ref: 8cb54e11ca0663206fec0f9e36c07260f83fdf95
dir: /silk/float/silk_burg_modified_FLP.c/
/*********************************************************************** Copyright (c) 2006-2011, Skype Limited. All rights reserved. Redistribution and use in source and binary forms, with or without modification, (subject to the limitations in the disclaimer below) are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of Skype Limited, nor the names of specific contributors, may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***********************************************************************/ #include "silk_SigProc_FLP.h" #define MAX_FRAME_SIZE 384 // subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384 #define MAX_NB_SUBFR 4 /* Compute reflection coefficients from input signal */ SKP_float silk_burg_modified_FLP( /* O returns residual energy */ SKP_float A[], /* O prediction coefficients (length order) */ const SKP_float x[], /* I input signal, length: nb_subfr*(D+L_sub) */ const SKP_int subfr_length, /* I input signal subframe length (including D preceeding samples) */ const SKP_int nb_subfr, /* I number of subframes stacked in x */ const SKP_float WhiteNoiseFrac, /* I fraction added to zero-lag autocorrelation */ const SKP_int D /* I order */ ) { SKP_int k, n, s; double C0, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2; const SKP_float *x_ptr; double C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORDER_LPC ]; double CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1 ]; double Af[ SILK_MAX_ORDER_LPC ]; SKP_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); SKP_assert( nb_subfr <= MAX_NB_SUBFR ); /* Compute autocorrelations, added over subframes */ C0 = silk_energy_FLP( x, nb_subfr * subfr_length ); SKP_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) ); for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; for( n = 1; n < D + 1; n++ ) { C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, subfr_length - n ); } } SKP_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double ) ); /* Initialize */ CAb[ 0 ] = CAf[ 0 ] = C0 + WhiteNoiseFrac * C0 + 1e-9f; for( n = 0; n < D; n++ ) { /* Update first row of correlation matrix (without first element) */ /* Update last row of correlation matrix (without last element, stored in reversed order) */ /* Update C * Af */ /* Update C * flipud(Af) (stored in reversed order) */ for( s = 0; s < nb_subfr; s++ ) { x_ptr = x + s * subfr_length; tmp1 = x_ptr[ n ]; tmp2 = x_ptr[ subfr_length - n - 1 ]; for( k = 0; k < n; k++ ) { C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ]; C_last_row[ k ] -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr_length - n + k ]; Atmp = Af[ k ]; tmp1 += x_ptr[ n - k - 1 ] * Atmp; tmp2 += x_ptr[ subfr_length - n + k ] * Atmp; } for( k = 0; k <= n; k++ ) { CAf[ k ] -= tmp1 * x_ptr[ n - k ]; CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ]; } } tmp1 = C_first_row[ n ]; tmp2 = C_last_row[ n ]; for( k = 0; k < n; k++ ) { Atmp = Af[ k ]; tmp1 += C_last_row[ n - k - 1 ] * Atmp; tmp2 += C_first_row[ n - k - 1 ] * Atmp; } CAf[ n + 1 ] = tmp1; CAb[ n + 1 ] = tmp2; /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */ num = CAb[ n + 1 ]; nrg_b = CAb[ 0 ]; nrg_f = CAf[ 0 ]; for( k = 0; k < n; k++ ) { Atmp = Af[ k ]; num += CAb[ n - k ] * Atmp; nrg_b += CAb[ k + 1 ] * Atmp; nrg_f += CAf[ k + 1 ] * Atmp; } SKP_assert( nrg_f > 0.0 ); SKP_assert( nrg_b > 0.0 ); /* Calculate the next order reflection (parcor) coefficient */ rc = -2.0 * num / ( nrg_f + nrg_b ); SKP_assert( rc > -1.0 && rc < 1.0 ); /* Update the AR coefficients */ for( k = 0; k < (n + 1) >> 1; k++ ) { tmp1 = Af[ k ]; tmp2 = Af[ n - k - 1 ]; Af[ k ] = tmp1 + rc * tmp2; Af[ n - k - 1 ] = tmp2 + rc * tmp1; } Af[ n ] = rc; /* Update C * Af and C * Ab */ for( k = 0; k <= n + 1; k++ ) { tmp1 = CAf[ k ]; CAf[ k ] += rc * CAb[ n - k + 1 ]; CAb[ n - k + 1 ] += rc * tmp1; } } /* Return residual energy */ nrg_f = CAf[ 0 ]; tmp1 = 1.0; for( k = 0; k < D; k++ ) { Atmp = Af[ k ]; nrg_f += CAf[ k + 1 ] * Atmp; tmp1 += Atmp * Atmp; A[ k ] = (SKP_float)(-Atmp); } nrg_f -= WhiteNoiseFrac * C0 * tmp1; return (SKP_float)nrg_f; }