ref: 6361ad8d415a637ac3581390423519bb9f6d254d
dir: /libcelt/bands.c/
/* (C) 2007-2008 Jean-Marc Valin, CSIRO */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of the Xiph.org Foundation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <math.h> #include "bands.h" #include "modes.h" #include "vq.h" #include "cwrs.h" #include "stack_alloc.h" #include "os_support.h" #include "mathops.h" #if 0 void exp_rotation(celt_norm_t *X, int len, int dir, int stride, int iter) { int i, k; celt_word16_t c, s; celt_norm_t *Xptr; /* Equivalent to cos(.3) and sin(.3) */ c = QCONST16(0.95534,15); s = dir*QCONST16(0.29552,15); for (k=0;k<iter;k++) { /* We could use MULT16_16_P15 instead of MULT16_16_Q15 for more accuracy, but at this point, I really don't think it's necessary */ Xptr = X; for (i=0;i<len-stride;i++) { celt_norm_t x1, x2; x1 = Xptr[0]; x2 = Xptr[stride]; Xptr[stride] = MULT16_16_Q15(c,x2) + MULT16_16_Q15(s,x1); *Xptr++ = MULT16_16_Q15(c,x1) - MULT16_16_Q15(s,x2); } Xptr = &X[len-2*stride-1]; for (i=len-2*stride-1;i>=0;i--) { celt_norm_t x1, x2; x1 = Xptr[0]; x2 = Xptr[stride]; Xptr[stride] = MULT16_16_Q15(c,x2) + MULT16_16_Q15(s,x1); *Xptr-- = MULT16_16_Q15(c,x1) - MULT16_16_Q15(s,x2); } } } #endif const celt_word16_t sqrtC_1[2] = {QCONST16(1.f, 14), QCONST16(1.414214f, 14)}; #ifdef FIXED_POINT /* Compute the amplitude (sqrt energy) in each of the bands */ void compute_band_energies(const CELTMode *m, const celt_sig_t *X, celt_ener_t *bank) { int i, c; const celt_int16_t *eBands = m->eBands; const int C = CHANNELS(m); for (c=0;c<C;c++) { for (i=0;i<m->nbEBands;i++) { int j; celt_word32_t maxval=0; celt_word32_t sum = 0; j=eBands[i]; do { maxval = MAX32(maxval, X[j*C+c]); maxval = MAX32(maxval, -X[j*C+c]); } while (++j<eBands[i+1]); if (maxval > 0) { int shift = celt_ilog2(maxval)-10; j=eBands[i]; do { sum += MULT16_16(EXTRACT16(VSHR32(X[j*C+c],shift)), EXTRACT16(VSHR32(X[j*C+c],shift))); } while (++j<eBands[i+1]); /* We're adding one here to make damn sure we never end up with a pitch vector that's larger than unity norm */ bank[i*C+c] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift); } else { bank[i*C+c] = EPSILON; } /*printf ("%f ", bank[i*C+c]);*/ } } /*printf ("\n");*/ } /* Normalise each band such that the energy is one. */ void normalise_bands(const CELTMode *m, const celt_sig_t * restrict freq, celt_norm_t * restrict X, const celt_ener_t *bank) { int i, c; const celt_int16_t *eBands = m->eBands; const int C = CHANNELS(m); for (c=0;c<C;c++) { i=0; do { celt_word16_t g; int j,shift; celt_word16_t E; shift = celt_zlog2(bank[i*C+c])-13; E = VSHR32(bank[i*C+c], shift); g = EXTRACT16(celt_rcp(SHR32(MULT16_16(E,sqrtC_1[C-1]),11))); j=eBands[i]; do { X[j*C+c] = MULT16_16_Q15(VSHR32(freq[j*C+c],shift-1),g); } while (++j<eBands[i+1]); } while (++i<m->nbEBands); } } #ifndef DISABLE_STEREO void renormalise_bands(const CELTMode *m, celt_norm_t * restrict X) { int i; VARDECL(celt_ener_t, tmpE); VARDECL(celt_sig_t, freq); SAVE_STACK; ALLOC(tmpE, m->nbEBands*m->nbChannels, celt_ener_t); ALLOC(freq, m->nbChannels*m->eBands[m->nbEBands+1], celt_sig_t); for (i=0;i<m->nbChannels*m->eBands[m->nbEBands+1];i++) freq[i] = SHL32(EXTEND32(X[i]), 10); compute_band_energies(m, freq, tmpE); normalise_bands(m, freq, X, tmpE); RESTORE_STACK; } #endif /* DISABLE_STEREO */ #else /* FIXED_POINT */ /* Compute the amplitude (sqrt energy) in each of the bands */ void compute_band_energies(const CELTMode *m, const celt_sig_t *X, celt_ener_t *bank) { int i, c; const celt_int16_t *eBands = m->eBands; const int C = CHANNELS(m); for (c=0;c<C;c++) { for (i=0;i<m->nbEBands;i++) { int j; celt_word32_t sum = 1e-10; for (j=eBands[i];j<eBands[i+1];j++) sum += X[j*C+c]*X[j*C+c]; bank[i*C+c] = sqrt(sum); /*printf ("%f ", bank[i*C+c]);*/ } } /*printf ("\n");*/ } /* Normalise each band such that the energy is one. */ void normalise_bands(const CELTMode *m, const celt_sig_t * restrict freq, celt_norm_t * restrict X, const celt_ener_t *bank) { int i, c; const celt_int16_t *eBands = m->eBands; const int C = CHANNELS(m); for (c=0;c<C;c++) { for (i=0;i<m->nbEBands;i++) { int j; celt_word16_t g = 1.f/(1e-10+bank[i*C+c]*sqrt(C)); for (j=eBands[i];j<eBands[i+1];j++) X[j*C+c] = freq[j*C+c]*g; } } } #ifndef DISABLE_STEREO void renormalise_bands(const CELTMode *m, celt_norm_t * restrict X) { VARDECL(celt_ener_t, tmpE); SAVE_STACK; ALLOC(tmpE, m->nbEBands*m->nbChannels, celt_ener_t); compute_band_energies(m, X, tmpE); normalise_bands(m, X, X, tmpE); RESTORE_STACK; } #endif /* DISABLE_STEREO */ #endif /* FIXED_POINT */ /* De-normalise the energy to produce the synthesis from the unit-energy bands */ void denormalise_bands(const CELTMode *m, const celt_norm_t * restrict X, celt_sig_t * restrict freq, const celt_ener_t *bank) { int i, c; const celt_int16_t *eBands = m->eBands; const int C = CHANNELS(m); if (C>2) celt_fatal("denormalise_bands() not implemented for >2 channels"); for (c=0;c<C;c++) { for (i=0;i<m->nbEBands;i++) { int j; celt_word32_t g = MULT16_32_Q13(sqrtC_1[C-1],bank[i*C+c]); j=eBands[i]; do { freq[j*C+c] = MULT16_32_Q15(X[j*C+c], g); } while (++j<eBands[i+1]); } } for (i=C*eBands[m->nbEBands];i<C*eBands[m->nbEBands+1];i++) freq[i] = 0; } /* Compute the best gain for each "pitch band" */ void compute_pitch_gain(const CELTMode *m, const celt_norm_t *X, const celt_norm_t *P, celt_pgain_t *gains) { int i; const celt_int16_t *pBands = m->pBands; const int C = CHANNELS(m); for (i=0;i<m->nbPBands;i++) { celt_word32_t Sxy=0, Sxx=0; int j; /* We know we're not going to overflow because Sxx can't be more than 1 (Q28) */ for (j=C*pBands[i];j<C*pBands[i+1];j++) { Sxy = MAC16_16(Sxy, X[j], P[j]); Sxx = MAC16_16(Sxx, X[j], X[j]); } /* No negative gain allowed */ if (Sxy < 0) Sxy = 0; /* Not sure how that would happen, just making sure */ if (Sxy > Sxx) Sxy = Sxx; /* We need to be a bit conservative (multiply gain by 0.9), otherwise the residual doesn't quantise well */ Sxy = MULT16_32_Q15(QCONST16(.9f, 15), Sxy); /* gain = Sxy/Sxx */ gains[i] = EXTRACT16(celt_div(Sxy,ADD32(SHR32(Sxx, PGAIN_SHIFT),EPSILON))); /*printf ("%f ", 1-sqrt(1-gain*gain));*/ } /*if(rand()%10==0) { for (i=0;i<m->nbPBands;i++) printf ("%f ", 1-sqrt(1-gains[i]*gains[i])); printf ("\n"); }*/ } /* Apply the (quantised) gain to each "pitch band" */ void pitch_quant_bands(const CELTMode *m, celt_norm_t * restrict P, const celt_pgain_t * restrict gains) { int i; const celt_int16_t *pBands = m->pBands; const int C = CHANNELS(m); for (i=0;i<m->nbPBands;i++) { int j; for (j=C*pBands[i];j<C*pBands[i+1];j++) P[j] = MULT16_16_Q15(gains[i], P[j]); /*printf ("%f ", gain);*/ } for (i=C*pBands[m->nbPBands];i<C*pBands[m->nbPBands+1];i++) P[i] = 0; } static void intensity_band(celt_norm_t * restrict X, int len) { int j; celt_word32_t E = 1e-15; celt_word32_t E2 = 1e-15; for (j=0;j<len;j++) { X[j] = X[2*j]; E += MULT16_16(X[j],X[j]); E2 += MULT16_16(X[2*j+1],X[2*j+1]); } #ifndef FIXED_POINT E = celt_sqrt(E+E2)/celt_sqrt(E); for (j=0;j<len;j++) X[j] *= E; #endif for (j=0;j<len;j++) X[len+j] = 0; } static void dup_band(celt_norm_t * restrict X, int len) { int j; for (j=len-1;j>=0;j--) { X[2*j] = MULT16_16_Q15(QCONST16(.70711f,15),X[j]); X[2*j+1] = MULT16_16_Q15(QCONST16(.70711f,15),X[j]); } } static void stereo_band_mix(const CELTMode *m, celt_norm_t *X, const celt_ener_t *bank, const int *stereo_mode, int bandID, int dir) { int i = bandID; const celt_int16_t *eBands = m->eBands; const int C = CHANNELS(m); { int j; if (stereo_mode[i] && dir <0) { dup_band(X+C*eBands[i], eBands[i+1]-eBands[i]); } else { celt_word16_t a1, a2; if (stereo_mode[i]==0) { /* Do mid-side when not doing intensity stereo */ a1 = QCONST16(.70711f,14); a2 = dir*QCONST16(.70711f,14); } else { celt_word16_t left, right; celt_word16_t norm; #ifdef FIXED_POINT int shift = celt_zlog2(MAX32(bank[i*C], bank[i*C+1]))-13; #endif left = VSHR32(bank[i*C],shift); right = VSHR32(bank[i*C+1],shift); norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right)); a1 = DIV32_16(SHL32(EXTEND32(left),14),norm); a2 = dir*DIV32_16(SHL32(EXTEND32(right),14),norm); } for (j=eBands[i];j<eBands[i+1];j++) { celt_norm_t r, l; l = X[j*C]; r = X[j*C+1]; X[j*C] = MULT16_16_Q14(a1,l) + MULT16_16_Q14(a2,r); X[j*C+1] = MULT16_16_Q14(a1,r) - MULT16_16_Q14(a2,l); } } if (stereo_mode[i] && dir>0) { intensity_band(X+C*eBands[i], eBands[i+1]-eBands[i]); } } } void stereo_decision(const CELTMode *m, celt_norm_t * restrict X, int *stereo_mode, int len) { int i; for (i=0;i<len-5;i++) stereo_mode[i] = 0; for (;i<len;i++) stereo_mode[i] = 0; } /* Quantisation of the residual */ void quant_bands(const CELTMode *m, celt_norm_t * restrict X, celt_norm_t *P, celt_mask_t *W, const celt_ener_t *bandE, const int *stereo_mode, int total_bits, int shortBlocks, ec_enc *enc) { int i, j, bits; const celt_int16_t * restrict eBands = m->eBands; celt_norm_t * restrict norm; VARDECL(celt_norm_t, _norm); VARDECL(int, pulses); VARDECL(int, offsets); const int C = CHANNELS(m); int B; SAVE_STACK; B = shortBlocks ? m->nbShortMdcts : 1; ALLOC(_norm, C*eBands[m->nbEBands+1], celt_norm_t); ALLOC(pulses, m->nbEBands, int); ALLOC(offsets, m->nbEBands, int); norm = _norm; for (i=0;i<m->nbEBands;i++) offsets[i] = 0; /* Use a single-bit margin to guard against overrunning (make sure it's enough) */ bits = total_bits - ec_enc_tell(enc, 0) - 1; compute_allocation(m, offsets, stereo_mode, bits, pulses); /*printf("bits left: %d\n", bits); for (i=0;i<m->nbEBands;i++) printf ("%d ", pulses[i]); printf ("\n");*/ /*printf ("%d %d\n", ec_enc_tell(enc, 0), compute_allocation(m, m->nbPulses));*/ for (i=0;i<m->nbEBands;i++) { int q; celt_word16_t n; q = pulses[i]; n = SHL16(celt_sqrt(C*(eBands[i+1]-eBands[i])),11); /* If pitch isn't available, use intra-frame prediction */ if (eBands[i] >= m->pitchEnd || q<=0) { q -= 1; if (q<0) intra_fold(m, X+C*eBands[i], eBands[i+1]-eBands[i], norm, P+C*eBands[i], eBands[i], B); else intra_prediction(m, X+C*eBands[i], W+C*eBands[i], eBands[i+1]-eBands[i], q, norm, P+C*eBands[i], eBands[i], B, enc); } if (q > 0) { int ch=C; if (C==2 && stereo_mode[i]==1) ch = 1; if (C==2) { stereo_band_mix(m, X, bandE, stereo_mode, i, 1); stereo_band_mix(m, P, bandE, stereo_mode, i, 1); } alg_quant(X+C*eBands[i], W+C*eBands[i], ch*(eBands[i+1]-eBands[i]), q, P+C*eBands[i], enc); if (C==2) stereo_band_mix(m, X, bandE, stereo_mode, i, -1); } else { for (j=C*eBands[i];j<C*eBands[i+1];j++) X[j] = P[j]; } for (j=C*eBands[i];j<C*eBands[i+1];j++) norm[j] = MULT16_16_Q15(n,X[j]); } RESTORE_STACK; } /* Decoding of the residual */ void unquant_bands(const CELTMode *m, celt_norm_t * restrict X, celt_norm_t *P, const celt_ener_t *bandE, const int *stereo_mode, int total_bits, int shortBlocks, ec_dec *dec) { int i, j, bits; const celt_int16_t * restrict eBands = m->eBands; celt_norm_t * restrict norm; VARDECL(celt_norm_t, _norm); VARDECL(int, pulses); VARDECL(int, offsets); const int C = CHANNELS(m); int B; SAVE_STACK; B = shortBlocks ? m->nbShortMdcts : 1; ALLOC(_norm, C*eBands[m->nbEBands+1], celt_norm_t); ALLOC(pulses, m->nbEBands, int); ALLOC(offsets, m->nbEBands, int); norm = _norm; for (i=0;i<m->nbEBands;i++) offsets[i] = 0; /* Use a single-bit margin to guard against overrunning (make sure it's enough) */ bits = total_bits - ec_dec_tell(dec, 0) - 1; compute_allocation(m, offsets, stereo_mode, bits, pulses); for (i=0;i<m->nbEBands;i++) { int q; celt_word16_t n; q = pulses[i]; n = SHL16(celt_sqrt(C*(eBands[i+1]-eBands[i])),11); /* If pitch isn't available, use intra-frame prediction */ if (eBands[i] >= m->pitchEnd || q<=0) { q -= 1; if (q<0) intra_fold(m, X+C*eBands[i], eBands[i+1]-eBands[i], norm, P+C*eBands[i], eBands[i], B); else intra_unquant(m, X+C*eBands[i], eBands[i+1]-eBands[i], q, norm, P+C*eBands[i], eBands[i], B, dec); } if (q > 0) { int ch=C; if (C==2 && stereo_mode[i]==1) ch = 1; if (C==2) stereo_band_mix(m, P, bandE, stereo_mode, i, 1); alg_unquant(X+C*eBands[i], ch*(eBands[i+1]-eBands[i]), q, P+C*eBands[i], dec); if (C==2) stereo_band_mix(m, X, bandE, stereo_mode, i, -1); } else { for (j=C*eBands[i];j<C*eBands[i+1];j++) X[j] = P[j]; } for (j=C*eBands[i];j<C*eBands[i+1];j++) norm[j] = MULT16_16_Q15(n,X[j]); } RESTORE_STACK; }