shithub: opus

ref: 8365b5d00df0d1129a30550f451fb62a24e1bc00
dir: /silk/fixed/burg_modified_FIX.c/

View raw version
/***********************************************************************
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, (subject to the limitations in the disclaimer below)
are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Skype Limited, nor the names of specific
contributors, may be used to endorse or promote products derived from
this software without specific prior written permission.
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED
BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "SigProc_FIX.h"
#include "define.h"
#include "tuning_parameters.h"

#define MAX_FRAME_SIZE              384             /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384 */

#define QA                          25
#define N_BITS_HEAD_ROOM            2
#define MIN_RSHIFTS                 -16
#define MAX_RSHIFTS                 (32 - QA)

/* Compute reflection coefficients from input signal */
void silk_burg_modified(
    opus_int32                  *res_nrg,           /* O    Residual energy                                             */
    opus_int                    *res_nrg_Q,         /* O    Residual energy Q value                                     */
    opus_int32                  A_Q16[],            /* O    Prediction coefficients (length order)                      */
    const opus_int16            x[],                /* I    Input signal, length: nb_subfr * ( D + subfr_length )       */
    const opus_int32            minInvGain_Q30,     /* I    Inverse of max prediction gain                              */
    const opus_int              subfr_length,       /* I    Input signal subframe length (incl. D preceeding samples)   */
    const opus_int              nb_subfr,           /* I    Number of subframes stacked in x                            */
    const opus_int              D                   /* I    Order                                                       */
)
{
    opus_int         k, n, s, lz, rshifts, rshifts_extra, reached_max_gain;
    opus_int32       C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2;
    const opus_int16 *x_ptr;
    opus_int32       C_first_row[ SILK_MAX_ORDER_LPC ];
    opus_int32       C_last_row[  SILK_MAX_ORDER_LPC ];
    opus_int32       Af_QA[       SILK_MAX_ORDER_LPC ];
    opus_int32       CAf[ SILK_MAX_ORDER_LPC + 1 ];
    opus_int32       CAb[ SILK_MAX_ORDER_LPC + 1 ];

    silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );

    /* Compute autocorrelations, added over subframes */
    silk_sum_sqr_shift( &C0, &rshifts, x, nb_subfr * subfr_length );
    if( rshifts > MAX_RSHIFTS ) {
        C0 = silk_LSHIFT32( C0, rshifts - MAX_RSHIFTS );
        silk_assert( C0 > 0 );
        rshifts = MAX_RSHIFTS;
    } else {
        lz = silk_CLZ32( C0 ) - 1;
        rshifts_extra = N_BITS_HEAD_ROOM - lz;
        if( rshifts_extra > 0 ) {
            rshifts_extra = silk_min( rshifts_extra, MAX_RSHIFTS - rshifts );
            C0 = silk_RSHIFT32( C0, rshifts_extra );
        } else {
            rshifts_extra = silk_max( rshifts_extra, MIN_RSHIFTS - rshifts );
            C0 = silk_LSHIFT32( C0, -rshifts_extra );
        }
        rshifts += rshifts_extra;
    }
    CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1;                                /* Q(-rshifts) */
    silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
    if( rshifts > 0 ) {
        for( s = 0; s < nb_subfr; s++ ) {
            x_ptr = x + s * subfr_length;
            for( n = 1; n < D + 1; n++ ) {
                C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64(
                    silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n ), rshifts );
            }
        }
    } else {
        for( s = 0; s < nb_subfr; s++ ) {
            x_ptr = x + s * subfr_length;
            for( n = 1; n < D + 1; n++ ) {
                C_first_row[ n - 1 ] += silk_LSHIFT32(
                    silk_inner_prod_aligned( x_ptr, x_ptr + n, subfr_length - n ), -rshifts );
            }
        }
    }
    silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );

    /* Initialize */
    CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1;                                /* Q(-rshifts) */

    invGain_Q30 = 1 << 30;
    reached_max_gain = 0;
    for( n = 0; n < D; n++ ) {
        /* Update first row of correlation matrix (without first element) */
        /* Update last row of correlation matrix (without last element, stored in reversed order) */
        /* Update C * Af */
        /* Update C * flipud(Af) (stored in reversed order) */
        if( rshifts > -2 ) {
            for( s = 0; s < nb_subfr; s++ ) {
                x_ptr = x + s * subfr_length;
                x1  = -silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    16 - rshifts );        /* Q(16-rshifts) */
                x2  = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts );        /* Q(16-rshifts) */
                tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    QA - 16 );             /* Q(QA-16) */
                tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 );             /* Q(QA-16) */
                for( k = 0; k < n; k++ ) {
                    C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ]            ); /* Q( -rshifts ) */
                    C_last_row[ k ]  = silk_SMLAWB( C_last_row[ k ],  x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
                    Atmp_QA = Af_QA[ k ];
                    tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ]            );                 /* Q(QA-16) */
                    tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] );                 /* Q(QA-16) */
                }
                tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts );                                       /* Q(16-rshifts) */
                tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts );                                       /* Q(16-rshifts) */
                for( k = 0; k <= n; k++ ) {
                    CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ]                    );        /* Q( -rshift ) */
                    CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] );        /* Q( -rshift ) */
                }
            }
        } else {
            for( s = 0; s < nb_subfr; s++ ) {
                x_ptr = x + s * subfr_length;
                x1  = -silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    -rshifts );            /* Q( -rshifts ) */
                x2  = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts );            /* Q( -rshifts ) */
                tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    17 );                  /* Q17 */
                tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 );                  /* Q17 */
                for( k = 0; k < n; k++ ) {
                    C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ]            ); /* Q( -rshifts ) */
                    C_last_row[ k ]  = silk_MLA( C_last_row[ k ],  x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
                    Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 );                                   /* Q17 */
                    tmp1 = silk_MLA( tmp1, x_ptr[ n - k - 1 ],            Atmp1 );                      /* Q17 */
                    tmp2 = silk_MLA( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 );                      /* Q17 */
                }
                tmp1 = -tmp1;                                                                           /* Q17 */
                tmp2 = -tmp2;                                                                           /* Q17 */
                for( k = 0; k <= n; k++ ) {
                    CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1,
                        silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) );                    /* Q( -rshift ) */
                    CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2,
                        silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift ) */
                }
            }
        }

        /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
        tmp1 = C_first_row[ n ];                                                                        /* Q( -rshifts ) */
        tmp2 = C_last_row[ n ];                                                                         /* Q( -rshifts ) */
        num  = 0;                                                                                       /* Q( -rshifts ) */
        nrg  = silk_ADD32( CAb[ 0 ], CAf[ 0 ] );                                                        /* Q( 1-rshifts ) */
        for( k = 0; k < n; k++ ) {
            Atmp_QA = Af_QA[ k ];
            lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1;
            lz = silk_min( 32 - QA, lz );
            Atmp1 = silk_LSHIFT32( Atmp_QA, lz );                                                       /* Q( QA + lz ) */

            tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[  n - k - 1 ], Atmp1 ), 32 - QA - lz );  /* Q( -rshifts ) */
            tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz );  /* Q( -rshifts ) */
            num  = silk_ADD_LSHIFT32( num,  silk_SMMUL( CAb[ n - k ],             Atmp1 ), 32 - QA - lz );  /* Q( -rshifts ) */
            nrg  = silk_ADD_LSHIFT32( nrg,  silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ),
                                                                                Atmp1 ), 32 - QA - lz );    /* Q( 1-rshifts ) */
        }
        CAf[ n + 1 ] = tmp1;                                                                            /* Q( -rshifts ) */
        CAb[ n + 1 ] = tmp2;                                                                            /* Q( -rshifts ) */
        num = silk_ADD32( num, tmp2 );                                                                  /* Q( -rshifts ) */
        num = silk_LSHIFT32( -num, 1 );                                                                 /* Q( 1-rshifts ) */

        /* Calculate the next order reflection (parcor) coefficient */
        if( silk_abs( num ) < nrg ) {
            rc_Q31 = silk_DIV32_varQ( num, nrg, 31 );
        } else {
            rc_Q31 = ( num > 0 ) ? silk_int32_MAX : silk_int32_MIN;
        }

        /* Update inverse prediction gain */
        tmp1 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 );
        tmp1 = silk_LSHIFT( silk_SMMUL( invGain_Q30, tmp1 ), 2 );
        if( tmp1 <= minInvGain_Q30 ) {
            /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
            tmp2 = ( 1 << 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 );            /* Q30 */
            rc_Q31 = silk_SQRT_APPROX( tmp2 );                                                  /* Q15 */
            /* Newton-Raphson iteration */
            rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 );                   /* Q15 */
            rc_Q31 = silk_LSHIFT32( rc_Q31, 16 );                                               /* Q31 */
            if( num < 0 ) {
                /* Ensure adjusted reflection coefficients has the original sign */
                rc_Q31 = -rc_Q31;
            }
            invGain_Q30 = minInvGain_Q30;
            reached_max_gain = 1;
        } else {
            invGain_Q30 = tmp1;
        }

        /* Update the AR coefficients */
        for( k = 0; k < (n + 1) >> 1; k++ ) {
            tmp1 = Af_QA[ k ];                                                                  /* QA */
            tmp2 = Af_QA[ n - k - 1 ];                                                          /* QA */
            Af_QA[ k ]         = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 );      /* QA */
            Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 );      /* QA */
        }
        Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA );                                          /* QA */

        if( reached_max_gain ) {
            /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
            for( k = n + 1; k < D; k++ ) {
                Af_QA[ k ] = 0;
            }
            break;
        }

        /* Update C * Af and C * Ab */
        for( k = 0; k <= n + 1; k++ ) {
            tmp1 = CAf[ k ];                                                                    /* Q( -rshifts ) */
            tmp2 = CAb[ n - k + 1 ];                                                            /* Q( -rshifts ) */
            CAf[ k ]         = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 );        /* Q( -rshifts ) */
            CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 );        /* Q( -rshifts ) */
        }
    }

    if( reached_max_gain ) {
        for( k = 0; k < D; k++ ) {
            /* Scale coefficients */
            A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );
        }
        /* Subtract energy of preceeding samples from C0 */
        if( rshifts > 0 ) {
            for( s = 0; s < nb_subfr; s++ ) {
                x_ptr = x + s * subfr_length;
                C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr, D ), rshifts );
            }
        } else {
            for( s = 0; s < nb_subfr; s++ ) {
                x_ptr = x + s * subfr_length;
                C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D ), -rshifts );
            }
        }
        /* Approximate residual energy */
        *res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 );
        *res_nrg_Q = -rshifts;
    } else {
        /* Return residual energy */
        nrg  = CAf[ 0 ];                                                                            /* Q( -rshifts ) */
        tmp1 = 1 << 16;                                                                             /* Q16 */
        for( k = 0; k < D; k++ ) {
            Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );                                       /* Q16 */
            nrg  = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 );                                         /* Q( -rshifts ) */
            tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 );                                               /* Q16 */
            A_Q16[ k ] = -Atmp1;
        }
        *res_nrg = silk_SMLAWW( nrg, silk_SMMUL( FIND_LPC_COND_FAC, C0 ), -tmp1 );                  /* Q( -rshifts ) */
        *res_nrg_Q = -rshifts;
    }   
}