ref: 606cc10f2f7d76046a25fde5ec5e0a35dafdaae6
dir: /src_FLP/SKP_Silk_main_FLP.h/
/*********************************************************************** Copyright (c) 2006-2010, Skype Limited. All rights reserved. Redistribution and use in source and binary forms, with or without modification, (subject to the limitations in the disclaimer below) are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of Skype Limited, nor the names of specific contributors, may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***********************************************************************/ #ifndef SKP_SILK_MAIN_FLP_H #define SKP_SILK_MAIN_FLP_H #include "SKP_Silk_SigProc_FLP.h" #include "SKP_Silk_SigProc_FIX.h" #include "SKP_Silk_structs_FLP.h" #include "SKP_Silk_main.h" #include "SKP_Silk_define.h" #include "SKP_debug.h" #include "entenc.h" /* uncomment to compile without SSE optimizations */ //#undef SKP_USE_SSE #ifdef __cplusplus extern "C" { #endif /*********************/ /* Encoder Functions */ /*********************/ /* High-pass filter with cutoff frequency adaptation based on pitch lag statistics */ void SKP_Silk_HP_variable_cutoff_FLP( SKP_Silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ SKP_Silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */ SKP_int16 *out, /* O High-pass filtered output signal */ const SKP_int16 *in /* I Input signal */ ); /* Encoder main function */ SKP_int SKP_Silk_encode_frame_FLP( SKP_Silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ SKP_int32 *pnBytesOut, /* I/O Number of payload bytes; */ /* input: max length; output: used */ ec_enc *psRangeEnc, /* I/O compressor data structure */ const SKP_int16 *pIn /* I Input speech frame */ ); /* Low Bitrate Redundancy (LBRR) encoding. Reuse all parameters but encode with lower bitrate */ void SKP_Silk_LBRR_encode_FLP( SKP_Silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ SKP_Silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */ SKP_uint8 *pCode, /* O Payload */ SKP_int32 *pnBytesOut, /* I/O Payload bytes; in: max; out: used */ const SKP_float xfw[] /* I Input signal */ ); /* Initializes the Silk encoder state */ SKP_int SKP_Silk_init_encoder_FLP( SKP_Silk_encoder_state_FLP *psEnc /* I/O Encoder state FLP */ ); /* Control the Silk encoder */ SKP_int SKP_Silk_control_encoder_FLP( SKP_Silk_encoder_state_FLP *psEnc, /* I/O Pointer to Silk encoder state FLP */ const SKP_int PacketSize_ms, /* I Packet length (ms) */ const SKP_int32 TargetRate_bps, /* I Target max bitrate (bps) */ const SKP_int PacketLoss_perc, /* I Packet loss rate (in percent) */ const SKP_int Complexity /* I Complexity (0->low; 1->medium; 2->high) */ ); /****************/ /* Prefiltering */ /****************/ void SKP_Silk_prefilter_FLP( SKP_Silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ const SKP_Silk_encoder_control_FLP *psEncCtrl, /* I Encoder control FLP */ SKP_float xw[], /* O Weighted signal */ const SKP_float x[] /* I Speech signal */ ); /**************************/ /* Noise shaping analysis */ /**************************/ /* Compute noise shaping coefficients and initial gain values */ void SKP_Silk_noise_shape_analysis_FLP( SKP_Silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ SKP_Silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */ const SKP_float *pitch_res, /* I LPC residual from pitch analysis */ const SKP_float *x /* I Input signal [frame_length + la_shape] */ ); /* Autocorrelations for a warped frequency axis */ void SKP_Silk_warped_autocorrelation_FLP( SKP_float *corr, /* O Result [order + 1] */ const SKP_float *input, /* I Input data to correlate */ const SKP_float warping, /* I Warping coefficient */ const SKP_int length, /* I Length of input */ const SKP_int order /* I Correlation order (even) */ ); /* Control low bitrate redundancy usage */ void SKP_Silk_LBRR_ctrl_FLP( SKP_Silk_encoder_state_FLP *psEnc, /* I Encoder state FLP */ SKP_Silk_encoder_control *psEncCtrlC /* I/O Encoder control */ ); /* Calculation of LTP state scaling */ void SKP_Silk_LTP_scale_ctrl_FLP( SKP_Silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ SKP_Silk_encoder_control_FLP *psEncCtrl /* I/O Encoder control FLP */ ); /**********************************************/ /* Prediction Analysis */ /**********************************************/ /* Find pitch lags */ void SKP_Silk_find_pitch_lags_FLP( SKP_Silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ SKP_Silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */ SKP_float res[], /* O Residual */ const SKP_float x[] /* I Speech signal */ ); /* Find LPC and LTP coefficients */ void SKP_Silk_find_pred_coefs_FLP( SKP_Silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ SKP_Silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */ const SKP_float res_pitch[], /* I Residual from pitch analysis */ const SKP_float x[] /* I Speech signal */ ); /* LPC analysis */ void SKP_Silk_find_LPC_FLP( SKP_float NLSF[], /* O NLSFs */ SKP_int *interpIndex, /* O NLSF interp. index for NLSF interp. */ const SKP_float prev_NLSFq[], /* I Previous NLSFs, for NLSF interpolation */ const SKP_int useInterpNLSFs, /* I Flag */ const SKP_int LPC_order, /* I LPC order */ const SKP_float x[], /* I Input signal */ const SKP_int subfr_length, /* I Subframe length incl preceeding samples */ const SKP_int nb_subfr /* I: Number of subframes */ ); /* LTP analysis */ void SKP_Silk_find_LTP_FLP( SKP_float b[ MAX_NB_SUBFR * LTP_ORDER ], /* O LTP coefs */ SKP_float WLTP[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* O Weight for LTP quantization */ SKP_float *LTPredCodGain, /* O LTP coding gain */ const SKP_float r_lpc[], /* I LPC residual */ const SKP_int lag[ MAX_NB_SUBFR ], /* I LTP lags */ const SKP_float Wght[ MAX_NB_SUBFR ], /* I Weights */ const SKP_int subfr_length, /* I Subframe length */ const SKP_int nb_subfr, /* I number of subframes */ const SKP_int mem_offset /* I Number of samples in LTP memory */ ); void SKP_Silk_LTP_analysis_filter_FLP( SKP_float *LTP_res, /* O LTP res MAX_NB_SUBFR*(pre_lgth+subfr_lngth) */ const SKP_float *x, /* I Input signal, with preceeding samples */ const SKP_float B[ LTP_ORDER * MAX_NB_SUBFR ], /* I LTP coefficients for each subframe */ const SKP_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */ const SKP_float invGains[ MAX_NB_SUBFR ], /* I Inverse quantization gains */ const SKP_int subfr_length, /* I Length of each subframe */ const SKP_int nb_subfr, /* I number of subframes */ const SKP_int pre_length /* I Preceeding samples for each subframe */ ); /* Calculates residual energies of input subframes where all subframes have LPC_order */ /* of preceeding samples */ void SKP_Silk_residual_energy_FLP( SKP_float nrgs[ MAX_NB_SUBFR ], /* O Residual energy per subframe */ const SKP_float x[], /* I Input signal */ const SKP_float a[ 2 ][ MAX_LPC_ORDER ],/* I AR coefs for each frame half */ const SKP_float gains[], /* I Quantization gains */ const SKP_int subfr_length, /* I Subframe length */ const SKP_int nb_subfr, /* I number of subframes */ const SKP_int LPC_order /* I LPC order */ ); /* 16th order LPC analysis filter */ void SKP_Silk_LPC_analysis_filter_FLP( SKP_float r_LPC[], /* O LPC residual signal */ const SKP_float PredCoef[], /* I LPC coefficients */ const SKP_float s[], /* I Input signal */ const SKP_int length, /* I Length of input signal */ const SKP_int Order /* I LPC order */ ); /* 16th order LPC analysis filter, does not write first 16 samples */ void SKP_Silk_LPC_analysis_filter16_FLP( SKP_float r_LPC[], /* O LPC residual signal */ const SKP_float PredCoef[], /* I LPC coefficients */ const SKP_float s[], /* I Input signal */ const SKP_int length /* I Length of input signal */ ); /* 12th order LPC analysis filter, does not write first 12 samples */ void SKP_Silk_LPC_analysis_filter12_FLP( SKP_float r_LPC[], /* O LPC residual signal */ const SKP_float PredCoef[], /* I LPC coefficients */ const SKP_float s[], /* I Input signal */ const SKP_int length /* I Length of input signal */ ); /* 10th order LPC analysis filter, does not write first 10 samples */ void SKP_Silk_LPC_analysis_filter10_FLP( SKP_float r_LPC[], /* O LPC residual signal */ const SKP_float PredCoef[], /* I LPC coefficients */ const SKP_float s[], /* I Input signal */ const SKP_int length /* I Length of input signal */ ); /* 8th order LPC analysis filter, does not write first 8 samples */ void SKP_Silk_LPC_analysis_filter8_FLP( SKP_float r_LPC[], /* O LPC residual signal */ const SKP_float PredCoef[], /* I LPC coefficients */ const SKP_float s[], /* I Input signal */ const SKP_int length /* I Length of input signal */ ); /* 6th order LPC analysis filter, does not write first 6 samples */ void SKP_Silk_LPC_analysis_filter6_FLP( SKP_float r_LPC[], /* O LPC residual signal */ const SKP_float PredCoef[], /* I LPC coefficients */ const SKP_float s[], /* I Input signal */ const SKP_int length /* I Length of input signal */ ); /* LTP tap quantizer */ void SKP_Silk_quant_LTP_gains_FLP( SKP_float B[ MAX_NB_SUBFR * LTP_ORDER ], /* I/O (Un-)quantized LTP gains */ SKP_int cbk_index[ MAX_NB_SUBFR ], /* O Codebook index */ SKP_int *periodicity_index, /* O Periodicity index */ const SKP_float W[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* I Error weights */ const SKP_int mu_Q10, /* I Mu value (R/D tradeoff) */ const SKP_int lowComplexity, /* I Flag for low complexity */ const SKP_int nb_subfr /* I number of subframes */ ); /******************/ /* NLSF Quantizer */ /******************/ /* Limit, stabilize, and quantize NLSFs */ void SKP_Silk_process_NLSFs_FLP( SKP_Silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ SKP_Silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */ SKP_float *pNLSF /* I/O NLSFs (quantized output) */ ); /* NLSF vector encoder */ void SKP_Silk_NLSF_MSVQ_encode_FLP( SKP_int *NLSFIndices, /* O Codebook path vector [ CB_STAGES ] */ SKP_float *pNLSF, /* I/O Quantized NLSF vector [ LPC_ORDER ] */ const SKP_Silk_NLSF_CB_struct *psNLSF_CB, /* I Codebook object */ const SKP_float *pNLSF_q_prev, /* I Prev. quantized NLSF vector [LPC_ORDER] */ const SKP_float *pW, /* I NLSF weight vector [ LPC_ORDER ] */ const SKP_float NLSF_mu, /* I Rate weight for the RD optimization */ const SKP_float NLSF_mu_fluc_red, /* I Fluctuation reduction error weight */ const SKP_int NLSF_MSVQ_Survivors,/* I Max survivors from each stage */ const SKP_int LPC_order, /* I LPC order */ const SKP_int deactivate_fluc_red /* I Deactivate fluctuation reduction */ ); /* Rate-Distortion calculations for multiple input data vectors */ void SKP_Silk_NLSF_VQ_rate_distortion_FLP( SKP_float *pRD, /* O Rate-distortion values [psNLSF_CBS_FLP->nVectors*N] */ const SKP_Silk_NLSF_CBS *psNLSF_CBS, /* I NLSF codebook stage struct */ const SKP_float *in, /* I Input vectors to be quantized */ const SKP_float *w, /* I Weight vector */ const SKP_float *rate_acc, /* I Accumulated rates from previous stage */ const SKP_float mu, /* I Weight between weighted error and rate */ const SKP_int N, /* I Number of input vectors to be quantized */ const SKP_int LPC_order /* I LPC order */ ); /* Compute weighted quantization errors for an LPC_order element input vector, over one codebook stage */ void SKP_Silk_NLSF_VQ_sum_error_FLP( SKP_float *err, /* O Weighted quantization errors [ N * K ] */ const SKP_float *in, /* I Input vectors [ N * LPC_order ] */ const SKP_float *w, /* I Weighting vectors [ N * LPC_order ] */ const SKP_int8 *pCB_NLSF_Q8, /* I Codebook vectors [ K * LPC_order ] */ const SKP_int N, /* I Number of input vectors */ const SKP_int K, /* I Number of codebook vectors */ const SKP_int LPC_order /* I LPC order */ ); /* NLSF vector decoder */ void SKP_Silk_NLSF_MSVQ_decode_FLP( SKP_float *pNLSF, /* O Decoded output vector [ LPC_ORDER ] */ const SKP_Silk_NLSF_CB_struct *psNLSF_CB, /* I NLSF codebook struct */ const SKP_int *NLSFIndices, /* I NLSF indices [ nStages ] */ const SKP_int LPC_order /* I LPC order used */ ); /* Residual energy: nrg = wxx - 2 * wXx * c + c' * wXX * c */ SKP_float SKP_Silk_residual_energy_covar_FLP( /* O Weighted residual energy */ const SKP_float *c, /* I Filter coefficients */ SKP_float *wXX, /* I/O Weighted correlation matrix, reg. out */ const SKP_float *wXx, /* I Weighted correlation vector */ const SKP_float wxx, /* I Weighted correlation value */ const SKP_int D /* I Dimension */ ); /* Entropy constrained MATRIX-weighted VQ, for a single input data vector */ void SKP_Silk_VQ_WMat_EC_FLP( SKP_int *ind, /* O Index of best codebook vector */ SKP_float *rate_dist, /* O Best weighted quant. error + mu * rate */ const SKP_float *in, /* I Input vector to be quantized */ const SKP_float *W, /* I Weighting matrix */ const SKP_int16 *cb, /* I Codebook */ const SKP_int16 *cl_Q6, /* I Code length for each codebook vector */ const SKP_float mu, /* I Tradeoff between WSSE and rate */ const SKP_int L /* I Number of vectors in codebook */ ); /* Processing of gains */ void SKP_Silk_process_gains_FLP( SKP_Silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ SKP_Silk_encoder_control_FLP *psEncCtrl /* I/O Encoder control FLP */ ); /******************/ /* Linear Algebra */ /******************/ /* Calculates correlation matrix X'*X */ void SKP_Silk_corrMatrix_FLP( const SKP_float *x, /* I x vector [ L+order-1 ] used to create X */ const SKP_int L, /* I Length of vectors */ const SKP_int Order, /* I Max lag for correlation */ SKP_float *XX /* O X'*X correlation matrix [order x order] */ ); /* Calculates correlation vector X'*t */ void SKP_Silk_corrVector_FLP( const SKP_float *x, /* I x vector [L+order-1] used to create X */ const SKP_float *t, /* I Target vector [L] */ const SKP_int L, /* I Length of vecors */ const SKP_int Order, /* I Max lag for correlation */ SKP_float *Xt /* O X'*t correlation vector [order] */ ); /* Add noise to matrix diagonal */ void SKP_Silk_regularize_correlations_FLP( SKP_float *XX, /* I/O Correlation matrices */ SKP_float *xx, /* I/O Correlation values */ const SKP_float noise, /* I Noise energy to add */ const SKP_int D /* I Dimension of XX */ ); /* Function to solve linear equation Ax = b, where A is an MxM symmetric matrix */ void SKP_Silk_solve_LDL_FLP( SKP_float *A, /* I/O Symmetric square matrix, out: reg. */ const SKP_int M, /* I Size of matrix */ const SKP_float *b, /* I Pointer to b vector */ SKP_float *x /* O Pointer to x solution vector */ ); /* Apply sine window to signal vector. */ /* Window types: */ /* 1 -> sine window from 0 to pi/2 */ /* 2 -> sine window from pi/2 to pi */ void SKP_Silk_apply_sine_window_FLP( SKP_float px_win[], /* O Pointer to windowed signal */ const SKP_float px[], /* I Pointer to input signal */ const SKP_int win_type, /* I Selects a window type */ const SKP_int length /* I Window length, multiple of 4 */ ); /* Wrappers. Calls flp / fix code */ /* Convert AR filter coefficients to NLSF parameters */ void SKP_Silk_A2NLSF_FLP( SKP_float *pNLSF, /* O NLSF vector [ LPC_order ] */ const SKP_float *pAR, /* I LPC coefficients [ LPC_order ] */ const SKP_int LPC_order /* I LPC order */ ); /* Convert NLSF parameters to AR prediction filter coefficients */ void SKP_Silk_NLSF2A_stable_FLP( SKP_float *pAR, /* O LPC coefficients [ LPC_order ] */ const SKP_float *pNLSF, /* I NLSF vector [ LPC_order ] */ const SKP_int LPC_order /* I LPC order */ ); /* NLSF stabilizer, for a single input data vector */ void SKP_Silk_NLSF_stabilize_FLP( SKP_float *pNLSF, /* I/O (Un)stable NLSF vector [ LPC_order ] */ const SKP_int *pNDelta_min_Q15, /* I Normalized delta min vector[LPC_order+1]*/ const SKP_int LPC_order /* I LPC order */ ); /* Interpolation function with fixed point rounding */ void SKP_Silk_interpolate_wrapper_FLP( SKP_float xi[], /* O Interpolated vector */ const SKP_float x0[], /* I First vector */ const SKP_float x1[], /* I Second vector */ const SKP_float ifact, /* I Interp. factor, weight on second vector */ const SKP_int d /* I Number of parameters */ ); /****************************************/ /* Floating-point Silk VAD wrapper */ /****************************************/ SKP_int SKP_Silk_VAD_FLP( SKP_Silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ SKP_Silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */ const SKP_int16 *pIn /* I Input signal */ ); /****************************************/ /* Floating-point Silk NSQ wrapper */ /****************************************/ void SKP_Silk_NSQ_wrapper_FLP( SKP_Silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */ SKP_Silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */ const SKP_float x[], /* I Prefiltered input signal */ SKP_int8 q[], /* O Quantized pulse signal */ const SKP_int useLBRR /* I LBRR flag */ ); /* using log2() helps the fixed-point conversion */ SKP_INLINE SKP_float SKP_Silk_log2( double x ) { return ( SKP_float )( 3.32192809488736 * log10( x ) ); } #ifdef __cplusplus } #endif #endif