ref: 2852cb1486ca68fe418bdebcda7ecc9581127b4d
dir: /silk/silk_control_codec.c/
/*********************************************************************** Copyright (c) 2006-2011, Skype Limited. All rights reserved. Redistribution and use in source and binary forms, with or without modification, (subject to the limitations in the disclaimer below) are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of Skype Limited, nor the names of specific contributors, may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***********************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #ifdef FIXED_POINT #include "silk_main_FIX.h" #define silk_encoder_state_Fxx silk_encoder_state_FIX #else #include "silk_main_FLP.h" #define silk_encoder_state_Fxx silk_encoder_state_FLP #endif #include "silk_tuning_parameters.h" opus_int silk_setup_resamplers( silk_encoder_state_Fxx *psEnc, /* I/O */ opus_int fs_kHz /* I */ ); opus_int silk_setup_fs( silk_encoder_state_Fxx *psEnc, /* I/O */ opus_int fs_kHz, /* I */ opus_int PacketSize_ms /* I */ ); opus_int silk_setup_complexity( silk_encoder_state *psEncC, /* I/O */ opus_int Complexity /* I */ ); SKP_INLINE opus_int silk_setup_LBRR( silk_encoder_state *psEncC, /* I/O */ const opus_int32 TargetRate_bps /* I */ ); /* Control encoder */ opus_int silk_control_encoder( silk_encoder_state_Fxx *psEnc, /* I/O Pointer to Silk encoder state */ silk_EncControlStruct *encControl, /* I: Control structure */ const opus_int32 TargetRate_bps, /* I Target max bitrate (bps) */ const opus_int allow_bw_switch, /* I Flag to allow switching audio bandwidth */ const opus_int channelNb /* I Channel number */ ) { opus_int fs_kHz, ret = 0; psEnc->sCmn.useDTX = encControl->useDTX; psEnc->sCmn.useCBR = encControl->useCBR; psEnc->sCmn.API_fs_Hz = encControl->API_sampleRate; psEnc->sCmn.maxInternal_fs_Hz = encControl->maxInternalSampleRate; psEnc->sCmn.minInternal_fs_Hz = encControl->minInternalSampleRate; psEnc->sCmn.desiredInternal_fs_Hz = encControl->desiredInternalSampleRate; psEnc->sCmn.useInBandFEC = encControl->useInBandFEC; psEnc->sCmn.nChannelsAPI = encControl->nChannelsAPI; psEnc->sCmn.nChannelsInternal = encControl->nChannelsInternal; psEnc->sCmn.allow_bandwidth_switch = allow_bw_switch; psEnc->sCmn.channelNb = channelNb; if( psEnc->sCmn.controlled_since_last_payload != 0 && psEnc->sCmn.prefillFlag == 0 ) { if( psEnc->sCmn.API_fs_Hz != psEnc->sCmn.prev_API_fs_Hz && psEnc->sCmn.fs_kHz > 0 ) { /* Change in API sampling rate in the middle of encoding a packet */ ret += silk_setup_resamplers( psEnc, psEnc->sCmn.fs_kHz ); } return ret; } /* Beyond this point we know that there are no previously coded frames in the payload buffer */ /********************************************/ /* Determine internal sampling rate */ /********************************************/ fs_kHz = silk_control_audio_bandwidth( &psEnc->sCmn ); /********************************************/ /* Prepare resampler and buffered data */ /********************************************/ ret += silk_setup_resamplers( psEnc, fs_kHz ); /********************************************/ /* Set internal sampling frequency */ /********************************************/ ret += silk_setup_fs( psEnc, fs_kHz, encControl->payloadSize_ms ); /********************************************/ /* Set encoding complexity */ /********************************************/ ret += silk_setup_complexity( &psEnc->sCmn, encControl->complexity ); /********************************************/ /* Set packet loss rate measured by farend */ /********************************************/ psEnc->sCmn.PacketLoss_perc = encControl->packetLossPercentage; /********************************************/ /* Set LBRR usage */ /********************************************/ ret += silk_setup_LBRR( &psEnc->sCmn, TargetRate_bps ); psEnc->sCmn.controlled_since_last_payload = 1; return ret; } opus_int silk_setup_resamplers( silk_encoder_state_Fxx *psEnc, /* I/O */ opus_int fs_kHz /* I */ ) { opus_int ret = SILK_NO_ERROR; opus_int32 nSamples_temp; if( psEnc->sCmn.fs_kHz != fs_kHz || psEnc->sCmn.prev_API_fs_Hz != psEnc->sCmn.API_fs_Hz ) { if( psEnc->sCmn.fs_kHz == 0 ) { /* Initialize the resampler for enc_API.c preparing resampling from API_fs_Hz to fs_kHz */ ret += silk_resampler_init( &psEnc->sCmn.resampler_state, psEnc->sCmn.API_fs_Hz, fs_kHz * 1000 ); } else { /* Allocate worst case space for temporary upsampling, 8 to 48 kHz, so a factor 6 */ opus_int16 x_buf_API_fs_Hz[ ( 2 * MAX_FRAME_LENGTH_MS + LA_SHAPE_MS ) * MAX_API_FS_KHZ ]; #ifdef FIXED_POINT opus_int16 *x_bufFIX = psEnc->x_buf; #else opus_int16 x_bufFIX[ 2 * MAX_FRAME_LENGTH + LA_SHAPE_MAX ]; #endif nSamples_temp = SKP_LSHIFT( psEnc->sCmn.frame_length, 1 ) + LA_SHAPE_MS * psEnc->sCmn.fs_kHz; #ifndef FIXED_POINT SKP_float2short_array( x_bufFIX, psEnc->x_buf, nSamples_temp ); #endif if( SKP_SMULBB( fs_kHz, 1000 ) < psEnc->sCmn.API_fs_Hz && psEnc->sCmn.fs_kHz != 0 ) { /* Resample buffered data in x_buf to API_fs_Hz */ silk_resampler_state_struct temp_resampler_state; /* Initialize resampler for temporary resampling of x_buf data to API_fs_Hz */ ret += silk_resampler_init( &temp_resampler_state, SKP_SMULBB( psEnc->sCmn.fs_kHz, 1000 ), psEnc->sCmn.API_fs_Hz ); /* Temporary resampling of x_buf data to API_fs_Hz */ ret += silk_resampler( &temp_resampler_state, x_buf_API_fs_Hz, x_bufFIX, nSamples_temp ); /* Calculate number of samples that has been temporarily upsampled */ nSamples_temp = SKP_DIV32_16( nSamples_temp * psEnc->sCmn.API_fs_Hz, SKP_SMULBB( psEnc->sCmn.fs_kHz, 1000 ) ); /* Initialize the resampler for enc_API.c preparing resampling from API_fs_Hz to fs_kHz */ ret += silk_resampler_init( &psEnc->sCmn.resampler_state, psEnc->sCmn.API_fs_Hz, SKP_SMULBB( fs_kHz, 1000 ) ); } else { /* Copy data */ SKP_memcpy( x_buf_API_fs_Hz, x_bufFIX, nSamples_temp * sizeof( opus_int16 ) ); } if( 1000 * fs_kHz != psEnc->sCmn.API_fs_Hz ) { /* Correct resampler state (unless resampling by a factor 1) by resampling buffered data from API_fs_Hz to fs_kHz */ ret += silk_resampler( &psEnc->sCmn.resampler_state, x_bufFIX, x_buf_API_fs_Hz, nSamples_temp ); } #ifndef FIXED_POINT SKP_short2float_array( psEnc->x_buf, x_bufFIX, ( 2 * MAX_FRAME_LENGTH_MS + LA_SHAPE_MS ) * fs_kHz ); #endif } } psEnc->sCmn.prev_API_fs_Hz = psEnc->sCmn.API_fs_Hz; return ret; } opus_int silk_setup_fs( silk_encoder_state_Fxx *psEnc, /* I/O */ opus_int fs_kHz, /* I */ opus_int PacketSize_ms /* I */ ) { opus_int ret = SILK_NO_ERROR; /* Set packet size */ if( PacketSize_ms != psEnc->sCmn.PacketSize_ms ) { if( ( PacketSize_ms != 10 ) && ( PacketSize_ms != 20 ) && ( PacketSize_ms != 40 ) && ( PacketSize_ms != 60 ) ) { ret = SILK_ENC_PACKET_SIZE_NOT_SUPPORTED; } if( PacketSize_ms <= 10 ) { psEnc->sCmn.nFramesPerPacket = 1; psEnc->sCmn.nb_subfr = PacketSize_ms == 10 ? 2 : 1; psEnc->sCmn.frame_length = SKP_SMULBB( PacketSize_ms, fs_kHz ); psEnc->sCmn.pitch_LPC_win_length = SKP_SMULBB( FIND_PITCH_LPC_WIN_MS_2_SF, fs_kHz ); if( psEnc->sCmn.fs_kHz == 8 ) { psEnc->sCmn.pitch_contour_iCDF = silk_pitch_contour_10_ms_NB_iCDF; } else { psEnc->sCmn.pitch_contour_iCDF = silk_pitch_contour_10_ms_iCDF; } } else { psEnc->sCmn.nFramesPerPacket = SKP_DIV32_16( PacketSize_ms, MAX_FRAME_LENGTH_MS ); psEnc->sCmn.nb_subfr = MAX_NB_SUBFR; psEnc->sCmn.frame_length = SKP_SMULBB( 20, fs_kHz ); psEnc->sCmn.pitch_LPC_win_length = SKP_SMULBB( FIND_PITCH_LPC_WIN_MS, fs_kHz ); if( psEnc->sCmn.fs_kHz == 8 ) { psEnc->sCmn.pitch_contour_iCDF = silk_pitch_contour_NB_iCDF; } else { psEnc->sCmn.pitch_contour_iCDF = silk_pitch_contour_iCDF; } } psEnc->sCmn.PacketSize_ms = PacketSize_ms; psEnc->sCmn.TargetRate_bps = 0; /* trigger new SNR computation */ } /* Set internal sampling frequency */ SKP_assert( fs_kHz == 8 || fs_kHz == 12 || fs_kHz == 16 ); SKP_assert( psEnc->sCmn.nb_subfr == 2 || psEnc->sCmn.nb_subfr == 4 ); if( psEnc->sCmn.fs_kHz != fs_kHz ) { /* reset part of the state */ #ifdef FIXED_POINT SKP_memset( &psEnc->sShape, 0, sizeof( silk_shape_state_FIX ) ); SKP_memset( &psEnc->sPrefilt, 0, sizeof( silk_prefilter_state_FIX ) ); #else SKP_memset( &psEnc->sShape, 0, sizeof( silk_shape_state_FLP ) ); SKP_memset( &psEnc->sPrefilt, 0, sizeof( silk_prefilter_state_FLP ) ); #endif SKP_memset( &psEnc->sCmn.sNSQ, 0, sizeof( silk_nsq_state ) ); SKP_memset( psEnc->sCmn.prev_NLSFq_Q15, 0, sizeof( psEnc->sCmn.prev_NLSFq_Q15 ) ); SKP_memset( &psEnc->sCmn.sLP.In_LP_State, 0, sizeof( psEnc->sCmn.sLP.In_LP_State ) ); psEnc->sCmn.inputBufIx = 0; psEnc->sCmn.nFramesEncoded = 0; psEnc->sCmn.TargetRate_bps = 0; /* trigger new SNR computation */ /* Initialize non-zero parameters */ psEnc->sCmn.prevLag = 100; psEnc->sCmn.first_frame_after_reset = 1; psEnc->sPrefilt.lagPrev = 100; psEnc->sShape.LastGainIndex = 10; psEnc->sCmn.sNSQ.lagPrev = 100; psEnc->sCmn.sNSQ.prev_inv_gain_Q16 = 65536; psEnc->sCmn.fs_kHz = fs_kHz; if( psEnc->sCmn.fs_kHz == 8 ) { if( psEnc->sCmn.nb_subfr == MAX_NB_SUBFR ) { psEnc->sCmn.pitch_contour_iCDF = silk_pitch_contour_NB_iCDF; } else { psEnc->sCmn.pitch_contour_iCDF = silk_pitch_contour_10_ms_NB_iCDF; } } else { if( psEnc->sCmn.nb_subfr == MAX_NB_SUBFR ) { psEnc->sCmn.pitch_contour_iCDF = silk_pitch_contour_iCDF; } else { psEnc->sCmn.pitch_contour_iCDF = silk_pitch_contour_10_ms_iCDF; } } if( psEnc->sCmn.fs_kHz == 8 || psEnc->sCmn.fs_kHz == 12 ) { psEnc->sCmn.predictLPCOrder = MIN_LPC_ORDER; psEnc->sCmn.psNLSF_CB = &silk_NLSF_CB_NB_MB; } else { psEnc->sCmn.predictLPCOrder = MAX_LPC_ORDER; psEnc->sCmn.psNLSF_CB = &silk_NLSF_CB_WB; } psEnc->sCmn.subfr_length = SUB_FRAME_LENGTH_MS * fs_kHz; psEnc->sCmn.frame_length = SKP_SMULBB( psEnc->sCmn.subfr_length, psEnc->sCmn.nb_subfr ); psEnc->sCmn.ltp_mem_length = SKP_SMULBB( LTP_MEM_LENGTH_MS, fs_kHz ); psEnc->sCmn.la_pitch = SKP_SMULBB( LA_PITCH_MS, fs_kHz ); psEnc->sCmn.max_pitch_lag = SKP_SMULBB( 18, fs_kHz ); if( psEnc->sCmn.nb_subfr == MAX_NB_SUBFR ) { psEnc->sCmn.pitch_LPC_win_length = SKP_SMULBB( FIND_PITCH_LPC_WIN_MS, fs_kHz ); } else { psEnc->sCmn.pitch_LPC_win_length = SKP_SMULBB( FIND_PITCH_LPC_WIN_MS_2_SF, fs_kHz ); } if( psEnc->sCmn.fs_kHz == 16 ) { psEnc->sCmn.mu_LTP_Q9 = SILK_FIX_CONST( MU_LTP_QUANT_WB, 9 ); psEnc->sCmn.pitch_lag_low_bits_iCDF = silk_uniform8_iCDF; } else if( psEnc->sCmn.fs_kHz == 12 ) { psEnc->sCmn.mu_LTP_Q9 = SILK_FIX_CONST( MU_LTP_QUANT_MB, 9 ); psEnc->sCmn.pitch_lag_low_bits_iCDF = silk_uniform6_iCDF; } else { psEnc->sCmn.mu_LTP_Q9 = SILK_FIX_CONST( MU_LTP_QUANT_NB, 9 ); psEnc->sCmn.pitch_lag_low_bits_iCDF = silk_uniform4_iCDF; } } /* Check that settings are valid */ SKP_assert( ( psEnc->sCmn.subfr_length * psEnc->sCmn.nb_subfr ) == psEnc->sCmn.frame_length ); return ret; } opus_int silk_setup_complexity( silk_encoder_state *psEncC, /* I/O */ opus_int Complexity /* I */ ) { opus_int ret = 0; /* Set encoding complexity */ SKP_assert( Complexity >= 0 && Complexity <= 10 ); if( Complexity < 2 ) { psEncC->pitchEstimationComplexity = SILK_PE_MIN_COMPLEX; psEncC->pitchEstimationThreshold_Q16 = SILK_FIX_CONST( 0.8, 16 ); psEncC->pitchEstimationLPCOrder = 6; psEncC->shapingLPCOrder = 8; psEncC->la_shape = 3 * psEncC->fs_kHz; psEncC->nStatesDelayedDecision = 1; psEncC->useInterpolatedNLSFs = 0; psEncC->LTPQuantLowComplexity = 1; psEncC->NLSF_MSVQ_Survivors = 2; psEncC->warping_Q16 = 0; } else if( Complexity < 4 ) { psEncC->pitchEstimationComplexity = SILK_PE_MID_COMPLEX; psEncC->pitchEstimationThreshold_Q16 = SILK_FIX_CONST( 0.76, 16 ); psEncC->pitchEstimationLPCOrder = 8; psEncC->shapingLPCOrder = 10; psEncC->la_shape = 5 * psEncC->fs_kHz; psEncC->nStatesDelayedDecision = 1; psEncC->useInterpolatedNLSFs = 1; psEncC->LTPQuantLowComplexity = 0; psEncC->NLSF_MSVQ_Survivors = 4; psEncC->warping_Q16 = 0; } else if( Complexity < 6 ) { psEncC->pitchEstimationComplexity = SILK_PE_MID_COMPLEX; psEncC->pitchEstimationThreshold_Q16 = SILK_FIX_CONST( 0.74, 16 ); psEncC->pitchEstimationLPCOrder = 10; psEncC->shapingLPCOrder = 12; psEncC->la_shape = 5 * psEncC->fs_kHz; psEncC->nStatesDelayedDecision = 2; psEncC->useInterpolatedNLSFs = 0; psEncC->LTPQuantLowComplexity = 0; psEncC->NLSF_MSVQ_Survivors = 8; psEncC->warping_Q16 = psEncC->fs_kHz * SILK_FIX_CONST( WARPING_MULTIPLIER, 16 ); } else if( Complexity < 8 ) { psEncC->pitchEstimationComplexity = SILK_PE_MID_COMPLEX; psEncC->pitchEstimationThreshold_Q16 = SILK_FIX_CONST( 0.72, 16 ); psEncC->pitchEstimationLPCOrder = 12; psEncC->shapingLPCOrder = 14; psEncC->la_shape = 5 * psEncC->fs_kHz; psEncC->nStatesDelayedDecision = 3; psEncC->useInterpolatedNLSFs = 0; psEncC->LTPQuantLowComplexity = 0; psEncC->NLSF_MSVQ_Survivors = 16; psEncC->warping_Q16 = psEncC->fs_kHz * SILK_FIX_CONST( WARPING_MULTIPLIER, 16 ); } else { psEncC->pitchEstimationComplexity = SILK_PE_MAX_COMPLEX; psEncC->pitchEstimationThreshold_Q16 = SILK_FIX_CONST( 0.7, 16 ); psEncC->pitchEstimationLPCOrder = 16; psEncC->shapingLPCOrder = 16; psEncC->la_shape = 5 * psEncC->fs_kHz; psEncC->nStatesDelayedDecision = MAX_DEL_DEC_STATES; psEncC->useInterpolatedNLSFs = 1; psEncC->LTPQuantLowComplexity = 0; psEncC->NLSF_MSVQ_Survivors = 32; psEncC->warping_Q16 = psEncC->fs_kHz * SILK_FIX_CONST( WARPING_MULTIPLIER, 16 ); } /* Do not allow higher pitch estimation LPC order than predict LPC order */ psEncC->pitchEstimationLPCOrder = SKP_min_int( psEncC->pitchEstimationLPCOrder, psEncC->predictLPCOrder ); psEncC->shapeWinLength = SUB_FRAME_LENGTH_MS * psEncC->fs_kHz + 2 * psEncC->la_shape; psEncC->Complexity = Complexity; SKP_assert( psEncC->pitchEstimationLPCOrder <= MAX_FIND_PITCH_LPC_ORDER ); SKP_assert( psEncC->shapingLPCOrder <= MAX_SHAPE_LPC_ORDER ); SKP_assert( psEncC->nStatesDelayedDecision <= MAX_DEL_DEC_STATES ); SKP_assert( psEncC->warping_Q16 <= 32767 ); SKP_assert( psEncC->la_shape <= LA_SHAPE_MAX ); SKP_assert( psEncC->shapeWinLength <= SHAPE_LPC_WIN_MAX ); SKP_assert( psEncC->NLSF_MSVQ_Survivors <= NLSF_VQ_MAX_SURVIVORS ); return ret; } SKP_INLINE opus_int silk_setup_LBRR( silk_encoder_state *psEncC, /* I/O */ const opus_int32 TargetRate_bps /* I */ ) { opus_int ret = SILK_NO_ERROR; opus_int32 LBRR_rate_thres_bps; psEncC->LBRR_enabled = 0; if( psEncC->useInBandFEC && psEncC->PacketLoss_perc > 0 ) { if( psEncC->fs_kHz == 8 ) { LBRR_rate_thres_bps = LBRR_NB_MIN_RATE_BPS; } else if( psEncC->fs_kHz == 12 ) { LBRR_rate_thres_bps = LBRR_MB_MIN_RATE_BPS; } else { LBRR_rate_thres_bps = LBRR_WB_MIN_RATE_BPS; } LBRR_rate_thres_bps = SKP_SMULWB( SKP_MUL( LBRR_rate_thres_bps, 125 - SKP_min( psEncC->PacketLoss_perc, 25 ) ), SILK_FIX_CONST( 0.01, 16 ) ); if( TargetRate_bps > LBRR_rate_thres_bps ) { /* Set gain increase for coding LBRR excitation */ psEncC->LBRR_enabled = 1; psEncC->LBRR_GainIncreases = SKP_max_int( 7 - SKP_SMULWB( psEncC->PacketLoss_perc, SILK_FIX_CONST( 0.4, 16 ) ), 2 ); } } return ret; }