ref: 222494f3ea66da5abb218508abf53dc40d13b99e
dir: /silk/silk_decode_core.c/
/*********************************************************************** Copyright (c) 2006-2011, Skype Limited. All rights reserved. Redistribution and use in source and binary forms, with or without modification, (subject to the limitations in the disclaimer below) are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of Skype Limited, nor the names of specific contributors, may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***********************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "silk_main.h" /**********************************************************/ /* Core decoder. Performs inverse NSQ operation LTP + LPC */ /**********************************************************/ void silk_decode_core( silk_decoder_state *psDec, /* I/O Decoder state */ silk_decoder_control *psDecCtrl, /* I Decoder control */ opus_int16 xq[], /* O Decoded speech */ const opus_int pulses[ MAX_FRAME_LENGTH ] /* I Pulse signal */ ) { opus_int i, j, k, lag = 0, start_idx, sLTP_buf_idx, NLSF_interpolation_flag, signalType; opus_int16 *A_Q12, *B_Q14, *pxq, A_Q12_tmp[ MAX_LPC_ORDER ]; opus_int16 sLTP[ MAX_FRAME_LENGTH ]; opus_int32 LTP_pred_Q14, LPC_pred_Q10, Gain_Q16, inv_gain_Q16, inv_gain_Q32, gain_adj_Q16, rand_seed, offset_Q10; opus_int32 *pred_lag_ptr, *pexc_Q10, *pres_Q10; opus_int32 res_Q10[ MAX_SUB_FRAME_LENGTH ]; opus_int32 vec_Q10[ MAX_SUB_FRAME_LENGTH ]; SKP_assert( psDec->prev_inv_gain_Q16 != 0 ); offset_Q10 = silk_Quantization_Offsets_Q10[ psDec->indices.signalType >> 1 ][ psDec->indices.quantOffsetType ]; if( psDec->indices.NLSFInterpCoef_Q2 < 1 << 2 ) { NLSF_interpolation_flag = 1; } else { NLSF_interpolation_flag = 0; } /* Decode excitation */ rand_seed = psDec->indices.Seed; for( i = 0; i < psDec->frame_length; i++ ) { rand_seed = SKP_RAND( rand_seed ); psDec->exc_Q10[ i ] = SKP_LSHIFT( ( opus_int32 )pulses[ i ], 10 ); if( psDec->exc_Q10[ i ] > 0 ) { psDec->exc_Q10[ i ] -= QUANT_LEVEL_ADJUST_Q10; } else if( psDec->exc_Q10[ i ] < 0 ) { psDec->exc_Q10[ i ] += QUANT_LEVEL_ADJUST_Q10; } psDec->exc_Q10[ i ] += offset_Q10; psDec->exc_Q10[ i ] ^= SKP_RSHIFT( rand_seed, 31 ); rand_seed += pulses[ i ]; } #ifdef SAVE_ALL_INTERNAL_DATA DEBUG_STORE_DATA( dec_q.dat, pulses, psDec->frame_length * sizeof( opus_int ) ); #endif pexc_Q10 = psDec->exc_Q10; pxq = &psDec->outBuf[ psDec->ltp_mem_length ]; sLTP_buf_idx = psDec->ltp_mem_length; /* Loop over subframes */ for( k = 0; k < psDec->nb_subfr; k++ ) { pres_Q10 = res_Q10; A_Q12 = psDecCtrl->PredCoef_Q12[ k >> 1 ]; /* Preload LPC coeficients to array on stack. Gives small performance gain */ SKP_memcpy( A_Q12_tmp, A_Q12, psDec->LPC_order * sizeof( opus_int16 ) ); B_Q14 = &psDecCtrl->LTPCoef_Q14[ k * LTP_ORDER ]; Gain_Q16 = psDecCtrl->Gains_Q16[ k ]; signalType = psDec->indices.signalType; inv_gain_Q16 = silk_INVERSE32_varQ( SKP_max( Gain_Q16, 1 ), 32 ); inv_gain_Q16 = SKP_min( inv_gain_Q16, SKP_int16_MAX ); /* Calculate Gain adjustment factor */ gain_adj_Q16 = 1 << 16; if( inv_gain_Q16 != psDec->prev_inv_gain_Q16 ) { gain_adj_Q16 = silk_DIV32_varQ( inv_gain_Q16, psDec->prev_inv_gain_Q16, 16 ); /* Scale short term state */ for( i = 0; i < MAX_LPC_ORDER; i++ ) { psDec->sLPC_Q14[ i ] = SKP_SMULWW( gain_adj_Q16, psDec->sLPC_Q14[ i ] ); } } /* Save inv_gain */ SKP_assert( inv_gain_Q16 != 0 ); psDec->prev_inv_gain_Q16 = inv_gain_Q16; /* Avoid abrupt transition from voiced PLC to unvoiced normal decoding */ if( psDec->lossCnt && psDec->prevSignalType == TYPE_VOICED && psDec->indices.signalType != TYPE_VOICED && k < MAX_NB_SUBFR/2 ) { SKP_memset( B_Q14, 0, LTP_ORDER * sizeof( opus_int16 ) ); B_Q14[ LTP_ORDER/2 ] = SILK_FIX_CONST( 0.25, 14 ); signalType = TYPE_VOICED; psDecCtrl->pitchL[ k ] = psDec->lagPrev; } if( signalType == TYPE_VOICED ) { /* Voiced */ lag = psDecCtrl->pitchL[ k ]; /* Re-whitening */ if( ( k & ( 3 - SKP_LSHIFT( NLSF_interpolation_flag, 1 ) ) ) == 0 ) { /* Rewhiten with new A coefs */ start_idx = psDec->ltp_mem_length - lag - psDec->LPC_order - LTP_ORDER / 2; SKP_assert( start_idx > 0 ); silk_LPC_analysis_filter( &sLTP[ start_idx ], &psDec->outBuf[ start_idx + k * psDec->subfr_length ], A_Q12, psDec->ltp_mem_length - start_idx, psDec->LPC_order ); /* After rewhitening the LTP state is unscaled */ inv_gain_Q32 = SKP_LSHIFT( inv_gain_Q16, 16 ); if( k == 0 ) { /* Do LTP downscaling */ inv_gain_Q32 = SKP_LSHIFT( SKP_SMULWB( inv_gain_Q32, psDecCtrl->LTP_scale_Q14 ), 2 ); } for( i = 0; i < lag + LTP_ORDER/2; i++ ) { psDec->sLTP_Q16[ sLTP_buf_idx - i - 1 ] = SKP_SMULWB( inv_gain_Q32, sLTP[ psDec->ltp_mem_length - i - 1 ] ); } } else { /* Update LTP state when Gain changes */ if( gain_adj_Q16 != 1 << 16 ) { for( i = 0; i < lag + LTP_ORDER/2; i++ ) { psDec->sLTP_Q16[ sLTP_buf_idx - i - 1 ] = SKP_SMULWW( gain_adj_Q16, psDec->sLTP_Q16[ sLTP_buf_idx - i - 1 ] ); } } } } /* Long-term prediction */ if( signalType == TYPE_VOICED ) { /* Setup pointer */ pred_lag_ptr = &psDec->sLTP_Q16[ sLTP_buf_idx - lag + LTP_ORDER / 2 ]; for( i = 0; i < psDec->subfr_length; i++ ) { /* Unrolled loop */ LTP_pred_Q14 = SKP_SMULWB( pred_lag_ptr[ 0 ], B_Q14[ 0 ] ); LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -1 ], B_Q14[ 1 ] ); LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -2 ], B_Q14[ 2 ] ); LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -3 ], B_Q14[ 3 ] ); LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -4 ], B_Q14[ 4 ] ); pred_lag_ptr++; /* Generate LPC excitation */ pres_Q10[ i ] = SKP_ADD32( pexc_Q10[ i ], SKP_RSHIFT_ROUND( LTP_pred_Q14, 4 ) ); /* Update states */ psDec->sLTP_Q16[ sLTP_buf_idx ] = SKP_LSHIFT( pres_Q10[ i ], 6 ); sLTP_buf_idx++; } } else { pres_Q10 = pexc_Q10; } #ifdef SAVE_ALL_INTERNAL_DATA DEBUG_STORE_DATA( dec_exc_Q10.dat, pexc_Q10, psDec->subfr_length * sizeof( opus_int32 ) ); DEBUG_STORE_DATA( dec_res_Q10.dat, pres_Q10, psDec->subfr_length * sizeof( opus_int32 ) ); #endif for( i = 0; i < psDec->subfr_length; i++ ) { /* Partially unrolled */ LPC_pred_Q10 = SKP_SMULWB( psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 1 ], A_Q12_tmp[ 0 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 2 ], A_Q12_tmp[ 1 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 3 ], A_Q12_tmp[ 2 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 4 ], A_Q12_tmp[ 3 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 5 ], A_Q12_tmp[ 4 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 6 ], A_Q12_tmp[ 5 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 7 ], A_Q12_tmp[ 6 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 8 ], A_Q12_tmp[ 7 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 9 ], A_Q12_tmp[ 8 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 10 ], A_Q12_tmp[ 9 ] ); for( j = 10; j < psDec->LPC_order; j++ ) { LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - j - 1 ], A_Q12_tmp[ j ] ); } /* Add prediction to LPC excitation */ vec_Q10[ i ] = SKP_ADD32( pres_Q10[ i ], LPC_pred_Q10 ); /* Update states */ psDec->sLPC_Q14[ MAX_LPC_ORDER + i ] = SKP_LSHIFT( vec_Q10[ i ], 4 ); } /* Scale with Gain */ for( i = 0; i < psDec->subfr_length; i++ ) { pxq[ i ] = ( opus_int16 )SKP_SAT16( SKP_RSHIFT_ROUND( SKP_SMULWW( vec_Q10[ i ], Gain_Q16 ), 10 ) ); } /* Update LPC filter state */ SKP_memcpy( psDec->sLPC_Q14, &psDec->sLPC_Q14[ psDec->subfr_length ], MAX_LPC_ORDER * sizeof( opus_int32 ) ); pexc_Q10 += psDec->subfr_length; pxq += psDec->subfr_length; } /* Copy to output */ SKP_memcpy( xq, &psDec->outBuf[ psDec->ltp_mem_length ], psDec->frame_length * sizeof( opus_int16 ) ); #ifdef SAVE_ALL_INTERNAL_DATA DEBUG_STORE_DATA( dec_sLTP_Q16.dat, &psDec->sLTP_Q16[ psDec->ltp_mem_length ], psDec->frame_length * sizeof( opus_int32 )); DEBUG_STORE_DATA( dec_xq.dat, xq, psDec->frame_length * sizeof( opus_int16 ) ); #endif }