ref: 2a6039b3f48759981138f0e25655212b03e2c160
dir: /libcelt/pitch.c/
/* (C) 2007-2008 Jean-Marc Valin, CSIRO */ /** @file pitch.c @brief Pitch analysis */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of the Xiph.org Foundation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif /*#include "_kiss_fft_guts.h" #include "kiss_fftr.h"*/ #include "kfft_single.h" #include <stdio.h> #include <math.h> #include "pitch.h" #include "psy.h" #include "os_support.h" kiss_fftr_cfg pitch_state_alloc(int max_lag) { return kiss_fftr_alloc_celt_single(max_lag, 0, 0); } void pitch_state_free(kiss_fftr_cfg st) { kiss_fft_free(st); } #ifdef FIXED_POINT static void normalise16(celt_word16_t *x, int len, celt_word16_t val) { int i; celt_word16_t maxval = 0; for (i=0;i<len;i++) maxval = MAX16(maxval, ABS16(x[i])); if (maxval > val) { int shift = 0; while (maxval > val) { maxval >>= 1; shift++; } if (shift==0) return; for (i=0;i<len;i++) x[i] = SHR16(x[i], shift); } else { int shift=0; if (maxval == 0) return; val >>= 1; while (maxval < val) { val >>= 1; shift++; } if (shift==0) return; for (i=0;i<len;i++) x[i] = SHL16(x[i], shift); } } #else #define normalise16(x,len,val) #endif #define INPUT_SHIFT 15 void find_spectral_pitch(kiss_fftr_cfg fft, struct PsyDecay *decay, const celt_sig_t *x, const celt_sig_t *y, const celt_word16_t *window, int overlap, int lag, int len, int C, int *pitch) { int c, i; celt_word32_t max_corr; VARDECL(celt_word16_t *X); VARDECL(celt_word16_t *Y); VARDECL(celt_mask_t *curve); int n2; int L2; const int *bitrev; SAVE_STACK; n2 = lag/2; L2 = len/2; ALLOC(X, lag, celt_word16_t); ALLOC(curve, n2, celt_mask_t); bitrev = fft->substate->bitrev; for (i=0;i<lag;i++) X[i] = 0; /* Sum all channels of the current frame and copy into X in bit-reverse order */ for (c=0;c<C;c++) { for (i=0;i<L2;i++) { X[2*bitrev[i]] += SHR32(x[C*(2*i)+c],INPUT_SHIFT); X[2*bitrev[i]+1] += SHR32(x[C*(2*i+1)+c],INPUT_SHIFT); } } /* Applying the window in the bit-reverse domain. It's a bit weird, but it can help save memory */ for (i=0;i<overlap/2;i++) { X[2*bitrev[i]] = MULT16_32_Q15(window[2*i], X[2*bitrev[i]]); X[2*bitrev[i]+1] = MULT16_32_Q15(window[2*i+1], X[2*bitrev[i]+1]); X[2*bitrev[L2-i-1]] = MULT16_32_Q15(window[2*i+1], X[2*bitrev[L2-i-1]]); X[2*bitrev[L2-i-1]+1] = MULT16_32_Q15(window[2*i], X[2*bitrev[L2-i-1]+1]); } normalise16(X, lag, 8192); /*for (i=0;i<lag;i++) printf ("%d ", X[i]);printf ("\n");*/ /* Forward real FFT (in-place) */ kf_work((kiss_fft_cpx*)X, NULL, 1,1, fft->substate->factors,fft->substate, 1, 1, 1); kiss_fftr_twiddles(fft,X); compute_masking(decay, X, curve, lag); /* Deferred allocation to reduce peak stack usage */ ALLOC(Y, lag, celt_word16_t); for (i=0;i<lag;i++) Y[i] = 0; /* Sum all channels of the past audio and copy into Y in bit-reverse order */ for (c=0;c<C;c++) { for (i=0;i<n2;i++) { Y[2*bitrev[i]] += SHR32(y[C*(2*i)+c],INPUT_SHIFT); Y[2*bitrev[i]+1] += SHR32(y[C*(2*i+1)+c],INPUT_SHIFT); } } normalise16(Y, lag, 8192); /* Forward real FFT (in-place) */ kf_work((kiss_fft_cpx*)Y, NULL, 1,1, fft->substate->factors,fft->substate, 1, 1, 1); kiss_fftr_twiddles(fft,Y); /* Compute cross-spectrum using the inverse masking curve as weighting */ for (i=1;i<n2;i++) { float n; celt_word32_t tmp; /*n = 1.f/(1e1+sqrt(sqrt((X[2*i-1]*X[2*i-1] + X[2*i ]*X[2*i ])*(Y[2*i-1]*Y[2*i-1] + Y[2*i ]*Y[2*i ]))));*/ /*n = 1;*/ /*printf ("%d %d ", X[2*i]*X[2*i]+X[2*i+1]*X[2*i+1], Y[2*i]*Y[2*i]+Y[2*i+1]*Y[2*i+1]);*/ n = 1.f/sqrt(1+curve[i]); /*printf ("%f ", n);*/ /*n = 1.f/(1+curve[i]);*/ tmp = X[2*i]; X[2*i] = (1.f*X[2*i ]*Y[2*i ] + 1.f*X[2*i+1]*Y[2*i+1])*n; X[2*i+1] = (- 1.f*X[2*i+1]*Y[2*i ] + 1.f*tmp*Y[2*i+1])*n; } /*printf ("\n");*/ X[0] = X[1] = 0; /*for (i=0;i<lag;i++) printf ("%d ", X[i]);printf ("\n");*/ normalise16(X, lag, 50); /* Inverse half-complex to real FFT gives us the correlation */ kiss_fftri(fft, X, Y); /*for (i=0;i<lag;i++) printf ("%d ", Y[i]);printf ("\n");*/ /*for (i=0;i<C*lag;i++) printf ("%d %d\n", X[i], xx[i]);*/ /* The peak in the correlation gives us the pitch */ max_corr=-VERY_LARGE32; *pitch = 0; for (i=0;i<lag-len;i++) { /*printf ("%f ", xx[i]);*/ if (Y[i] > max_corr) { *pitch = i; max_corr = Y[i]; } } /*printf ("%f\n", max_corr);*/ /*printf ("\n"); printf ("%d %f\n", *pitch, max_corr); printf ("%d\n", *pitch);*/ RESTORE_STACK; }