ref: 44092248453e1239d067b041c2915d2a2815b99d
dir: /libcelt/quant_bands.c/
/* Copyright (c) 2007-2008 CSIRO Copyright (c) 2007-2009 Xiph.Org Foundation Written by Jean-Marc Valin */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of the Xiph.org Foundation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "quant_bands.h" #include "laplace.h" #include <math.h> #include "os_support.h" #include "arch.h" #include "mathops.h" #include "stack_alloc.h" #define E_MEANS_SIZE (3) static const celt_word16 eMeans[E_MEANS_SIZE] = {QCONST16(7.5f,DB_SHIFT), -QCONST16(1.f,DB_SHIFT), -QCONST16(.5f,DB_SHIFT)}; /* prediction coefficients: 0.9, 0.8, 0.65, 0.5 */ #ifdef FIXED_POINT static const celt_word16 pred_coef[4] = {29440, 26112, 21248, 16384}; #else static const celt_word16 pred_coef[4] = {29440/32768., 26112/32768., 21248/32768., 16384/32768.}; #endif int intra_decision(celt_word16 *eBands, celt_word16 *oldEBands, int start, int end, int len, int C) { int c, i; celt_word32 dist = 0; for (c=0;c<C;c++) { for (i=start;i<end;i++) { celt_word16 d = SUB16(eBands[i+c*len], oldEBands[i+c*len]); dist = MAC16_16(dist, d,d); } } return SHR32(dist,2*DB_SHIFT) > 2*C*(end-start); } int *quant_prob_alloc(const CELTMode *m) { int i; int *prob; prob = celt_alloc(4*m->nbEBands*sizeof(int)); if (prob==NULL) return NULL; for (i=0;i<m->nbEBands;i++) { prob[2*i] = 7000-i*200; prob[2*i+1] = ec_laplace_get_start_freq(prob[2*i]); } for (i=0;i<m->nbEBands;i++) { prob[2*m->nbEBands+2*i] = 9000-i*220; prob[2*m->nbEBands+2*i+1] = ec_laplace_get_start_freq(prob[2*m->nbEBands+2*i]); } return prob; } void quant_prob_free(int *freq) { celt_free(freq); } void quant_coarse_energy(const CELTMode *m, int start, int end, const celt_word16 *eBands, celt_word16 *oldEBands, int budget, int intra, int *prob, celt_word16 *error, ec_enc *enc, int _C, int LM, celt_word16 max_decay) { int i, c; celt_word32 prev[2] = {0,0}; celt_word16 coef; celt_word16 beta; const int C = CHANNELS(_C); coef = pred_coef[LM]; if (intra) { coef = 0; prob += 2*m->nbEBands; } /* No theoretical justification for this, it just works */ beta = MULT16_16_P15(coef,coef); /* Encode at a fixed coarse resolution */ for (i=start;i<end;i++) { c=0; do { int bits_left; int qi; celt_word16 q; celt_word16 x; celt_word32 f; celt_word32 mean = (i-start < E_MEANS_SIZE) ? SUB32(SHL32(EXTEND32(eMeans[i-start]),15), MULT16_16(coef,eMeans[i-start])) : 0; x = eBands[i+c*m->nbEBands]; #ifdef FIXED_POINT f = SHL32(EXTEND32(x),15)-mean -MULT16_16(coef,oldEBands[i+c*m->nbEBands])-prev[c]; /* Rounding to nearest integer here is really important! */ qi = (f+QCONST32(.5,DB_SHIFT+15))>>(DB_SHIFT+15); #else f = x-mean-coef*oldEBands[i+c*m->nbEBands]-prev[c]; /* Rounding to nearest integer here is really important! */ qi = (int)floor(.5f+f); #endif /* Prevent the energy from going down too quickly (e.g. for bands that have just one bin) */ if (qi < 0 && x < oldEBands[i+c*m->nbEBands]-max_decay) { qi += SHR16(oldEBands[i+c*m->nbEBands]-max_decay-x, DB_SHIFT); if (qi > 0) qi = 0; } /* If we don't have enough bits to encode all the energy, just assume something safe. We allow slightly busting the budget here */ bits_left = budget-(int)ec_enc_tell(enc, 0)-2*C*(end-i); if (bits_left < 24) { if (qi > 1) qi = 1; if (qi < -1) qi = -1; if (bits_left<8) qi = 0; } ec_laplace_encode_start(enc, &qi, prob[2*i], prob[2*i+1]); error[i+c*m->nbEBands] = PSHR32(f,15) - SHL16(qi,DB_SHIFT); q = SHL16(qi,DB_SHIFT); oldEBands[i+c*m->nbEBands] = PSHR32(MULT16_16(coef,oldEBands[i+c*m->nbEBands]) + mean + prev[c] + SHL32(EXTEND32(q),15), 15); prev[c] = mean + prev[c] + SHL32(EXTEND32(q),15) - MULT16_16(beta,q); } while (++c < C); } } void quant_fine_energy(const CELTMode *m, int start, int end, celt_ener *eBands, celt_word16 *oldEBands, celt_word16 *error, int *fine_quant, ec_enc *enc, int _C) { int i, c; const int C = CHANNELS(_C); /* Encode finer resolution */ for (i=start;i<end;i++) { celt_int16 frac = 1<<fine_quant[i]; if (fine_quant[i] <= 0) continue; c=0; do { int q2; celt_word16 offset; #ifdef FIXED_POINT /* Has to be without rounding */ q2 = (error[i+c*m->nbEBands]+QCONST16(.5f,DB_SHIFT))>>(DB_SHIFT-fine_quant[i]); #else q2 = (int)floor((error[i+c*m->nbEBands]+.5f)*frac); #endif if (q2 > frac-1) q2 = frac-1; if (q2<0) q2 = 0; ec_enc_bits(enc, q2, fine_quant[i]); #ifdef FIXED_POINT offset = SUB16(SHR16(SHL16(q2,DB_SHIFT)+QCONST16(.5,DB_SHIFT),fine_quant[i]),QCONST16(.5f,DB_SHIFT)); #else offset = (q2+.5f)*(1<<(14-fine_quant[i]))*(1.f/16384) - .5f; #endif oldEBands[i+c*m->nbEBands] += offset; error[i+c*m->nbEBands] -= offset; /*printf ("%f ", error[i] - offset);*/ } while (++c < C); } } void quant_energy_finalise(const CELTMode *m, int start, int end, celt_ener *eBands, celt_word16 *oldEBands, celt_word16 *error, int *fine_quant, int *fine_priority, int bits_left, ec_enc *enc, int _C) { int i, prio, c; const int C = CHANNELS(_C); /* Use up the remaining bits */ for (prio=0;prio<2;prio++) { for (i=start;i<end && bits_left>=C ;i++) { if (fine_quant[i] >= 7 || fine_priority[i]!=prio) continue; c=0; do { int q2; celt_word16 offset; q2 = error[i+c*m->nbEBands]<0 ? 0 : 1; ec_enc_bits(enc, q2, 1); #ifdef FIXED_POINT offset = SHR16(SHL16(q2,DB_SHIFT)-QCONST16(.5,DB_SHIFT),fine_quant[i]+1); #else offset = (q2-.5f)*(1<<(14-fine_quant[i]-1))*(1.f/16384); #endif oldEBands[i+c*m->nbEBands] += offset; bits_left--; } while (++c < C); } } c=0; do { for (i=start;i<m->nbEBands;i++) { eBands[i+c*m->nbEBands] = log2Amp(oldEBands[i+c*m->nbEBands]); if (oldEBands[i+c*m->nbEBands] < -QCONST16(7.f,DB_SHIFT)) oldEBands[i+c*m->nbEBands] = -QCONST16(7.f,DB_SHIFT); } } while (++c < C); } void unquant_coarse_energy(const CELTMode *m, int start, int end, celt_ener *eBands, celt_word16 *oldEBands, int intra, int *prob, ec_dec *dec, int _C, int LM) { int i, c; celt_word32 prev[2] = {0, 0}; celt_word16 coef; celt_word16 beta; const int C = CHANNELS(_C); coef = pred_coef[LM]; if (intra) { coef = 0; prob += 2*m->nbEBands; } /* No theoretical justification for this, it just works */ beta = MULT16_16_P15(coef,coef); /* Decode at a fixed coarse resolution */ for (i=start;i<end;i++) { c=0; do { int qi; celt_word16 q; celt_word32 mean = (i-start < E_MEANS_SIZE) ? SUB32(SHL32(EXTEND32(eMeans[i-start]),15), MULT16_16(coef,eMeans[i-start])) : 0; qi = ec_laplace_decode_start(dec, prob[2*i], prob[2*i+1]); q = SHL16(qi,DB_SHIFT); oldEBands[i+c*m->nbEBands] = PSHR32(MULT16_16(coef,oldEBands[i+c*m->nbEBands]) + mean + prev[c] + SHL32(EXTEND32(q),15), 15); prev[c] = mean + prev[c] + SHL32(EXTEND32(q),15) - MULT16_16(beta,q); } while (++c < C); } } void unquant_fine_energy(const CELTMode *m, int start, int end, celt_ener *eBands, celt_word16 *oldEBands, int *fine_quant, ec_dec *dec, int _C) { int i, c; const int C = CHANNELS(_C); /* Decode finer resolution */ for (i=start;i<end;i++) { if (fine_quant[i] <= 0) continue; c=0; do { int q2; celt_word16 offset; q2 = ec_dec_bits(dec, fine_quant[i]); #ifdef FIXED_POINT offset = SUB16(SHR16(SHL16(q2,DB_SHIFT)+QCONST16(.5,DB_SHIFT),fine_quant[i]),QCONST16(.5f,DB_SHIFT)); #else offset = (q2+.5f)*(1<<(14-fine_quant[i]))*(1.f/16384) - .5f; #endif oldEBands[i+c*m->nbEBands] += offset; } while (++c < C); } } void unquant_energy_finalise(const CELTMode *m, int start, int end, celt_ener *eBands, celt_word16 *oldEBands, int *fine_quant, int *fine_priority, int bits_left, ec_dec *dec, int _C) { int i, prio, c; const int C = CHANNELS(_C); /* Use up the remaining bits */ for (prio=0;prio<2;prio++) { for (i=start;i<end && bits_left>=C ;i++) { if (fine_quant[i] >= 7 || fine_priority[i]!=prio) continue; c=0; do { int q2; celt_word16 offset; q2 = ec_dec_bits(dec, 1); #ifdef FIXED_POINT offset = SHR16(SHL16(q2,DB_SHIFT)-QCONST16(.5,DB_SHIFT),fine_quant[i]+1); #else offset = (q2-.5f)*(1<<(14-fine_quant[i]-1))*(1.f/16384); #endif oldEBands[i+c*m->nbEBands] += offset; bits_left--; } while (++c < C); } } c=0; do { for (i=start;i<m->nbEBands;i++) { eBands[i+c*m->nbEBands] = log2Amp(oldEBands[i+c*m->nbEBands]); if (oldEBands[i+c*m->nbEBands] < -QCONST16(7.f,DB_SHIFT)) oldEBands[i+c*m->nbEBands] = -QCONST16(7.f,DB_SHIFT); } } while (++c < C); }