ref: 812ae3fb5c589aaafe761b8ebf86bcbbb8f0ed76
dir: /celt/kiss_fft.c/
/*Copyright (c) 2003-2004, Mark Borgerding Lots of modifications by Jean-Marc Valin Copyright (c) 2005-2007, Xiph.Org Foundation Copyright (c) 2008, Xiph.Org Foundation, CSIRO All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.*/ /* This code is originally from Mark Borgerding's KISS-FFT but has been heavily modified to better suit Opus */ #ifndef SKIP_CONFIG_H # ifdef HAVE_CONFIG_H # include "config.h" # endif #endif #include "_kiss_fft_guts.h" #include "arch.h" #include "os_support.h" #include "mathops.h" #include "stack_alloc.h" /* The guts header contains all the multiplication and addition macros that are defined for complex numbers. It also delares the kf_ internal functions. */ static void kf_bfly2( kiss_fft_cpx * Fout, int m, int N ) { kiss_fft_cpx * Fout2; int i; (void)m; #ifdef CUSTOM_MODES if (m==1) { celt_assert(m==1); for (i=0;i<N;i++) { kiss_fft_cpx t; Fout2 = Fout + 1; t = *Fout2; C_SUB( *Fout2 , *Fout , t ); C_ADDTO( *Fout , t ); Fout += 2; } } else #endif { opus_val16 tw; tw = QCONST16(0.7071067812f, 15); /* We know that m==4 here because the radix-2 is just after a radix-4 */ celt_assert(m==4); for (i=0;i<N;i++) { kiss_fft_cpx t; Fout2 = Fout + 4; t = Fout2[0]; C_SUB( Fout2[0] , Fout[0] , t ); C_ADDTO( Fout[0] , t ); t.r = S_MUL(ADD32_ovflw(Fout2[1].r, Fout2[1].i), tw); t.i = S_MUL(SUB32_ovflw(Fout2[1].i, Fout2[1].r), tw); C_SUB( Fout2[1] , Fout[1] , t ); C_ADDTO( Fout[1] , t ); t.r = Fout2[2].i; t.i = -Fout2[2].r; C_SUB( Fout2[2] , Fout[2] , t ); C_ADDTO( Fout[2] , t ); t.r = S_MUL(SUB32_ovflw(Fout2[3].i, Fout2[3].r), tw); t.i = S_MUL(NEG32_ovflw(ADD32_ovflw(Fout2[3].i, Fout2[3].r)), tw); C_SUB( Fout2[3] , Fout[3] , t ); C_ADDTO( Fout[3] , t ); Fout += 8; } } } static void kf_bfly4( kiss_fft_cpx * Fout, const size_t fstride, const kiss_fft_state *st, int m, int N, int mm ) { int i; if (m==1) { /* Degenerate case where all the twiddles are 1. */ for (i=0;i<N;i++) { kiss_fft_cpx scratch0, scratch1; C_SUB( scratch0 , *Fout, Fout[2] ); C_ADDTO(*Fout, Fout[2]); C_ADD( scratch1 , Fout[1] , Fout[3] ); C_SUB( Fout[2], *Fout, scratch1 ); C_ADDTO( *Fout , scratch1 ); C_SUB( scratch1 , Fout[1] , Fout[3] ); Fout[1].r = ADD32_ovflw(scratch0.r, scratch1.i); Fout[1].i = SUB32_ovflw(scratch0.i, scratch1.r); Fout[3].r = SUB32_ovflw(scratch0.r, scratch1.i); Fout[3].i = ADD32_ovflw(scratch0.i, scratch1.r); Fout+=4; } } else { int j; kiss_fft_cpx scratch[6]; const kiss_twiddle_cpx *tw1,*tw2,*tw3; const int m2=2*m; const int m3=3*m; kiss_fft_cpx * Fout_beg = Fout; for (i=0;i<N;i++) { Fout = Fout_beg + i*mm; tw3 = tw2 = tw1 = st->twiddles; /* m is guaranteed to be a multiple of 4. */ for (j=0;j<m;j++) { C_MUL(scratch[0],Fout[m] , *tw1 ); C_MUL(scratch[1],Fout[m2] , *tw2 ); C_MUL(scratch[2],Fout[m3] , *tw3 ); C_SUB( scratch[5] , *Fout, scratch[1] ); C_ADDTO(*Fout, scratch[1]); C_ADD( scratch[3] , scratch[0] , scratch[2] ); C_SUB( scratch[4] , scratch[0] , scratch[2] ); C_SUB( Fout[m2], *Fout, scratch[3] ); tw1 += fstride; tw2 += fstride*2; tw3 += fstride*3; C_ADDTO( *Fout , scratch[3] ); Fout[m].r = ADD32_ovflw(scratch[5].r, scratch[4].i); Fout[m].i = SUB32_ovflw(scratch[5].i, scratch[4].r); Fout[m3].r = SUB32_ovflw(scratch[5].r, scratch[4].i); Fout[m3].i = ADD32_ovflw(scratch[5].i, scratch[4].r); ++Fout; } } } } #ifndef RADIX_TWO_ONLY static void kf_bfly3( kiss_fft_cpx * Fout, const size_t fstride, const kiss_fft_state *st, int m, int N, int mm ) { int i; size_t k; const size_t m2 = 2*m; const kiss_twiddle_cpx *tw1,*tw2; kiss_fft_cpx scratch[5]; kiss_twiddle_cpx epi3; kiss_fft_cpx * Fout_beg = Fout; #ifdef FIXED_POINT /*epi3.r = -16384;*/ /* Unused */ epi3.i = -28378; #else epi3 = st->twiddles[fstride*m]; #endif for (i=0;i<N;i++) { Fout = Fout_beg + i*mm; tw1=tw2=st->twiddles; /* For non-custom modes, m is guaranteed to be a multiple of 4. */ k=m; do { C_MUL(scratch[1],Fout[m] , *tw1); C_MUL(scratch[2],Fout[m2] , *tw2); C_ADD(scratch[3],scratch[1],scratch[2]); C_SUB(scratch[0],scratch[1],scratch[2]); tw1 += fstride; tw2 += fstride*2; Fout[m].r = SUB32_ovflw(Fout->r, HALF_OF(scratch[3].r)); Fout[m].i = SUB32_ovflw(Fout->i, HALF_OF(scratch[3].i)); C_MULBYSCALAR( scratch[0] , epi3.i ); C_ADDTO(*Fout,scratch[3]); Fout[m2].r = ADD32_ovflw(Fout[m].r, scratch[0].i); Fout[m2].i = SUB32_ovflw(Fout[m].i, scratch[0].r); Fout[m].r = SUB32_ovflw(Fout[m].r, scratch[0].i); Fout[m].i = ADD32_ovflw(Fout[m].i, scratch[0].r); ++Fout; } while(--k); } } #ifndef OVERRIDE_kf_bfly5 static void kf_bfly5( kiss_fft_cpx * Fout, const size_t fstride, const kiss_fft_state *st, int m, int N, int mm ) { kiss_fft_cpx *Fout0,*Fout1,*Fout2,*Fout3,*Fout4; int i, u; kiss_fft_cpx scratch[13]; const kiss_twiddle_cpx *tw; kiss_twiddle_cpx ya,yb; kiss_fft_cpx * Fout_beg = Fout; #ifdef FIXED_POINT ya.r = 10126; ya.i = -31164; yb.r = -26510; yb.i = -19261; #else ya = st->twiddles[fstride*m]; yb = st->twiddles[fstride*2*m]; #endif tw=st->twiddles; for (i=0;i<N;i++) { Fout = Fout_beg + i*mm; Fout0=Fout; Fout1=Fout0+m; Fout2=Fout0+2*m; Fout3=Fout0+3*m; Fout4=Fout0+4*m; /* For non-custom modes, m is guaranteed to be a multiple of 4. */ for ( u=0; u<m; ++u ) { scratch[0] = *Fout0; C_MUL(scratch[1] ,*Fout1, tw[u*fstride]); C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]); C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]); C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]); C_ADD( scratch[7],scratch[1],scratch[4]); C_SUB( scratch[10],scratch[1],scratch[4]); C_ADD( scratch[8],scratch[2],scratch[3]); C_SUB( scratch[9],scratch[2],scratch[3]); Fout0->r = ADD32_ovflw(Fout0->r, ADD32_ovflw(scratch[7].r, scratch[8].r)); Fout0->i = ADD32_ovflw(Fout0->i, ADD32_ovflw(scratch[7].i, scratch[8].i)); scratch[5].r = ADD32_ovflw(scratch[0].r, ADD32_ovflw(S_MUL(scratch[7].r,ya.r), S_MUL(scratch[8].r,yb.r))); scratch[5].i = ADD32_ovflw(scratch[0].i, ADD32_ovflw(S_MUL(scratch[7].i,ya.r), S_MUL(scratch[8].i,yb.r))); scratch[6].r = ADD32_ovflw(S_MUL(scratch[10].i,ya.i), S_MUL(scratch[9].i,yb.i)); scratch[6].i = NEG32_ovflw(ADD32_ovflw(S_MUL(scratch[10].r,ya.i), S_MUL(scratch[9].r,yb.i))); C_SUB(*Fout1,scratch[5],scratch[6]); C_ADD(*Fout4,scratch[5],scratch[6]); scratch[11].r = ADD32_ovflw(scratch[0].r, ADD32_ovflw(S_MUL(scratch[7].r,yb.r), S_MUL(scratch[8].r,ya.r))); scratch[11].i = ADD32_ovflw(scratch[0].i, ADD32_ovflw(S_MUL(scratch[7].i,yb.r), S_MUL(scratch[8].i,ya.r))); scratch[12].r = SUB32_ovflw(S_MUL(scratch[9].i,ya.i), S_MUL(scratch[10].i,yb.i)); scratch[12].i = SUB32_ovflw(S_MUL(scratch[10].r,yb.i), S_MUL(scratch[9].r,ya.i)); C_ADD(*Fout2,scratch[11],scratch[12]); C_SUB(*Fout3,scratch[11],scratch[12]); ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4; } } } #endif /* OVERRIDE_kf_bfly5 */ #endif #ifdef CUSTOM_MODES static void compute_bitrev_table( int Fout, opus_int16 *f, const size_t fstride, int in_stride, opus_int16 * factors, const kiss_fft_state *st ) { const int p=*factors++; /* the radix */ const int m=*factors++; /* stage's fft length/p */ /*printf ("fft %d %d %d %d %d %d\n", p*m, m, p, s2, fstride*in_stride, N);*/ if (m==1) { int j; for (j=0;j<p;j++) { *f = Fout+j; f += fstride*in_stride; } } else { int j; for (j=0;j<p;j++) { compute_bitrev_table( Fout , f, fstride*p, in_stride, factors,st); f += fstride*in_stride; Fout += m; } } } /* facbuf is populated by p1,m1,p2,m2, ... where p[i] * m[i] = m[i-1] m0 = n */ static int kf_factor(int n,opus_int16 * facbuf) { int p=4; int i; int stages=0; int nbak = n; /*factor out powers of 4, powers of 2, then any remaining primes */ do { while (n % p) { switch (p) { case 4: p = 2; break; case 2: p = 3; break; default: p += 2; break; } if (p>32000 || (opus_int32)p*(opus_int32)p > n) p = n; /* no more factors, skip to end */ } n /= p; #ifdef RADIX_TWO_ONLY if (p!=2 && p != 4) #else if (p>5) #endif { return 0; } facbuf[2*stages] = p; if (p==2 && stages > 1) { facbuf[2*stages] = 4; facbuf[2] = 2; } stages++; } while (n > 1); n = nbak; /* Reverse the order to get the radix 4 at the end, so we can use the fast degenerate case. It turns out that reversing the order also improves the noise behaviour. */ for (i=0;i<stages/2;i++) { int tmp; tmp = facbuf[2*i]; facbuf[2*i] = facbuf[2*(stages-i-1)]; facbuf[2*(stages-i-1)] = tmp; } for (i=0;i<stages;i++) { n /= facbuf[2*i]; facbuf[2*i+1] = n; } return 1; } static void compute_twiddles(kiss_twiddle_cpx *twiddles, int nfft) { int i; #ifdef FIXED_POINT for (i=0;i<nfft;++i) { opus_val32 phase = -i; kf_cexp2(twiddles+i, DIV32(SHL32(phase,17),nfft)); } #else for (i=0;i<nfft;++i) { const double pi=3.14159265358979323846264338327; double phase = ( -2*pi /nfft ) * i; kf_cexp(twiddles+i, phase ); } #endif } int opus_fft_alloc_arch_c(kiss_fft_state *st) { (void)st; return 0; } /* * * Allocates all necessary storage space for the fft and ifft. * The return value is a contiguous block of memory. As such, * It can be freed with free(). * */ kiss_fft_state *opus_fft_alloc_twiddles(int nfft,void * mem,size_t * lenmem, const kiss_fft_state *base, int arch) { kiss_fft_state *st=NULL; size_t memneeded = sizeof(struct kiss_fft_state); /* twiddle factors*/ if ( lenmem==NULL ) { st = ( kiss_fft_state*)KISS_FFT_MALLOC( memneeded ); }else{ if (mem != NULL && *lenmem >= memneeded) st = (kiss_fft_state*)mem; *lenmem = memneeded; } if (st) { opus_int16 *bitrev; kiss_twiddle_cpx *twiddles; st->nfft=nfft; #ifdef FIXED_POINT st->scale_shift = celt_ilog2(st->nfft); if (st->nfft == 1<<st->scale_shift) st->scale = Q15ONE; else st->scale = (1073741824+st->nfft/2)/st->nfft>>(15-st->scale_shift); #else st->scale = 1.f/nfft; #endif if (base != NULL) { st->twiddles = base->twiddles; st->shift = 0; while (st->shift < 32 && nfft<<st->shift != base->nfft) st->shift++; if (st->shift>=32) goto fail; } else { st->twiddles = twiddles = (kiss_twiddle_cpx*)KISS_FFT_MALLOC(sizeof(kiss_twiddle_cpx)*nfft); compute_twiddles(twiddles, nfft); st->shift = -1; } if (!kf_factor(nfft,st->factors)) { goto fail; } /* bitrev */ st->bitrev = bitrev = (opus_int16*)KISS_FFT_MALLOC(sizeof(opus_int16)*nfft); if (st->bitrev==NULL) goto fail; compute_bitrev_table(0, bitrev, 1,1, st->factors,st); /* Initialize architecture specific fft parameters */ if (opus_fft_alloc_arch(st, arch)) goto fail; } return st; fail: opus_fft_free(st, arch); return NULL; } kiss_fft_state *opus_fft_alloc(int nfft,void * mem,size_t * lenmem, int arch) { return opus_fft_alloc_twiddles(nfft, mem, lenmem, NULL, arch); } void opus_fft_free_arch_c(kiss_fft_state *st) { (void)st; } void opus_fft_free(const kiss_fft_state *cfg, int arch) { if (cfg) { opus_fft_free_arch((kiss_fft_state *)cfg, arch); opus_free((opus_int16*)cfg->bitrev); if (cfg->shift < 0) opus_free((kiss_twiddle_cpx*)cfg->twiddles); opus_free((kiss_fft_state*)cfg); } } #endif /* CUSTOM_MODES */ void opus_fft_impl(const kiss_fft_state *st,kiss_fft_cpx *fout) { int m2, m; int p; int L; int fstride[MAXFACTORS]; int i; int shift; /* st->shift can be -1 */ shift = st->shift>0 ? st->shift : 0; fstride[0] = 1; L=0; do { p = st->factors[2*L]; m = st->factors[2*L+1]; fstride[L+1] = fstride[L]*p; L++; } while(m!=1); m = st->factors[2*L-1]; for (i=L-1;i>=0;i--) { if (i!=0) m2 = st->factors[2*i-1]; else m2 = 1; switch (st->factors[2*i]) { case 2: kf_bfly2(fout, m, fstride[i]); break; case 4: kf_bfly4(fout,fstride[i]<<shift,st,m, fstride[i], m2); break; #ifndef RADIX_TWO_ONLY case 3: kf_bfly3(fout,fstride[i]<<shift,st,m, fstride[i], m2); break; case 5: kf_bfly5(fout,fstride[i]<<shift,st,m, fstride[i], m2); break; #endif } m = m2; } } void opus_fft_c(const kiss_fft_state *st,const kiss_fft_cpx *fin,kiss_fft_cpx *fout) { int i; opus_val16 scale; #ifdef FIXED_POINT /* Allows us to scale with MULT16_32_Q16(), which is faster than MULT16_32_Q15() on ARM. */ int scale_shift = st->scale_shift-1; #endif scale = st->scale; celt_assert2 (fin != fout, "In-place FFT not supported"); /* Bit-reverse the input */ for (i=0;i<st->nfft;i++) { kiss_fft_cpx x = fin[i]; fout[st->bitrev[i]].r = SHR32(MULT16_32_Q16(scale, x.r), scale_shift); fout[st->bitrev[i]].i = SHR32(MULT16_32_Q16(scale, x.i), scale_shift); } opus_fft_impl(st, fout); } void opus_ifft_c(const kiss_fft_state *st,const kiss_fft_cpx *fin,kiss_fft_cpx *fout) { int i; celt_assert2 (fin != fout, "In-place FFT not supported"); /* Bit-reverse the input */ for (i=0;i<st->nfft;i++) fout[st->bitrev[i]] = fin[i]; for (i=0;i<st->nfft;i++) fout[i].i = -fout[i].i; opus_fft_impl(st, fout); for (i=0;i<st->nfft;i++) fout[i].i = -fout[i].i; }