ref: 4176a0c86e492bd8cf8e88e209ef5c9be3678c9f
dir: /src/analysis.c/
/* Copyright (c) 2011 Xiph.Org Foundation Written by Jean-Marc Valin */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #define ANALYSIS_C #include <stdio.h> #include "mathops.h" #include "kiss_fft.h" #include "celt.h" #include "modes.h" #include "arch.h" #include "quant_bands.h" #include "analysis.h" #include "mlp.h" #include "stack_alloc.h" #include "float_cast.h" #ifndef M_PI #define M_PI 3.141592653 #endif static const float dct_table[128] = { 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.351851f, 0.338330f, 0.311806f, 0.273300f, 0.224292f, 0.166664f, 0.102631f, 0.034654f, -0.034654f,-0.102631f,-0.166664f,-0.224292f,-0.273300f,-0.311806f,-0.338330f,-0.351851f, 0.346760f, 0.293969f, 0.196424f, 0.068975f,-0.068975f,-0.196424f,-0.293969f,-0.346760f, -0.346760f,-0.293969f,-0.196424f,-0.068975f, 0.068975f, 0.196424f, 0.293969f, 0.346760f, 0.338330f, 0.224292f, 0.034654f,-0.166664f,-0.311806f,-0.351851f,-0.273300f,-0.102631f, 0.102631f, 0.273300f, 0.351851f, 0.311806f, 0.166664f,-0.034654f,-0.224292f,-0.338330f, 0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f, 0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f, 0.311806f, 0.034654f,-0.273300f,-0.338330f,-0.102631f, 0.224292f, 0.351851f, 0.166664f, -0.166664f,-0.351851f,-0.224292f, 0.102631f, 0.338330f, 0.273300f,-0.034654f,-0.311806f, 0.293969f,-0.068975f,-0.346760f,-0.196424f, 0.196424f, 0.346760f, 0.068975f,-0.293969f, -0.293969f, 0.068975f, 0.346760f, 0.196424f,-0.196424f,-0.346760f,-0.068975f, 0.293969f, 0.273300f,-0.166664f,-0.338330f, 0.034654f, 0.351851f, 0.102631f,-0.311806f,-0.224292f, 0.224292f, 0.311806f,-0.102631f,-0.351851f,-0.034654f, 0.338330f, 0.166664f,-0.273300f, }; static const float analysis_window[240] = { 0.000043f, 0.000171f, 0.000385f, 0.000685f, 0.001071f, 0.001541f, 0.002098f, 0.002739f, 0.003466f, 0.004278f, 0.005174f, 0.006156f, 0.007222f, 0.008373f, 0.009607f, 0.010926f, 0.012329f, 0.013815f, 0.015385f, 0.017037f, 0.018772f, 0.020590f, 0.022490f, 0.024472f, 0.026535f, 0.028679f, 0.030904f, 0.033210f, 0.035595f, 0.038060f, 0.040604f, 0.043227f, 0.045928f, 0.048707f, 0.051564f, 0.054497f, 0.057506f, 0.060591f, 0.063752f, 0.066987f, 0.070297f, 0.073680f, 0.077136f, 0.080665f, 0.084265f, 0.087937f, 0.091679f, 0.095492f, 0.099373f, 0.103323f, 0.107342f, 0.111427f, 0.115579f, 0.119797f, 0.124080f, 0.128428f, 0.132839f, 0.137313f, 0.141849f, 0.146447f, 0.151105f, 0.155823f, 0.160600f, 0.165435f, 0.170327f, 0.175276f, 0.180280f, 0.185340f, 0.190453f, 0.195619f, 0.200838f, 0.206107f, 0.211427f, 0.216797f, 0.222215f, 0.227680f, 0.233193f, 0.238751f, 0.244353f, 0.250000f, 0.255689f, 0.261421f, 0.267193f, 0.273005f, 0.278856f, 0.284744f, 0.290670f, 0.296632f, 0.302628f, 0.308658f, 0.314721f, 0.320816f, 0.326941f, 0.333097f, 0.339280f, 0.345492f, 0.351729f, 0.357992f, 0.364280f, 0.370590f, 0.376923f, 0.383277f, 0.389651f, 0.396044f, 0.402455f, 0.408882f, 0.415325f, 0.421783f, 0.428254f, 0.434737f, 0.441231f, 0.447736f, 0.454249f, 0.460770f, 0.467298f, 0.473832f, 0.480370f, 0.486912f, 0.493455f, 0.500000f, 0.506545f, 0.513088f, 0.519630f, 0.526168f, 0.532702f, 0.539230f, 0.545751f, 0.552264f, 0.558769f, 0.565263f, 0.571746f, 0.578217f, 0.584675f, 0.591118f, 0.597545f, 0.603956f, 0.610349f, 0.616723f, 0.623077f, 0.629410f, 0.635720f, 0.642008f, 0.648271f, 0.654508f, 0.660720f, 0.666903f, 0.673059f, 0.679184f, 0.685279f, 0.691342f, 0.697372f, 0.703368f, 0.709330f, 0.715256f, 0.721144f, 0.726995f, 0.732807f, 0.738579f, 0.744311f, 0.750000f, 0.755647f, 0.761249f, 0.766807f, 0.772320f, 0.777785f, 0.783203f, 0.788573f, 0.793893f, 0.799162f, 0.804381f, 0.809547f, 0.814660f, 0.819720f, 0.824724f, 0.829673f, 0.834565f, 0.839400f, 0.844177f, 0.848895f, 0.853553f, 0.858151f, 0.862687f, 0.867161f, 0.871572f, 0.875920f, 0.880203f, 0.884421f, 0.888573f, 0.892658f, 0.896677f, 0.900627f, 0.904508f, 0.908321f, 0.912063f, 0.915735f, 0.919335f, 0.922864f, 0.926320f, 0.929703f, 0.933013f, 0.936248f, 0.939409f, 0.942494f, 0.945503f, 0.948436f, 0.951293f, 0.954072f, 0.956773f, 0.959396f, 0.961940f, 0.964405f, 0.966790f, 0.969096f, 0.971321f, 0.973465f, 0.975528f, 0.977510f, 0.979410f, 0.981228f, 0.982963f, 0.984615f, 0.986185f, 0.987671f, 0.989074f, 0.990393f, 0.991627f, 0.992778f, 0.993844f, 0.994826f, 0.995722f, 0.996534f, 0.997261f, 0.997902f, 0.998459f, 0.998929f, 0.999315f, 0.999615f, 0.999829f, 0.999957f, 1.000000f, }; static const int tbands[NB_TBANDS+1] = { 4, 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 136, 160, 192, 240 }; #define NB_TONAL_SKIP_BANDS 9 static opus_val32 silk_resampler_down2_hp( opus_val32 *S, /* I/O State vector [ 2 ] */ opus_val32 *out, /* O Output signal [ floor(len/2) ] */ const opus_val32 *in, /* I Input signal [ len ] */ int inLen /* I Number of input samples */ ) { int k, len2 = inLen/2; opus_val32 in32, out32, out32_hp, Y, X; opus_val64 hp_ener = 0; /* Internal variables and state are in Q10 format */ for( k = 0; k < len2; k++ ) { /* Convert to Q10 */ in32 = in[ 2 * k ]; /* All-pass section for even input sample */ Y = SUB32( in32, S[ 0 ] ); X = MULT16_32_Q15(QCONST16(0.6074371f, 15), Y); out32 = ADD32( S[ 0 ], X ); S[ 0 ] = ADD32( in32, X ); out32_hp = out32; /* Convert to Q10 */ in32 = in[ 2 * k + 1 ]; /* All-pass section for odd input sample, and add to output of previous section */ Y = SUB32( in32, S[ 1 ] ); X = MULT16_32_Q15(QCONST16(0.15063f, 15), Y); out32 = ADD32( out32, S[ 1 ] ); out32 = ADD32( out32, X ); S[ 1 ] = ADD32( in32, X ); Y = SUB32( -in32, S[ 2 ] ); X = MULT16_32_Q15(QCONST16(0.15063f, 15), Y); out32_hp = ADD32( out32_hp, S[ 2 ] ); out32_hp = ADD32( out32_hp, X ); S[ 2 ] = ADD32( -in32, X ); hp_ener += out32_hp*(opus_val64)out32_hp; /* Add, convert back to int16 and store to output */ out[ k ] = HALF32(out32); } #ifdef FIXED_POINT /* len2 can be up to 480, so we shift by 8 more to make it fit. */ hp_ener = hp_ener >> (2*SIG_SHIFT + 8); #endif return hp_ener; } static opus_val32 downmix_and_resample(downmix_func downmix, const void *_x, opus_val32 *y, opus_val32 S[3], int subframe, int offset, int c1, int c2, int C, int Fs) { VARDECL(opus_val32, tmp); opus_val32 scale; int j; opus_val32 ret = 0; SAVE_STACK; if (subframe==0) return 0; if (Fs == 48000) { subframe *= 2; offset *= 2; } else if (Fs == 16000) { subframe = subframe*2/3; offset = offset*2/3; } ALLOC(tmp, subframe, opus_val32); downmix(_x, tmp, subframe, offset, c1, c2, C); #ifdef FIXED_POINT scale = (1<<SIG_SHIFT); #else scale = 1.f/32768; #endif if (c2==-2) scale /= C; else if (c2>-1) scale /= 2; for (j=0;j<subframe;j++) tmp[j] *= scale; if (Fs == 48000) { ret = silk_resampler_down2_hp(S, y, tmp, subframe); } else if (Fs == 24000) { OPUS_COPY(y, tmp, subframe); } else if (Fs == 16000) { VARDECL(opus_val32, tmp3x); ALLOC(tmp3x, 3*subframe, opus_val32); /* Don't do this at home! This resampler is horrible and it's only (barely) usable for the purpose of the analysis because we don't care about all the aliasing between 8 kHz and 12 kHz. */ for (j=0;j<subframe;j++) { tmp3x[3*j] = tmp[j]; tmp3x[3*j+1] = tmp[j]; tmp3x[3*j+2] = tmp[j]; } silk_resampler_down2_hp(S, y, tmp3x, 3*subframe); } RESTORE_STACK; return ret; } void tonality_analysis_init(TonalityAnalysisState *tonal, opus_int32 Fs) { /* Initialize reusable fields. */ tonal->arch = opus_select_arch(); tonal->Fs = Fs; /* Clear remaining fields. */ tonality_analysis_reset(tonal); } void tonality_analysis_reset(TonalityAnalysisState *tonal) { /* Clear non-reusable fields. */ char *start = (char*)&tonal->TONALITY_ANALYSIS_RESET_START; OPUS_CLEAR(start, sizeof(TonalityAnalysisState) - (start - (char*)tonal)); } void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int len) { int pos; int curr_lookahead; float psum; int i; pos = tonal->read_pos; curr_lookahead = tonal->write_pos-tonal->read_pos; if (curr_lookahead<0) curr_lookahead += DETECT_SIZE; /* On long frames, look at the second analysis window rather than the first. */ if (len > tonal->Fs/50 && pos != tonal->write_pos) { pos++; if (pos==DETECT_SIZE) pos=0; } if (pos == tonal->write_pos) pos--; if (pos<0) pos = DETECT_SIZE-1; OPUS_COPY(info_out, &tonal->info[pos], 1); /* If possible, look ahead for a tone to compensate for the delay in the tone detector. */ for (i=0;i<3;i++) { pos++; if (pos==DETECT_SIZE) pos = 0; if (pos == tonal->write_pos) break; info_out->tonality = MAX32(0, -.03 + MAX32(info_out->tonality, tonal->info[pos].tonality-.05)); } tonal->read_subframe += len/(tonal->Fs/400); while (tonal->read_subframe>=8) { tonal->read_subframe -= 8; tonal->read_pos++; } if (tonal->read_pos>=DETECT_SIZE) tonal->read_pos-=DETECT_SIZE; /* The -1 is to compensate for the delay in the features themselves. */ curr_lookahead = IMAX(curr_lookahead-1, 0); psum=0; /* Summing the probability of transition patterns that involve music at time (DETECT_SIZE-curr_lookahead-1) */ for (i=0;i<DETECT_SIZE-curr_lookahead;i++) psum += tonal->pmusic[i]; for (;i<DETECT_SIZE;i++) psum += tonal->pspeech[i]; psum = psum*tonal->music_confidence + (1-psum)*tonal->speech_confidence; /*printf("%f %f %f %f %f\n", psum, info_out->music_prob, info_out->vad_prob, info_out->activity_probability, info_out->tonality);*/ info_out->music_prob = psum; } static const float std_feature_bias[9] = { 5.684947, 3.475288, 1.770634, 1.599784, 3.773215, 2.163313, 1.260756, 1.116868, 1.918795 }; static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt_mode, const void *x, int len, int offset, int c1, int c2, int C, int lsb_depth, downmix_func downmix) { int i, b; const kiss_fft_state *kfft; VARDECL(kiss_fft_cpx, in); VARDECL(kiss_fft_cpx, out); int N = 480, N2=240; float * OPUS_RESTRICT A = tonal->angle; float * OPUS_RESTRICT dA = tonal->d_angle; float * OPUS_RESTRICT d2A = tonal->d2_angle; VARDECL(float, tonality); VARDECL(float, noisiness); float band_tonality[NB_TBANDS]; float logE[NB_TBANDS]; float BFCC[8]; float features[25]; float frame_tonality; float max_frame_tonality; /*float tw_sum=0;*/ float frame_noisiness; const float pi4 = (float)(M_PI*M_PI*M_PI*M_PI); float slope=0; float frame_stationarity; float relativeE; float frame_probs[2]; float alpha, alphaE, alphaE2; float frame_loudness; float bandwidth_mask; int bandwidth=0; float maxE = 0; float noise_floor; int remaining; AnalysisInfo *info; float hp_ener; float tonality2[240]; float midE[8]; float spec_variability=0; SAVE_STACK; alpha = 1.f/IMIN(10, 1+tonal->count); alphaE = 1.f/IMIN(25, 1+tonal->count); alphaE2 = 1.f/IMIN(500, 1+tonal->count); if (tonal->Fs == 48000) { /* len and offset are now at 24 kHz. */ len/= 2; offset /= 2; } else if (tonal->Fs == 16000) { len = 3*len/2; offset = 3*offset/2; } if (tonal->count<4) tonal->music_prob = .5; kfft = celt_mode->mdct.kfft[0]; if (tonal->count==0) tonal->mem_fill = 240; tonal->hp_ener_accum += downmix_and_resample(downmix, x, &tonal->inmem[tonal->mem_fill], tonal->downmix_state, IMIN(len, ANALYSIS_BUF_SIZE-tonal->mem_fill), offset, c1, c2, C, tonal->Fs); if (tonal->mem_fill+len < ANALYSIS_BUF_SIZE) { tonal->mem_fill += len; /* Don't have enough to update the analysis */ RESTORE_STACK; return; } hp_ener = tonal->hp_ener_accum; info = &tonal->info[tonal->write_pos++]; if (tonal->write_pos>=DETECT_SIZE) tonal->write_pos-=DETECT_SIZE; ALLOC(in, 480, kiss_fft_cpx); ALLOC(out, 480, kiss_fft_cpx); ALLOC(tonality, 240, float); ALLOC(noisiness, 240, float); for (i=0;i<N2;i++) { float w = analysis_window[i]; in[i].r = (kiss_fft_scalar)(w*tonal->inmem[i]); in[i].i = (kiss_fft_scalar)(w*tonal->inmem[N2+i]); in[N-i-1].r = (kiss_fft_scalar)(w*tonal->inmem[N-i-1]); in[N-i-1].i = (kiss_fft_scalar)(w*tonal->inmem[N+N2-i-1]); } OPUS_MOVE(tonal->inmem, tonal->inmem+ANALYSIS_BUF_SIZE-240, 240); remaining = len - (ANALYSIS_BUF_SIZE-tonal->mem_fill); tonal->hp_ener_accum = downmix_and_resample(downmix, x, &tonal->inmem[240], tonal->downmix_state, remaining, offset+ANALYSIS_BUF_SIZE-tonal->mem_fill, c1, c2, C, tonal->Fs); tonal->mem_fill = 240 + remaining; opus_fft(kfft, in, out, tonal->arch); #ifndef FIXED_POINT /* If there's any NaN on the input, the entire output will be NaN, so we only need to check one value. */ if (celt_isnan(out[0].r)) { info->valid = 0; RESTORE_STACK; return; } #endif for (i=1;i<N2;i++) { float X1r, X2r, X1i, X2i; float angle, d_angle, d2_angle; float angle2, d_angle2, d2_angle2; float mod1, mod2, avg_mod; X1r = (float)out[i].r+out[N-i].r; X1i = (float)out[i].i-out[N-i].i; X2r = (float)out[i].i+out[N-i].i; X2i = (float)out[N-i].r-out[i].r; angle = (float)(.5f/M_PI)*fast_atan2f(X1i, X1r); d_angle = angle - A[i]; d2_angle = d_angle - dA[i]; angle2 = (float)(.5f/M_PI)*fast_atan2f(X2i, X2r); d_angle2 = angle2 - angle; d2_angle2 = d_angle2 - d_angle; mod1 = d2_angle - (float)float2int(d2_angle); noisiness[i] = ABS16(mod1); mod1 *= mod1; mod1 *= mod1; mod2 = d2_angle2 - (float)float2int(d2_angle2); noisiness[i] += ABS16(mod2); mod2 *= mod2; mod2 *= mod2; avg_mod = .25f*(d2A[i]+mod1+2*mod2); /* This introduces an extra delay of 2 frames in the detection. */ tonality[i] = 1.f/(1.f+40.f*16.f*pi4*avg_mod)-.015f; /* No delay on this detection, but it's less reliable. */ tonality2[i] = 1.f/(1.f+40.f*16.f*pi4*mod2)-.015f; A[i] = angle2; dA[i] = d_angle2; d2A[i] = mod2; } for (i=2;i<N2-1;i++) { float tt = MIN32(tonality2[i], MAX32(tonality2[i-1], tonality2[i+1])); tonality[i] = .9*MAX32(tonality[i], tt-.1); } frame_tonality = 0; max_frame_tonality = 0; /*tw_sum = 0;*/ info->activity = 0; frame_noisiness = 0; frame_stationarity = 0; if (!tonal->count) { for (b=0;b<NB_TBANDS;b++) { tonal->lowE[b] = 1e10; tonal->highE[b] = -1e10; } } relativeE = 0; frame_loudness = 0; for (b=0;b<NB_TBANDS;b++) { float E=0, tE=0, nE=0; float L1, L2; float stationarity; for (i=tbands[b];i<tbands[b+1];i++) { float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i; #ifdef FIXED_POINT /* FIXME: It's probably best to change the BFCC filter initial state instead */ binE *= 5.55e-17f; #endif E += binE; tE += binE*MAX32(0, tonality[i]); nE += binE*2.f*(.5f-noisiness[i]); } #ifndef FIXED_POINT /* Check for extreme band energies that could cause NaNs later. */ if (!(E<1e9f) || celt_isnan(E)) { info->valid = 0; RESTORE_STACK; return; } #endif tonal->E[tonal->E_count][b] = E; frame_noisiness += nE/(1e-15f+E); frame_loudness += (float)sqrt(E+1e-10f); logE[b] = (float)log(E+1e-10f); tonal->logE[tonal->E_count][b] = logE[b]; if (tonal->count==0) tonal->highE[b] = tonal->lowE[b] = logE[b]; if (tonal->highE[b] > tonal->lowE[b] + 7.5) { if (tonal->highE[b] - logE[b] > logE[b] - tonal->lowE[b]) tonal->highE[b] -= .01; else tonal->lowE[b] += .01; } if (logE[b] > tonal->highE[b]) { tonal->highE[b] = logE[b]; tonal->lowE[b] = MAX32(tonal->highE[b]-15, tonal->lowE[b]); } else if (logE[b] < tonal->lowE[b]) { tonal->lowE[b] = logE[b]; tonal->highE[b] = MIN32(tonal->lowE[b]+15, tonal->highE[b]); } relativeE += (logE[b]-tonal->lowE[b])/(1e-15f + (tonal->highE[b]-tonal->lowE[b])); L1=L2=0; for (i=0;i<NB_FRAMES;i++) { L1 += (float)sqrt(tonal->E[i][b]); L2 += tonal->E[i][b]; } stationarity = MIN16(0.99f,L1/(float)sqrt(1e-15+NB_FRAMES*L2)); stationarity *= stationarity; stationarity *= stationarity; frame_stationarity += stationarity; /*band_tonality[b] = tE/(1e-15+E)*/; band_tonality[b] = MAX16(tE/(1e-15f+E), stationarity*tonal->prev_band_tonality[b]); #if 0 if (b>=NB_TONAL_SKIP_BANDS) { frame_tonality += tweight[b]*band_tonality[b]; tw_sum += tweight[b]; } #else frame_tonality += band_tonality[b]; if (b>=NB_TBANDS-NB_TONAL_SKIP_BANDS) frame_tonality -= band_tonality[b-NB_TBANDS+NB_TONAL_SKIP_BANDS]; #endif max_frame_tonality = MAX16(max_frame_tonality, (1.f+.03f*(b-NB_TBANDS))*frame_tonality); slope += band_tonality[b]*(b-8); /*printf("%f %f ", band_tonality[b], stationarity);*/ tonal->prev_band_tonality[b] = band_tonality[b]; } for (i=0;i<NB_FRAMES;i++) { int j; float mindist = 1e15; for (j=0;j<NB_FRAMES;j++) { int k; float dist=0; for (k=0;k<NB_TBANDS;k++) { float tmp; tmp = tonal->logE[i][k] - tonal->logE[j][k]; dist += tmp*tmp; } if (j!=i) mindist = MIN32(mindist, dist); } spec_variability += mindist; } spec_variability = sqrt(spec_variability/NB_FRAMES/NB_TBANDS); bandwidth_mask = 0; bandwidth = 0; maxE = 0; noise_floor = 5.7e-4f/(1<<(IMAX(0,lsb_depth-8))); #ifdef FIXED_POINT noise_floor *= 1<<(15+SIG_SHIFT); #endif noise_floor *= noise_floor; for (b=0;b<NB_TBANDS;b++) { float E=0; int band_start, band_end; /* Keep a margin of 300 Hz for aliasing */ band_start = tbands[b]; band_end = tbands[b+1]; for (i=band_start;i<band_end;i++) { float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i; E += binE; } maxE = MAX32(maxE, E); tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E); E = MAX32(E, tonal->meanE[b]); /* Use a simple follower with 13 dB/Bark slope for spreading function */ bandwidth_mask = MAX32(.05f*bandwidth_mask, E); /* Consider the band "active" only if all these conditions are met: 1) less than 10 dB below the simple follower 2) less than 90 dB below the peak band (maximal masking possible considering both the ATH and the loudness-dependent slope of the spreading function) 3) above the PCM quantization noise floor We use b+1 because the first CELT band isn't included in tbands[] */ if (E>.1*bandwidth_mask && E*1e9f > maxE && E > noise_floor*(band_end-band_start)) bandwidth = b+1; } /* Special case for the last two bands, for which we don't have spectrum but only the energy above 12 kHz. */ { float E = hp_ener*(1./(240*240)); #ifdef FIXED_POINT /* silk_resampler_down2_hp() shifted right by an extra 8 bits. */ E *= ((opus_int32)1 << 2*SIG_SHIFT)*256.f; #endif maxE = MAX32(maxE, E); tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E); E = MAX32(E, tonal->meanE[b]); /* Use a simple follower with 13 dB/Bark slope for spreading function */ bandwidth_mask = MAX32(.05f*bandwidth_mask, E); if (E>.1*bandwidth_mask && E*1e9f > maxE && E > noise_floor*160) bandwidth = 20; } if (tonal->count<=2) bandwidth = 20; frame_loudness = 20*(float)log10(frame_loudness); tonal->Etracker = MAX32(tonal->Etracker-.003f, frame_loudness); tonal->lowECount *= (1-alphaE); if (frame_loudness < tonal->Etracker-30) tonal->lowECount += alphaE; for (i=0;i<8;i++) { float sum=0; for (b=0;b<16;b++) sum += dct_table[i*16+b]*logE[b]; BFCC[i] = sum; } for (i=0;i<8;i++) { float sum=0; for (b=0;b<16;b++) sum += dct_table[i*16+b]*.5*(tonal->highE[b]+tonal->lowE[b]); midE[i] = sum; } frame_stationarity /= NB_TBANDS; relativeE /= NB_TBANDS; if (tonal->count<10) relativeE = .5; frame_noisiness /= NB_TBANDS; #if 1 info->activity = frame_noisiness + (1-frame_noisiness)*relativeE; #else info->activity = .5*(1+frame_noisiness-frame_stationarity); #endif frame_tonality = (max_frame_tonality/(NB_TBANDS-NB_TONAL_SKIP_BANDS)); frame_tonality = MAX16(frame_tonality, tonal->prev_tonality*.8f); tonal->prev_tonality = frame_tonality; slope /= 8*8; info->tonality_slope = slope; tonal->E_count = (tonal->E_count+1)%NB_FRAMES; tonal->count = IMIN(tonal->count+1, ANALYSIS_COUNT_MAX); info->tonality = frame_tonality; for (i=0;i<4;i++) features[i] = -0.12299f*(BFCC[i]+tonal->mem[i+24]) + 0.49195f*(tonal->mem[i]+tonal->mem[i+16]) + 0.69693f*tonal->mem[i+8] - 1.4349f*tonal->cmean[i]; for (i=0;i<4;i++) tonal->cmean[i] = (1-alpha)*tonal->cmean[i] + alpha*BFCC[i]; for (i=0;i<4;i++) features[4+i] = 0.63246f*(BFCC[i]-tonal->mem[i+24]) + 0.31623f*(tonal->mem[i]-tonal->mem[i+16]); for (i=0;i<3;i++) features[8+i] = 0.53452f*(BFCC[i]+tonal->mem[i+24]) - 0.26726f*(tonal->mem[i]+tonal->mem[i+16]) -0.53452f*tonal->mem[i+8]; if (tonal->count > 5) { for (i=0;i<9;i++) tonal->std[i] = (1-alpha)*tonal->std[i] + alpha*features[i]*features[i]; } for (i=0;i<4;i++) features[i] = BFCC[i]-midE[i]; for (i=0;i<8;i++) { tonal->mem[i+24] = tonal->mem[i+16]; tonal->mem[i+16] = tonal->mem[i+8]; tonal->mem[i+8] = tonal->mem[i]; tonal->mem[i] = BFCC[i]; } for (i=0;i<9;i++) features[11+i] = (float)sqrt(tonal->std[i]) - std_feature_bias[i]; features[18] = spec_variability-.78;; features[20] = info->tonality - 0.154723; features[21] = info->activity - 0.724643; features[22] = frame_stationarity - 0.743717; features[23] = info->tonality_slope + 0.069216; features[24] = tonal->lowECount - 0.067930; #ifndef DISABLE_FLOAT_API mlp_process(&net, features, frame_probs); frame_probs[0] = .5f*(frame_probs[0]+1); /* Curve fitting between the MLP probability and the actual probability */ /*frame_probs[0] = .01f + 1.21f*frame_probs[0]*frame_probs[0] - .23f*(float)pow(frame_probs[0], 10);*/ /* Probability of active audio (as opposed to silence) */ frame_probs[1] = .5f*frame_probs[1]+.5f; frame_probs[1] *= frame_probs[1]; /* Probability of speech or music vs noise */ info->activity_probability = frame_probs[1]; /*printf("%f %f\n", frame_probs[0], frame_probs[1]);*/ { /* Probability of state transition */ float tau; /* Represents independence of the MLP probabilities, where beta=1 means fully independent. */ float beta; /* Denormalized probability of speech (p0) and music (p1) after update */ float p0, p1; /* Probabilities for "all speech" and "all music" */ float s0, m0; /* Probability sum for renormalisation */ float psum; /* Instantaneous probability of speech and music, with beta pre-applied. */ float speech0; float music0; float p, q; /* More silence transitions for speech than for music. */ tau = .001f*tonal->music_prob + .01f*(1-tonal->music_prob); p = MAX16(.05f,MIN16(.95f,frame_probs[1])); q = MAX16(.05f,MIN16(.95f,tonal->vad_prob)); beta = .02f+.05f*ABS16(p-q)/(p*(1-q)+q*(1-p)); /* p0 and p1 are the probabilities of speech and music at this frame using only information from previous frame and applying the state transition model */ p0 = (1-tonal->vad_prob)*(1-tau) + tonal->vad_prob *tau; p1 = tonal->vad_prob *(1-tau) + (1-tonal->vad_prob)*tau; /* We apply the current probability with exponent beta to work around the fact that the probability estimates aren't independent. */ p0 *= (float)pow(1-frame_probs[1], beta); p1 *= (float)pow(frame_probs[1], beta); /* Normalise the probabilities to get the Marokv probability of music. */ tonal->vad_prob = p1/(p0+p1); info->vad_prob = tonal->vad_prob; /* Consider that silence has a 50-50 probability of being speech or music. */ frame_probs[0] = tonal->vad_prob*frame_probs[0] + (1-tonal->vad_prob)*.5f; /* One transition every 3 minutes of active audio */ tau = .0001f; /* Adapt beta based on how "unexpected" the new prob is */ p = MAX16(.05f,MIN16(.95f,frame_probs[0])); q = MAX16(.05f,MIN16(.95f,tonal->music_prob)); beta = .02f+.05f*ABS16(p-q)/(p*(1-q)+q*(1-p)); /* p0 and p1 are the probabilities of speech and music at this frame using only information from previous frame and applying the state transition model */ p0 = (1-tonal->music_prob)*(1-tau) + tonal->music_prob *tau; p1 = tonal->music_prob *(1-tau) + (1-tonal->music_prob)*tau; /* We apply the current probability with exponent beta to work around the fact that the probability estimates aren't independent. */ p0 *= (float)pow(1-frame_probs[0], beta); p1 *= (float)pow(frame_probs[0], beta); /* Normalise the probabilities to get the Marokv probability of music. */ tonal->music_prob = p1/(p0+p1); info->music_prob = tonal->music_prob; /*printf("%f %f %f %f\n", frame_probs[0], frame_probs[1], tonal->music_prob, tonal->vad_prob);*/ /* This chunk of code deals with delayed decision. */ psum=1e-20f; /* Instantaneous probability of speech and music, with beta pre-applied. */ speech0 = (float)pow(1-frame_probs[0], beta); music0 = (float)pow(frame_probs[0], beta); if (tonal->count==1) { tonal->pspeech[0]=.5; tonal->pmusic [0]=.5; } /* Updated probability of having only speech (s0) or only music (m0), before considering the new observation. */ s0 = tonal->pspeech[0] + tonal->pspeech[1]; m0 = tonal->pmusic [0] + tonal->pmusic [1]; /* Updates s0 and m0 with instantaneous probability. */ tonal->pspeech[0] = s0*(1-tau)*speech0; tonal->pmusic [0] = m0*(1-tau)*music0; /* Propagate the transition probabilities */ for (i=1;i<DETECT_SIZE-1;i++) { tonal->pspeech[i] = tonal->pspeech[i+1]*speech0; tonal->pmusic [i] = tonal->pmusic [i+1]*music0; } /* Probability that the latest frame is speech, when all the previous ones were music. */ tonal->pspeech[DETECT_SIZE-1] = m0*tau*speech0; /* Probability that the latest frame is music, when all the previous ones were speech. */ tonal->pmusic [DETECT_SIZE-1] = s0*tau*music0; /* Renormalise probabilities to 1 */ for (i=0;i<DETECT_SIZE;i++) psum += tonal->pspeech[i] + tonal->pmusic[i]; psum = 1.f/psum; for (i=0;i<DETECT_SIZE;i++) { tonal->pspeech[i] *= psum; tonal->pmusic [i] *= psum; } psum = tonal->pmusic[0]; for (i=1;i<DETECT_SIZE;i++) psum += tonal->pspeech[i]; /* Estimate our confidence in the speech/music decisions */ if (frame_probs[1]>.75) { if (tonal->music_prob>.9) { float adapt; adapt = 1.f/(++tonal->music_confidence_count); tonal->music_confidence_count = IMIN(tonal->music_confidence_count, 500); tonal->music_confidence += adapt*MAX16(-.2f,frame_probs[0]-tonal->music_confidence); } if (tonal->music_prob<.1) { float adapt; adapt = 1.f/(++tonal->speech_confidence_count); tonal->speech_confidence_count = IMIN(tonal->speech_confidence_count, 500); tonal->speech_confidence += adapt*MIN16(.2f,frame_probs[0]-tonal->speech_confidence); } } else { if (tonal->music_confidence_count==0) tonal->music_confidence = .9f; if (tonal->speech_confidence_count==0) tonal->speech_confidence = .1f; } } tonal->last_music = tonal->music_prob>.5f; #else info->music_prob = 0; #endif #ifdef MLP_TRAINING for (i=0;i<25;i++) printf("%f ", features[i]); printf("\n"); #endif info->bandwidth = bandwidth; /*printf("%d %d\n", info->bandwidth, info->opus_bandwidth);*/ info->noisiness = frame_noisiness; info->valid = 1; RESTORE_STACK; } void run_analysis(TonalityAnalysisState *analysis, const CELTMode *celt_mode, const void *analysis_pcm, int analysis_frame_size, int frame_size, int c1, int c2, int C, opus_int32 Fs, int lsb_depth, downmix_func downmix, AnalysisInfo *analysis_info) { int offset; int pcm_len; analysis_frame_size -= analysis_frame_size&1; if (analysis_pcm != NULL) { /* Avoid overflow/wrap-around of the analysis buffer */ analysis_frame_size = IMIN((DETECT_SIZE-5)*Fs/50, analysis_frame_size); pcm_len = analysis_frame_size - analysis->analysis_offset; offset = analysis->analysis_offset; while (pcm_len>0) { tonality_analysis(analysis, celt_mode, analysis_pcm, IMIN(Fs/50, pcm_len), offset, c1, c2, C, lsb_depth, downmix); offset += Fs/50; pcm_len -= Fs/50; } analysis->analysis_offset = analysis_frame_size; analysis->analysis_offset -= frame_size; } analysis_info->valid = 0; tonality_get_info(analysis, analysis_info, frame_size); }