbk_search = PE_NB_CBKS_STAGE2_10MS; } for( k = 0; k < length_d_srch; k++ ) { d = d_srch[ k ]; for( j = 0; j < nb_cbk_search; j++ ) { CC[j] = 0.0f; for( i = 0; i < nb_subfr; i++ ) { /* Try all codebooks */ CC[ j ] += C[ i ][ d + matrix_ptr( Lag_CB_ptr, i, j, cbk_size )]; } } /* Find best codebook */ CCmax_new = -1000.0f; CBimax_new = 0; for( i = 0; i < nb_cbk_search; i++ ) { if( CC[ i ] > CCmax_new ) { CCmax_new = CC[ i ]; CBimax_new = i; } } CCmax_new = SKP_max_float(CCmax_new, 0.0f); /* To avoid taking square root of negative number later */ CCmax_new_b = CCmax_new; /* Bias towards shorter lags */ lag_log2 = silk_log2((SKP_float)d); CCmax_new_b -= PE_SHORTLAG_BIAS * nb_subfr * lag_log2; /* Bias towards previous lag */ if ( prevLag > 0 ) { delta_lag_log2_sqr = lag_log2 - prevLag_log2; delta_lag_log2_sqr *= delta_lag_log2_sqr; CCmax_new_b -= PE_PREVLAG_BIAS * nb_subfr * (*LTPCorr) * delta_lag_log2_sqr / (delta_lag_log2_sqr + 0.5f); } if ( CCmax_new_b > CCmax_b && /* Find maximum biased correlation */ CCmax_new > nb_subfr * search_thres2 * search_thres2 && /* Correlation needs to be high enough to be voiced */ silk_CB_lags_stage2[ 0 ][ CBimax_new ] <= min_lag_8kHz /* Lag must be in range */ ) { CCmax_b = CCmax_new_b; CCmax = CCmax_new; lag = d; CBimax = CBimax_new; } } if( lag == -1 ) { /* No suitable candidate found */ SKP_memset( pitch_out, 0, PE_MAX_NB_SUBFR * sizeof(opus_int) ); *LTPCorr = 0.0f; *lagIndex = 0; *contourIndex = 0; return 1; } if( Fs_kHz > 8 ) { /* Search in original signal */ /* Compensate for decimation */ SKP_assert( lag == SKP_SAT16( lag ) ); if( Fs_kHz == 12 ) { lag = SKP_RSHIFT_ROUND( SKP_SMULBB( lag, 3 ), 1 ); } else if( Fs_kHz == 16 ) { lag = SKP_LSHIFT( lag, 1 ); } else { lag = SKP_SMULBB( lag, 3 ); } lag = SKP_LIMIT_int( lag, min_lag, max_lag ); start_lag = SKP_max_int( lag - 2, min_lag ); end_lag = SKP_min_int( lag + 2, max_lag ); lag_new = lag; /* to avoid undefined lag */ CBimax = 0; /* to avoid undefined lag */ SKP_assert( CCmax >= 0.0f ); *LTPCorr = (SKP_float)sqrt( CCmax / nb_subfr ); /* Output normalized correlation */ CCmax = -1000.0f; /* Calculate the correlations and energies needed in stage 3 */ silk_P_Ana_calc_corr_st3( cross_corr_st3, frame, start_lag, sf_length, nb_subfr, complexity ); silk_P_Ana_calc_energy_st3( energies_st3, frame, start_lag, sf_length, nb_subfr, complexity ); lag_counter = 0; SKP_assert( lag == SKP_SAT16( lag ) ); contour_bias = PE_FLATCONTOUR_BIAS / lag; /* Setup cbk parameters acording to complexity setting and frame length */ if( nb_subfr == PE_MAX_NB_SUBFR ) { nb_cbk_search = (opus_int)silk_nb_cbk_searchs_stage3[ complexity ]; cbk_size = PE_NB_CBKS_STAGE3_MAX; Lag_CB_ptr = &silk_CB_lags_stage3[ 0 ][ 0 ]; } else { nb_cbk_search = PE_NB_CBKS_STAGE3_10MS; cbk_size = PE_NB_CBKS_STAGE3_10MS; Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ]; } for( d = start_lag; d <= end_lag; d++ ) { for( j = 0; j < nb_cbk_search; j++ ) { cross_corr = 0.0; energy = eps; for( k = 0; k < nb_subfr; k++ ) { energy += energies_st3[ k ][ j ][ lag_counter ]; cross_corr += cross_corr_st3[ k ][ j ][ lag_counter ]; } if( cross_corr > 0.0 ) { CCmax_new = (SKP_float)(cross_corr * cross_corr / energy); /* Reduce depending on flatness of contour */ CCmax_new *= 1.0f - contour_bias * j; } else { CCmax_new = 0.0f; } if( CCmax_new > CCmax && ( d + (opus_int)silk_CB_lags_stage3[ 0 ][ j ] ) <= max_lag ) { CCmax = CCmax_new; lag_new = d; CBimax = j; } } lag_counter++; } for( k = 0; k < nb_subfr; k++ ) { pitch_out[ k ] = lag_new + matrix_ptr( Lag_CB_ptr, k, CBimax, cbk_size ); } *lagIndex = (opus_int16)( lag_new - min_lag ); *contourIndex = (opus_int8)CBimax; } else { /* Save Lags and correlation */ SKP_assert( CCmax >= 0.0f ); *LTPCorr = (SKP_float)sqrt( CCmax / nb_subfr ); /* Output normalized correlation */ for( k = 0; k < nb_subfr; k++ ) { pitch_out[ k ] = lag + matrix_ptr( Lag_CB_ptr, k, CBimax, cbk_size ); } *lagIndex = (opus_int16)( lag - min_lag ); *contourIndex = (opus_int8)CBimax; } SKP_assert( *lagIndex >= 0 ); /* return as voiced */ return 0; } static void silk_P_Ana_calc_corr_st3( SKP_float cross_corr_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ], /* O 3 DIM correlation array */ const SKP_float frame[], /* I vector to correlate */ opus_int start_lag, /* I start lag */ opus_int sf_length, /* I sub frame length */ opus_int nb_subfr, /* I number of subframes */ opus_int complexity /* I Complexity setting */ ) /*********************************************************************** Calculates the correlations used in stage 3 search. In order to cover the whole lag codebook for all the searched offset lags (lag +- 2), the following correlations are needed in each sub frame: sf1: lag range [-8,...,7] total 16 correlations sf2: lag range [-4,...,4] total 9 correlations sf3: lag range [-3,....4] total 8 correltions sf4: lag range [-6,....8] total 15 correlations In total 48 correlations. The direct implementation computed in worst case 4*12*5 = 240 correlations, but more likely around 120. **********************************************************************/ { const SKP_float *target_ptr, *basis_ptr; opus_int i, j, k, lag_counter, lag_low, lag_high; opus_int nb_cbk_search, delta, idx, cbk_size; SKP_float scratch_mem[ SCRATCH_SIZE ]; const opus_int8 *Lag_range_ptr, *Lag_CB_ptr; SKP_assert( complexity >= SigProc_PE_MIN_COMPLEX ); SKP_assert( complexity <= SigProc_PE_MAX_COMPLEX ); if( nb_subfr == PE_MAX_NB_SUBFR ){ Lag_range_ptr = &silk_Lag_range_stage3[ complexity ][ 0 ][ 0 ]; Lag_CB_ptr = &silk_CB_lags_stage3[ 0 ][ 0 ]; nb_cbk_search = silk_nb_cbk_searchs_stage3[ complexity ]; cbk_size = PE_NB_CBKS_STAGE3_MAX; } else { SKP_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1); Lag_range_ptr = &silk_Lag_range_stage3_10_ms[ 0 ][ 0 ]; Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ]; nb_cbk_search = PE_NB_CBKS_STAGE3_10MS; cbk_size = PE_NB_CBKS_STAGE3_10MS; } target_ptr = &frame[ SKP_LSHIFT( sf_length, 2 ) ]; /* Pointer to middle of frame */ for( k = 0; k < nb_subfr; k++ ) { lag_counter = 0; /* Calculate the correlations for each subframe */ lag_low = matrix_ptr( Lag_range_ptr, k, 0, 2 ); lag_high = matrix_ptr( Lag_range_ptr, k, 1, 2 ); for( j = lag_low; j <= lag_high; j++ ) { basis_ptr = target_ptr - ( start_lag + j ); SKP_assert( lag_counter < SCRATCH_SIZE ); scratch_mem[ lag_counter ] = (SKP_float)silk_inner_product_FLP( target_ptr, basis_ptr, sf_length ); lag_counter++; } delta = matrix_ptr( Lag_range_ptr, k, 0, 2 ); for( i = 0; i < nb_cbk_search; i++ ) { /* Fill out the 3 dim array that stores the correlations for */ /* each code_book vector for each start lag */ idx = matrix_ptr( Lag_CB_ptr, k, i, cbk_size ) - delta; for( j = 0; j < PE_NB_STAGE3_LAGS; j++ ) { SKP_assert( idx + j < SCRATCH_SIZE ); SKP_assert( idx + j < lag_counter ); cross_corr_st3[ k ][ i ][ j ] = scratch_mem[ idx + j ]; } } target_ptr += sf_length; } } static void silk_P_Ana_calc_energy_st3( SKP_float energies_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ], /* O 3 DIM correlation array */ const SKP_float frame[], /* I vector to correlate */ opus_int start_lag, /* I start lag */ opus_int sf_length, /* I sub frame length */ opus_int nb_subfr, /* I number of subframes */ opus_int complexity /* I Complexity setting */ ) /**************************************************************** Calculate the energies for first two subframes. The energies are calculated recursively. ****************************************************************/ { const SKP_float *target_ptr, *basis_ptr; double energy; opus_int k, i, j, lag_counter; opus_int nb_cbk_search, delta, idx, cbk_size, lag_diff; SKP_float scratch_mem[ SCRATCH_SIZE ]; const opus_int8 *Lag_range_ptr, *Lag_CB_ptr; SKP_assert( complexity >= SigProc_PE_MIN_COMPLEX ); SKP_assert( complexity <= SigProc_PE_MAX_COMPLEX ); if( nb_subfr == PE_MAX_NB_SUBFR ){ Lag_range_ptr = &silk_Lag_range_stage3[ complexity ][ 0 ][ 0 ]; Lag_CB_ptr = &silk_CB_lags_stage3[ 0 ][ 0 ]; nb_cbk_search = silk_nb_cbk_searchs_stage3[ complexity ]; cbk_size = PE_NB_CBKS_STAGE3_MAX; } else { SKP_assert( nb_subfr == PE_MAX_NB_SUBFR >> 1); Lag_range_ptr = &silk_Lag_range_stage3_10_ms[ 0 ][ 0 ]; Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ]; nb_cbk_search = PE_NB_CBKS_STAGE3_10MS; cbk_size = PE_NB_CBKS_STAGE3_10MS; } target_ptr = &frame[ SKP_LSHIFT( sf_length, 2 ) ]; for( k = 0; k < nb_subfr; k++ ) { lag_counter = 0; /* Calculate the energy for first lag */ basis_ptr = target_ptr - ( start_lag + matrix_ptr( Lag_range_ptr, k, 0, 2 ) ); energy = silk_energy_FLP( basis_ptr, sf_length ) + 1e-3; SKP_assert( energy >= 0.0 ); scratch_mem[lag_counter] = (SKP_float)energy; lag_counter++; lag_diff = ( matrix_ptr( Lag_range_ptr, k, 1, 2 ) - matrix_ptr( Lag_range_ptr, k, 0, 2 ) + 1 ); for( i = 1; i < lag_diff; i++ ) { /* remove part outside new window */ energy -= basis_ptr[sf_length - i] * basis_ptr[sf_length - i]; SKP_assert( energy >= 0.0 ); /* add part that comes into window */ energy += basis_ptr[ -i ] * basis_ptr[ -i ]; SKP_assert( energy >= 0.0 ); SKP_assert( lag_counter < SCRATCH_SIZE ); scratch_mem[lag_counter] = (SKP_float)energy; lag_counter++; } delta = matrix_ptr( Lag_range_ptr, k, 0, 2 ); for( i = 0; i < nb_cbk_search; i++ ) { /* Fill out the 3 dim array that stores the correlations for */ /* each code_book vector for each start lag */ idx = matrix_ptr( Lag_CB_ptr, k, i, cbk_size ) - delta; for( j = 0; j < PE_NB_STAGE3_LAGS; j++ ) { SKP_assert( idx + j < SCRATCH_SIZE ); SKP_assert( idx + j < lag_counter ); energies_st3[ k ][ i ][ j ] = scratch_mem[ idx + j ]; SKP_assert( energies_st3[ k ][ i ][ j ] >= 0.0f ); } } target_ptr += sf_length; } }