ref: 268caad4e82685553a49a84e42a391a64be9861e
dir: /libcelt/vq.c/
/* Copyright (c) 2007-2008 CSIRO Copyright (c) 2007-2009 Xiph.Org Foundation Written by Jean-Marc Valin */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of the Xiph.org Foundation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "mathops.h" #include "cwrs.h" #include "vq.h" #include "arch.h" #include "os_support.h" #include "rate.h" #ifndef M_PI #define M_PI 3.141592653 #endif static void exp_rotation1(celt_norm *X, int len, int dir, int stride, celt_word16 c, celt_word16 s) { int i; celt_norm *Xptr; if (dir>0) s = -s; Xptr = X; for (i=0;i<len-stride;i++) { celt_norm x1, x2; x1 = Xptr[0]; x2 = Xptr[stride]; Xptr[stride] = EXTRACT16(SHR32(MULT16_16(c,x2) + MULT16_16(s,x1), 15)); *Xptr++ = EXTRACT16(SHR32(MULT16_16(c,x1) - MULT16_16(s,x2), 15)); } Xptr = &X[len-2*stride-1]; for (i=len-2*stride-1;i>=0;i--) { celt_norm x1, x2; x1 = Xptr[0]; x2 = Xptr[stride]; Xptr[stride] = EXTRACT16(SHR32(MULT16_16(c,x2) + MULT16_16(s,x1), 15)); *Xptr-- = EXTRACT16(SHR32(MULT16_16(c,x1) - MULT16_16(s,x2), 15)); } } static void exp_rotation(celt_norm *X, int len, int dir, int stride, int K) { int i; celt_word16 c, s; celt_word16 gain, theta; int stride2=0; /*int i; if (len>=30) { for (i=0;i<len;i++) X[i] = 0; X[14] = 1; K=5; }*/ if (2*K>=len) return; gain = celt_div((celt_word32)MULT16_16(Q15_ONE,len),(celt_word32)(len+10*K)); /* FIXME: Make that HALF16 instead of HALF32 */ theta = HALF32(MULT16_16_Q15(gain,gain)); c = celt_cos_norm(EXTEND32(theta)); s = celt_cos_norm(EXTEND32(SUB16(Q15ONE,theta))); /* sin(theta) */ if (len>=8*stride) { stride2 = 1; /* This is just a simple way of computing sqrt(len/stride) with rounding. It's basically incrementing long as (stride2+0.5)^2 < len/stride. I _think_ it is bit-exact */ while ((stride2*stride2+stride2)*stride + (stride>>2) < len) stride2++; } len /= stride; for (i=0;i<stride;i++) { if (dir < 0) { if (stride2) exp_rotation1(X+i*len, len, dir, stride2, s, c); exp_rotation1(X+i*len, len, dir, 1, c, s); } else { exp_rotation1(X+i*len, len, dir, 1, c, s); if (stride2) exp_rotation1(X+i*len, len, dir, stride2, s, c); } } /*if (len>=30) { for (i=0;i<len;i++) printf ("%f ", X[i]); printf ("\n"); exit(0); }*/ } /** Takes the pitch vector and the decoded residual vector, computes the gain that will give ||p+g*y||=1 and mixes the residual with the pitch. */ static void normalise_residual(int * restrict iy, celt_norm * restrict X, int N, int K, celt_word32 Ryy) { int i; #ifdef FIXED_POINT int k; #endif celt_word32 t; celt_word16 g; #ifdef FIXED_POINT k = celt_ilog2(Ryy)>>1; #endif t = VSHR32(Ryy, (k-7)<<1); g = celt_rsqrt_norm(t); i=0; do X[i] = EXTRACT16(PSHR32(MULT16_16(g, iy[i]), k+1)); while (++i < N); } void alg_quant(celt_norm *X, int N, int K, int spread, celt_norm *lowband, int resynth, ec_enc *enc) { VARDECL(celt_norm, y); VARDECL(int, iy); VARDECL(celt_word16, signx); int j, is; celt_word16 s; int pulsesLeft; celt_word32 sum; celt_word32 xy, yy; int N_1; /* Inverse of N, in Q14 format (even for float) */ #ifdef FIXED_POINT int yshift; #endif SAVE_STACK; if (K==0) { if (lowband != NULL && resynth) { for (j=0;j<N;j++) X[j] = lowband[j]; renormalise_vector(X, Q15ONE, N, 1); } else { /* This is important for encoding the side in stereo mode */ for (j=0;j<N;j++) X[j] = 0; } return; } K = get_pulses(K); #ifdef FIXED_POINT yshift = 13-celt_ilog2(K); #endif ALLOC(y, N, celt_norm); ALLOC(iy, N, int); ALLOC(signx, N, celt_word16); N_1 = 512/N; if (spread) exp_rotation(X, N, 1, spread, K); sum = 0; j=0; do { if (X[j]>0) signx[j]=1; else { signx[j]=-1; X[j]=-X[j]; } iy[j] = 0; y[j] = 0; } while (++j<N); xy = yy = 0; pulsesLeft = K; /* Do a pre-search by projecting on the pyramid */ if (K > (N>>1)) { celt_word16 rcp; j=0; do { sum += X[j]; } while (++j<N); #ifdef FIXED_POINT if (sum <= K) #else if (sum <= EPSILON) #endif { X[0] = QCONST16(1.f,14); j=1; do X[j]=0; while (++j<N); sum = QCONST16(1.f,14); } /* Do we have sufficient accuracy here? */ rcp = EXTRACT16(MULT16_32_Q16(K-1, celt_rcp(sum))); j=0; do { #ifdef FIXED_POINT /* It's really important to round *towards zero* here */ iy[j] = MULT16_16_Q15(X[j],rcp); #else iy[j] = floor(rcp*X[j]); #endif y[j] = SHL16(iy[j],yshift); yy = MAC16_16(yy, y[j],y[j]); xy = MAC16_16(xy, X[j],y[j]); y[j] *= 2; pulsesLeft -= iy[j]; } while (++j<N); } celt_assert2(pulsesLeft>=1, "Allocated too many pulses in the quick pass"); while (pulsesLeft > 0) { int pulsesAtOnce=1; int best_id; celt_word16 magnitude; celt_word32 best_num = -VERY_LARGE16; celt_word16 best_den = 0; #ifdef FIXED_POINT int rshift; #endif /* Decide on how many pulses to find at once */ pulsesAtOnce = (pulsesLeft*N_1)>>9; /* pulsesLeft/N */ if (pulsesAtOnce<1) pulsesAtOnce = 1; #ifdef FIXED_POINT rshift = yshift+1+celt_ilog2(K-pulsesLeft+pulsesAtOnce); #endif magnitude = SHL16(pulsesAtOnce, yshift); best_id = 0; /* The squared magnitude term gets added anyway, so we might as well add it outside the loop */ yy = MAC16_16(yy, magnitude,magnitude); /* Choose between fast and accurate strategy depending on where we are in the search */ /* This should ensure that anything we can process will have a better score */ j=0; do { celt_word16 Rxy, Ryy; /* Select sign based on X[j] alone */ s = magnitude; /* Temporary sums of the new pulse(s) */ Rxy = EXTRACT16(SHR32(MAC16_16(xy, s,X[j]),rshift)); /* We're multiplying y[j] by two so we don't have to do it here */ Ryy = EXTRACT16(SHR32(MAC16_16(yy, s,y[j]),rshift)); /* Approximate score: we maximise Rxy/sqrt(Ryy) (we're guaranteed that Rxy is positive because the sign is pre-computed) */ Rxy = MULT16_16_Q15(Rxy,Rxy); /* The idea is to check for num/den >= best_num/best_den, but that way we can do it without any division */ /* OPT: Make sure to use conditional moves here */ if (MULT16_16(best_den, Rxy) > MULT16_16(Ryy, best_num)) { best_den = Ryy; best_num = Rxy; best_id = j; } } while (++j<N); j = best_id; is = pulsesAtOnce; s = SHL16(is, yshift); /* Updating the sums of the new pulse(s) */ xy = xy + MULT16_16(s,X[j]); /* We're multiplying y[j] by two so we don't have to do it here */ yy = yy + MULT16_16(s,y[j]); /* Only now that we've made the final choice, update y/iy */ /* Multiplying y[j] by 2 so we don't have to do it everywhere else */ y[j] += 2*s; iy[j] += is; pulsesLeft -= pulsesAtOnce; } j=0; do { X[j] = MULT16_16(signx[j],X[j]); if (signx[j] < 0) iy[j] = -iy[j]; } while (++j<N); encode_pulses(iy, N, K, enc); /* Recompute the gain in one pass to reduce the encoder-decoder mismatch due to the recursive computation used in quantisation. */ if (resynth) { normalise_residual(iy, X, N, K, EXTRACT16(SHR32(yy,2*yshift))); if (spread) exp_rotation(X, N, -1, spread, K); } RESTORE_STACK; } /** Decode pulse vector and combine the result with the pitch vector to produce the final normalised signal in the current band. */ void alg_unquant(celt_norm *X, int N, int K, int spread, celt_norm *lowband, ec_dec *dec) { int i; celt_word32 Ryy; VARDECL(int, iy); SAVE_STACK; if (K==0) { if (lowband != NULL) { for (i=0;i<N;i++) X[i] = lowband[i]; renormalise_vector(X, Q15ONE, N, 1); } else { /* This is important for encoding the side in stereo mode */ for (i=0;i<N;i++) X[i] = 0; } return; } K = get_pulses(K); ALLOC(iy, N, int); decode_pulses(iy, N, K, dec); Ryy = 0; i=0; do { Ryy = MAC16_16(Ryy, iy[i], iy[i]); } while (++i < N); normalise_residual(iy, X, N, K, Ryy); if (spread) exp_rotation(X, N, -1, spread, K); RESTORE_STACK; } celt_word16 renormalise_vector(celt_norm *X, celt_word16 value, int N, int stride) { int i; #ifdef FIXED_POINT int k; #endif celt_word32 E = EPSILON; celt_word16 g; celt_word32 t; celt_norm *xptr = X; for (i=0;i<N;i++) { E = MAC16_16(E, *xptr, *xptr); xptr += stride; } #ifdef FIXED_POINT k = celt_ilog2(E)>>1; #endif t = VSHR32(E, (k-7)<<1); g = MULT16_16_Q15(value, celt_rsqrt_norm(t)); xptr = X; for (i=0;i<N;i++) { *xptr = EXTRACT16(PSHR32(MULT16_16(g, *xptr), k+1)); xptr += stride; } return celt_sqrt(E); }