shithub: opus

ref: 3e4afc6fd2b03616db34098d5131f7f1bd3c0e32
dir: /silk/float/wrappers_FLP.c/

View raw version
/***********************************************************************
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, (subject to the limitations in the disclaimer below)
are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Skype Limited, nor the names of specific
contributors, may be used to endorse or promote products derived from
this software without specific prior written permission.
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED
BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "main_FLP.h"

/* Wrappers. Calls flp / fix code */

/* Convert AR filter coefficients to NLSF parameters */
void silk_A2NLSF_FLP(
    opus_int16                      *NLSF_Q15,                          /* O    NLSF vector      [ LPC_order ]              */
    const silk_float                *pAR,                               /* I    LPC coefficients [ LPC_order ]              */
    const opus_int                  LPC_order                           /* I    LPC order                                   */
)
{
    opus_int   i;
    opus_int32 a_fix_Q16[ MAX_LPC_ORDER ];

    for( i = 0; i < LPC_order; i++ ) {
        a_fix_Q16[ i ] = silk_float2int( pAR[ i ] * 65536.0f );
    }

    silk_A2NLSF( NLSF_Q15, a_fix_Q16, LPC_order );
}

/* Convert LSF parameters to AR prediction filter coefficients */
void silk_NLSF2A_FLP(
    silk_float                      *pAR,                               /* O    LPC coefficients [ LPC_order ]              */
    const opus_int16                *NLSF_Q15,                          /* I    NLSF vector      [ LPC_order ]              */
    const opus_int                  LPC_order                           /* I    LPC order                                   */
)
{
    opus_int   i;
    opus_int16 a_fix_Q12[ MAX_LPC_ORDER ];

    silk_NLSF2A( a_fix_Q12, NLSF_Q15, LPC_order );

    for( i = 0; i < LPC_order; i++ ) {
        pAR[ i ] = ( silk_float )a_fix_Q12[ i ] * ( 1.0f / 4096.0f );
    }
}

/******************************************/
/* Floating-point NLSF processing wrapper */
/******************************************/
void silk_process_NLSFs_FLP(
    silk_encoder_state              *psEncC,                            /* I/O  Encoder state                               */
    silk_float                      PredCoef[ 2 ][ MAX_LPC_ORDER ],     /* O    Prediction coefficients                     */
    opus_int16                      NLSF_Q15[      MAX_LPC_ORDER ],     /* I/O  Normalized LSFs (quant out) (0 - (2^15-1))  */
    const opus_int16                prev_NLSF_Q15[ MAX_LPC_ORDER ]      /* I    Previous Normalized LSFs (0 - (2^15-1))     */
)
{
    opus_int     i, j;
    opus_int16   PredCoef_Q12[ 2 ][ MAX_LPC_ORDER ];

    silk_process_NLSFs( psEncC, PredCoef_Q12, NLSF_Q15, prev_NLSF_Q15);

    for( j = 0; j < 2; j++ ) {
        for( i = 0; i < psEncC->predictLPCOrder; i++ ) {
            PredCoef[ j ][ i ] = ( silk_float )PredCoef_Q12[ j ][ i ] * ( 1.0f / 4096.0f );
        }
    }
}

/****************************************/
/* Floating-point Silk NSQ wrapper      */
/****************************************/
void silk_NSQ_wrapper_FLP(
    silk_encoder_state_FLP          *psEnc,                             /* I/O  Encoder state FLP                           */
    silk_encoder_control_FLP        *psEncCtrl,                         /* I/O  Encoder control FLP                         */
    SideInfoIndices                 *psIndices,                         /* I/O  Quantization indices                        */
    silk_nsq_state                  *psNSQ,                             /* I/O  Noise Shaping Quantzation state             */
    opus_int8                       pulses[],                           /* O    Quantized pulse signal                      */
    const silk_float                x[]                                 /* I    Prefiltered input signal                    */
)
{
    opus_int     i, j;
    opus_int32   x_Q3[ MAX_FRAME_LENGTH ];
    opus_int32   Gains_Q16[ MAX_NB_SUBFR ];
    silk_DWORD_ALIGN opus_int16 PredCoef_Q12[ 2 ][ MAX_LPC_ORDER ];
    opus_int16   LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ];
    opus_int     LTP_scale_Q14;

    /* Noise shaping parameters */
    opus_int16   AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ];
    opus_int32   LF_shp_Q14[ MAX_NB_SUBFR ];         /* Packs two int16 coefficients per int32 value             */
    opus_int     Lambda_Q10;
    opus_int     Tilt_Q14[ MAX_NB_SUBFR ];
    opus_int     HarmShapeGain_Q14[ MAX_NB_SUBFR ];

    /* Convert control struct to fix control struct */
    /* Noise shape parameters */
    for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
        for( j = 0; j < psEnc->sCmn.shapingLPCOrder; j++ ) {
            AR2_Q13[ i * MAX_SHAPE_LPC_ORDER + j ] = silk_float2int( psEncCtrl->AR2[ i * MAX_SHAPE_LPC_ORDER + j ] * 8192.0f );
        }
    }

    for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
        LF_shp_Q14[ i ] =   silk_LSHIFT32( silk_float2int( psEncCtrl->LF_AR_shp[ i ]     * 16384.0f ), 16 ) |
                              (opus_uint16)silk_float2int( psEncCtrl->LF_MA_shp[ i ]     * 16384.0f );
        Tilt_Q14[ i ]   =        (opus_int)silk_float2int( psEncCtrl->Tilt[ i ]          * 16384.0f );
        HarmShapeGain_Q14[ i ] = (opus_int)silk_float2int( psEncCtrl->HarmShapeGain[ i ] * 16384.0f );
    }
    Lambda_Q10 = ( opus_int )silk_float2int( psEncCtrl->Lambda * 1024.0f );

    /* prediction and coding parameters */
    for( i = 0; i < psEnc->sCmn.nb_subfr * LTP_ORDER; i++ ) {
        LTPCoef_Q14[ i ] = (opus_int16)silk_float2int( psEncCtrl->LTPCoef[ i ] * 16384.0f );
    }

    for( j = 0; j < 2; j++ ) {
        for( i = 0; i < psEnc->sCmn.predictLPCOrder; i++ ) {
            PredCoef_Q12[ j ][ i ] = (opus_int16)silk_float2int( psEncCtrl->PredCoef[ j ][ i ] * 4096.0f );
        }
    }

    for( i = 0; i < psEnc->sCmn.nb_subfr; i++ ) {
        Gains_Q16[ i ] = silk_float2int( psEncCtrl->Gains[ i ] * 65536.0f );
        silk_assert( Gains_Q16[ i ] > 0 );
    }

    if( psIndices->signalType == TYPE_VOICED ) {
        LTP_scale_Q14 = silk_LTPScales_table_Q14[ psIndices->LTP_scaleIndex ];
    } else {
        LTP_scale_Q14 = 0;
    }

    /* Convert input to fix */
    for( i = 0; i < psEnc->sCmn.frame_length; i++ ) {
        x_Q3[ i ] = silk_float2int( 8.0 * x[ i ] );
    }

    /* Call NSQ */
    if( psEnc->sCmn.nStatesDelayedDecision > 1 || psEnc->sCmn.warping_Q16 > 0 ) {
        silk_NSQ_del_dec( &psEnc->sCmn, psNSQ, psIndices, x_Q3, pulses, PredCoef_Q12[ 0 ], LTPCoef_Q14,
            AR2_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, psEncCtrl->pitchL, Lambda_Q10, LTP_scale_Q14 );
    } else {
        silk_NSQ( &psEnc->sCmn, psNSQ, psIndices, x_Q3, pulses, PredCoef_Q12[ 0 ], LTPCoef_Q14,
            AR2_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, psEncCtrl->pitchL, Lambda_Q10, LTP_scale_Q14 );
    }
}

/***********************************************/
/* Floating-point Silk LTP quantiation wrapper */
/***********************************************/
void silk_quant_LTP_gains_FLP(
    silk_float                      B[ MAX_NB_SUBFR * LTP_ORDER ],      /* I/O  (Un-)quantized LTP gains                    */
    opus_int8                       cbk_index[ MAX_NB_SUBFR ],          /* O    Codebook index                              */
    opus_int8                       *periodicity_index,                 /* O    Periodicity index                           */
    const silk_float                W[ MAX_NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* I    Error weights                        */
    const opus_int                  mu_Q10,                             /* I    Mu value (R/D tradeoff)                     */
    const opus_int                  lowComplexity,                      /* I    Flag for low complexity                     */
    const opus_int                  nb_subfr                            /* I    number of subframes                         */
)
{
    opus_int   i;
    opus_int16 B_Q14[ MAX_NB_SUBFR * LTP_ORDER ];
    opus_int32 W_Q18[ MAX_NB_SUBFR*LTP_ORDER*LTP_ORDER ];

    for( i = 0; i < nb_subfr * LTP_ORDER; i++ ) {
        B_Q14[ i ] = (opus_int16)silk_float2int( B[ i ] * 16384.0f );
    }
    for( i = 0; i < nb_subfr * LTP_ORDER * LTP_ORDER; i++ ) {
        W_Q18[ i ] = (opus_int32)silk_float2int( W[ i ] * 262144.0f );
    }

    silk_quant_LTP_gains( B_Q14, cbk_index, periodicity_index, W_Q18, mu_Q10, lowComplexity, nb_subfr );

    for( i = 0; i < nb_subfr * LTP_ORDER; i++ ) {
        B[ i ] = (silk_float)B_Q14[ i ] * ( 1.0f / 16384.0f );
    }
}